Araştırma Makalesi
BibTex RIS Kaynak Göster

Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması

Yıl 2024, , 342 - 350, 15.03.2024
https://doi.org/10.34248/bsengineering.1410249

Öz

Günümüzde, gıdaların duyusal kalite ve fonksiyonel özelliklerini geliştirmek için yoğun bir şekilde çalışılmaktadır. Katı yağlar, yapısında yüksek oranda doymuş yağ asitleri içermesi nedeniyle sağlık açısından sorun oluşturabilmektedir ve bu nedenle gıdalarda katı yağ yerine kullanılabilecek ikame maddeleri geliştirilmektedir. Bu çalışmada, kraker yapımında katı yağ ikame maddesi olarak çörekotu yağı oleojeli (ÇOYO) kullanılmış olup, krakerin fiziksel, duyusal ve tekstürel özelliklerinde meydana gelen değişimler incelenmiştir. Kraker yapımında kullanılan shortening oranı % 0, % 50 ve % 100 olacak şekilde ÇOYO ile değiştirilerek, sırasıyla, Kontrol-kraker, % 50 ÇOYO-kraker ve %100 ÇOYO-kraker formülasyonları hazırlanmıştır. Kontrol-kraker, % 50 ÇOYO-kraker ve %100 ÇOYO-kraker örneklerinin nem değerleri sırası ile % 3.61, % 4.11 ve % 4.66 olarak bulunmuştur. En yüksek su aktivitesi değeri %100 ÇOYO-krakere (0,2315) ait olup bunu % 50 ÇOYO-kraker (0,1920) takip etmiştir. Bileşiminde ÇOYO bulunan krakerlerin L* değerlerinin azaldığı ve a* değerlerinin arttığı görülmüştür. En yüksek sertlik değeri (2396,90 g kuvvet) Kontrol-krakere ait iken en düşük sertlik değeri (1170,45 g kuvvet) %100 ÇOYO-krakere aittir (P<0,05). Formülasyonunda ÇOYO kullanılan krakerler duyusal analizde lezzet açısından daha çok beğenilmiştir (P<0,05). Genel beğeni açısından %100 ÇOYO-kraker örneği (7,18) en yüksek skoru alırken Kontrol-kraker örneği (6,55) en düşük skoru almıştır. Bu sonuçlar ÇOYO’nun kraker gibi ürünlerde kullanım potansiyelinin oldukça yüksek olduğunu göstermektedir.

Kaynakça

  • Adili L, Roufegarinejad L, Tabibiazar M, Hamishehkar H, Alizadeh A. 2020. Development and characterization of reinforced ethyl cellulose based oleogel with adipic acid: Its application in cake and beef burger. Food Sci Technol, 126: 109277. https://doi.org/10.1016/j.lwt.2020.109277.
  • Alamri MS, Mohamed AA, Hussain S, Ibraheem MA, Qasem AAA, Shamlan G, Hakeem MJ, Ababtain IA. 2022. Functionality of cordia and ziziphus gums with respect to the dough properties and baking performance of stored pan bread and sponge cakes. Foods, 11(3): 466. https://doi.org/10.3390/foods11030460.
  • Albakry Z, Karrar E, Ahmed IAM, Oz E, Proestos C, El Sheikha AF, Oz F, Wu G, Wang X. 2022. Nutritional composition and volatile compounds of black cumin (nigella sativa l.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae, 8(7): 575. https://doi.org/10.3390/horticulturae8070575.
  • Anonymous. 2023. EU novel food status catalogue. URL: https://ec.europa.eu/food/safety/novel-food/novel-food-catalogue_en (accessed date: September 4, 2023).
  • AOAC. 2000. Official methods of analysis of AOAC Inter (17 ed.). Method 935.36 Solid (total) in bread. AOAC Inter. Gaithersburg, MD, USA, pp: 143.
  • Ayyıldız HF, Topkafa M, Sherazi STH, Mahesar SA, Kara H. 2021. Investigation of the chemical characteristics and oxidative stability of some commercial cold-pressed oils. Konya J Engin Sci, 9(4): 904-916. https://doi.org/10.36306/konjes.913439.
  • Badem Ş, Baştürk, A. 2023. Oxidative stability and characterization of oleogels obtained from safflower oil-based beeswax and rice bran wax and their effect on the quality of cake samples. J American Oil Chemists' Soc, 2023: 1–15.
  • Barragán-Martínez LP, Román-Guerrero A, Vernon-Carter EJ, Alvarez-Ramirez J. 2022. Impact of fat replacement by a hybrid gel (canola oil/candelilla wax oleogel and gelatinized corn starch hydrogel) on dough viscoelasticity, color, texture, structure, and starch digestibility of sugar-snap cookies. Inter J Gastron Food Sci, 29: 100563. https://doi.org/10.1016/j.ijgfs.2022.100563.
  • Batista AP, Niccolai A, Bursic I, Sousa I, Raymundo A, Rodolfi L, Biondi N, Tredici MR. 2019. Microalgae as functional ingredients in savory food products: application to wheat crackers. Foods, 8: 611; doi:10.3390/foods8120611.
  • Bölükbaş B. 2023. Ekşi hamur mikroorganizmaları kullanımının krakerin kalite ve biyoaktif özellikleri ile glisemik indeks üzerine etkisi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği A.B.D., İstanbul, Türkiye, ss: 55.
  • Brito GB, Peixoto VODS, Martins MT, Rosário DKA, Ract JN, Conte-Júnior CA, Torres AG, Castelo-Branco VN. 2022. Development of chitosan-based oleogels via crosslinking with vanillin using an emulsion templated approach: Structural characterization and their application as fat-replacer. Food Struct, 32: 100264. https://doi.org/10.1016/j.foostr.2022.100264.
  • Choi KO, Hwang HS, Jeong S, Kim S, Lee S. 2020. The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. J Food Sci, 85(10): 3432-3441. https://doi.org/10.1111/1750-3841.15442.
  • Demirkesen I, Mert B. 2019. Utilization of beeswax oleogel‐shortening mixtures in gluten‐free bakery products. J American Oil Chem Soc, 96(5): 545-554. https://doi.org/10.1002/aocs.12195.
  • Demirkesen I, Mert B. 2020. Recent developments of oleogel utilizations in bakery products. Critical Rev Food Sci Nutri, 60(14): 2460-2479. https://doi.org/10.1080/10408398.2019.1649243.
  • Dülger-Altıner D. 2015. Sağlıklı bir atıştırmalık: enerjisi azaltılmış kraker üretimi. Doktora Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği A.B.D., Bursa, Türkiye, ss: 142.
  • Ekin MM, Kutlu N, Meral R, Ceylan Z, Cavidoglu İ. 2021. A novel nanotechnological strategy for obtaining fat-reduced cookies in bakery industry: Revealing of sensory, physical properties, and fatty acid profile of cookies prepared with oil-based nanoemulsions. Food BioSci, 42: 101184. https://doi.org/10.1016/j.fbio.2021.101184.
  • Espert M, Wang Q, Sanz T, Salvador A. 2023. Sunflower Oil-based Oleogel as Fat Replacer in Croissants: Textural and Sensory Characterisation. Food Bioprocess Technol, 16(9): 1943-1952. https://doi.org/10.1007/s11947-023-03029-w.
  • Fayaz G, Polenghi O, Giardina A, Cerne V, Calligaris S. 2020. Structural and rheological properties of medium‐chain triacylglyceride oleogels. Inter J Food Sci Technol, 56(2): 1040-1047. https://doi.org/10.1111/ijfs.14757.
  • Flores-Garcia CL, Medina-Herrera N, Rodriguez-Romero BA, Martinez-Avila GCG, Rojas R, Meza-Carranco Z. 2023. Impact of fat replacement by using organic-candelilla-wax-based oleogels on the physicochemical and sensorial properties of a model cookie. Gels, 9(8): 757. https://doi.org/10.1111/ijfs.14757.
  • Gallagher E, O'Brien CM, Scannell AGM, Arendt EK. 2003. Use of response surface methodology to produce functional short dough biscuits. J Food Engin, 56: 269–271. https://doi.org/10.1016/S0260-8774(02)00265-0.
  • Giacomozzi AS, Carrin ME, Palla CA. 2018. Muffins elaborated with optimized monoglycerides oleogels: from solid fat replacer obtention to product quality evaluation. J Food Sci, 83(6): 1505-1515. https://doi.org/10.1111/1750-3841.14174.
  • Giacomozzi AS, Carrín ME, Palla CA. 2022. Muffins made with monoglyceride oleogels: Impact of fat replacement on sensory properties and fatty acid profile. JAOCS, 100(4): 343-349. https://doi.org/10.1002/aocs.12674.
  • Giannoutsos K, Achilleas PZ, Koukoumaki DI, George M, Mourtzinos I, Sarris D, Gkatzionis K. 2023. Production of functional crackers based on non-conventional flours. Study of the physicochemical and sensory properties. Food Chem Adv, 2023(2): 100194. https://doi.org/10.1016/j.focha.2023.100194.
  • IUPAC. 1987. Standard methods for analysis of oils, fats and derivatives. Blackwell Scientific Publications, IUPAC Method 2.301, Report of IUPAC Working Group WG 2/87, Network, USA, 7th ed., pp: 253.
  • İzci L, Şengül B. 2015. Sensory acceptability and fatty acid profile of fish crackers made from carassius gibelio. Food Sci Technol, 35(4): 643-646. https://doi.org/10.1590/1678-457X.6723.
  • Jadhav HB, Pratap AP, Gogate PR, Annapure US. 2022. Ultrasound-assisted synthesis of highly stable MCT based oleogel and evaluation of its baking performance. Applied Food Res, 2(2): 156. https://doi.org/10.1016/j.afres.2022.100156.
  • Kahraman SD, Küplülü Ö. 2011. Trans yağ asitleri. Vet Hekim Dern Derg, 82(2): 15-24.
  • Kara S. 2019. Karnauba ve balmumu vaksları ile hazırlanan oleojellerin dsc ve ft-ır spektroskopisi ile karakterizasyonu. Yüksek Lisans Tezi, İstanbul Sabahattin Zaim Üniversitesi Gıda Mühendisliği Anabilim Dalı, İstanbul, Türkiye, ss: 80.
  • Kim JY, Lim J, Lee J, Hwang HS, Lee S. 2017. Utilization of oleogels as a replacement for solid fat in aerated baked goods: physicochemical, rheological, and tomographic characterization. J Food Sci, 82(2): 445-452. https://doi.org/10.1111/1750-3841.13583
  • Lee JY, Lim T, Kim J, Hwang KT. 2022. Physicochemical characteristics and sensory acceptability of crackers containing red ginseng marc. J Food Sci Technol, 59(1): 212-219. https://doi.org/10.1007/s13197-021-05002-x.
  • Lee S, Inglett GE. 2006. Rheological and physical evaluation of jet‐cooked oat bran in low calorie cookies. Inter J Food Sci Technol, 41(5): 553-559. https://doi.org/10.1111/j.1365-2621.2005.01105.x.
  • Li J, Guo R, Wang M, Bi Y, Zhang H, Xu X. 2022. Development and Characterization of Compound Oleogels Based on Monoglycerides and Edible Waxes. ACS Food Sci Technol, 2(2): 302-314. https://doi.org/10.1021/acsfoodscitech.1c00390.
  • Meng Z, Guo Y, Wang Y, Liu Y. 2018. Oleogels from sodium stearoyl lactylate-based lamellar crystals: structural characterization and bread application. Food Chem, 292: 134-142, https://doi.org/10.1016/j.foodchem.2018.11.042.
  • Millar KA, Barry-Ryan C, Burke R, Hussey K, McCarthy S, Gallagher E. 2017. Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers. Inter J Food Sci Technol, 52: 1155–1163. https://doi.org/10.1111/ijfs.13388.
  • Naeli MH, Milani JM, Farmani J, Zargaraan A. 2023. Ethyl cellulose/hydroxypropyl methyl cellulose‐based oleogel shortening: Effect on batter rheology and physical properties of sponge cake. J American Oil Chem Soc, 100(9): 743-755. https://doi.org/10.1002/aocs.12695.
  • Noonim P, Rajasekaran B, Venkatachalam K. 2022. Structural characterization and peroxidation stability of palm oil-based oleogel made with different concentrations of carnauba wax and processed with ultrasonication. Gels, 8(12): 763. https://doi.org/10.3390/gels8120763.
  • Nutter J, Shi X, Lamsal B, Acevedo NC. 2023. Plant-based bigels as a novel alternative to commercial solid fats in short dough products: Textural and structural properties of short dough and shortbread. Food BioSci, 54: 102865. https://doi.org/10.1016/j.fbio.2023.102865.
  • Orhan NO, Eroglu Z. 2022. Structural characterization and oxidative stability of black cumin oil oleogels prepared with natural waxes. J Food Process Preserv, 46(12): 17211. https://doi.org/10.1111/jfpp.17211.
  • Palamutoğlu R, 2021. Replacement of beef fat in meatball with oleogels (black cumin seed oil/sunflower oil). J Hellenic Vet Med Soc, 72(3): 3031–3040. https://doi.org/10.12681/jhvms.28484.
  • Pehlivanoğlu H, Ozulku G, Yildirim RM, Demirci M, Toker OS, Sagdic O. 2018. Investigating the usage of unsaturated fatty acid-rich and low-calorie oleogels as a shortening mimetics in cake. J Food Process Preserv, 42(6): e13621. https://doi.org/10.1111/jfpp.13621.
  • Rafati M, Ghasemi A, Saeedi M, Habibi E, Salehifar E, Mosazadeh M, Maham M. 2019. Nigella sativa L. for prevention of acute radiation dermatitis in breast cancer: A randomized, double-blind, placebo-controlled, clinical trial. Complement Ther Med, 47: 102205. https://doi.org/10.1016/j.ctim.2019.102205.
  • Schwarz W. 2000. Formation of trans polyalkenoic fatty acids during vegetable oil refining. European J Lipid Sci Technol, 102: 648-649. https://doi.org/10.1002/1438-9312(200010)102:10<648:AID-EJLT648>3.0.CO;2-V.
  • Swe MTH, Asavapichayont P. 2018. Effect of silicone oil on the microstructure, gelation and rheological properties of sorbitan monostearate-sesame oil oleogels, Asian J Pharmaceut Sci, 13: 485–497, 2018. https://doi.org/10.1016/j.ajps.2018.04.006.
  • Szydłowska-Czerniak A, Momot M, Stawicka B, Rabiej-Kozioł D, 2022. Effects of the chemical composition on the antioxidant and sensory characteristics and oxidative stability of cold-pressed black cumin oils, Antioxidants, 11: 1556. https://doi.org/10.3390/antiox11081556.
  • Talbott SM, Talbott JA. 2022. Effect of thymoquin black cumin seed oil as a natural immune modulator of upper-respiratory tract complaints and psychological mood state. Food Sci Nutri Res, 5(1): 1-6.
  • Tang YR, Ghosh S. 2021. Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. Royal Soc Chem, RSC Adv, 11(41): 25141-25157. https://doi.org/10.1039/d1ra02250d.
  • Tanislav AE, Puscas A, Paucean A, Muresan AE, Semeniuc CA, Muresan V, Mudura E. 2022. Evaluation of structural behavior in the process dynamics of oleogel-based tender dough products. Gels, 8(5): 317. https://doi.org/10.3390/gels8050317.
  • Toğrul İ. 2021. Gölevez (Colocasia Esculenta (L.) Schott) unu ilavesinin glutensiz krakerlerin besleyici ve duyusal özelliklerine etkisi. Yüksek Lisans Tezi, Kocaeli Üniversitesi, Sosyal Bilimler Enstitüsü, Turizm İşletmeciliği A.B.D., Gastronomi ve Mutfak Sanatları A.B.D., Kocaeli, Türkiye, ss: 118.
  • Vingering N, Oseredczuk M, du Chaffaut L, Ireland J, Ledoux M. 2010. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column. Oléagineux, Corps gras, Lipides, 17(3): 185-192. https://doi.org/10.1051/ocl.2010.0309.
  • Yashini M, Sahana S, Hemanth SD, Sunil CK. 2021. Partially defatted tomato seed flour as a fat replacer: effect on physicochemical and sensory characteristics of millet-based cookies. J Food Sci Technol, 58(12): 4530-4541. https://doi.org/10.1007/s13197-020-04936-y.
  • Yılmaz E, Ogutcu M. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct, 6(4): 1194-1204. https://doi.org/10.1039/c5fo00019j.
  • Zhao M, Rao J, Chen B. 2022. Effect of high oleic soybean oil oleogels on the properties of doughs and corresponding bakery products. J American Oil Chem Soc, 99(11): 1071-1083. https://doi.org/10.1002/aocs.12594.
  • Zhou J, Faubion JM, Walker CE. 2011. Evaluation of different types of fats for use in high-ratio layer cakes. LWT-Food Sci Technol, 44(8): 1802-1808. https://doi.org/10.1016/j.lwt.2011.03.013.

Evaluation of the Potential Use of Black Cumin Oil Oleogel as a Solid Fat Alternative in Cracker Production

Yıl 2024, , 342 - 350, 15.03.2024
https://doi.org/10.34248/bsengineering.1410249

Öz

Nowadays, intensive studies have been carried out to improve the sensory, quality, and functional properties of foods. Fats raise question marks about health due to their high content of saturated fatty acids and therefore fat substitutes that can be used instead of fats have been developed. In this study, black cumin oil oleogel (BCOO) was used as a fat replacer in cracker production, and the changes in the physical, sensory, and textural properties of the cracker were investigated. The Control-cracker, 50%-cracker and 100%-cracker formulations were prepared by replacing shortening with BCOO at 0%, 50%, and 100% levels, respectively. The moisture content of the Control-cracker, 50% BCOO-cracker, and 100% BCOO-cracker was 3.61%, 4.11%, and 4.66%, respectively. The highest water activity belonged to the 100% BCOO-cracker (0.2315), followed by the 50% BCOO-cracker (0.1920). It was observed that L* value decreased and a* value increased in oleogel incorporated crackers (P<0.05). The highest hardness value (2396.90 g) belonged to the Control-cracker, the lowest (1170.45 g) belonged to the 100% BCOO-cracker (P<0.05). As for sensory analysis, the crackers incorporated with oleogels were shown to be the most preferable in terms of taste. The 100% BCOO-cracker had the highest score (7.18) while the Control-cracker had the lowest (6.55) for general acceptability. These results show that BCOO has a high potential for use in bakery products such as cracker.

Destekleyen Kurum

Destekleyen kurum bulunmamaktadır.

Kaynakça

  • Adili L, Roufegarinejad L, Tabibiazar M, Hamishehkar H, Alizadeh A. 2020. Development and characterization of reinforced ethyl cellulose based oleogel with adipic acid: Its application in cake and beef burger. Food Sci Technol, 126: 109277. https://doi.org/10.1016/j.lwt.2020.109277.
  • Alamri MS, Mohamed AA, Hussain S, Ibraheem MA, Qasem AAA, Shamlan G, Hakeem MJ, Ababtain IA. 2022. Functionality of cordia and ziziphus gums with respect to the dough properties and baking performance of stored pan bread and sponge cakes. Foods, 11(3): 466. https://doi.org/10.3390/foods11030460.
  • Albakry Z, Karrar E, Ahmed IAM, Oz E, Proestos C, El Sheikha AF, Oz F, Wu G, Wang X. 2022. Nutritional composition and volatile compounds of black cumin (nigella sativa l.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae, 8(7): 575. https://doi.org/10.3390/horticulturae8070575.
  • Anonymous. 2023. EU novel food status catalogue. URL: https://ec.europa.eu/food/safety/novel-food/novel-food-catalogue_en (accessed date: September 4, 2023).
  • AOAC. 2000. Official methods of analysis of AOAC Inter (17 ed.). Method 935.36 Solid (total) in bread. AOAC Inter. Gaithersburg, MD, USA, pp: 143.
  • Ayyıldız HF, Topkafa M, Sherazi STH, Mahesar SA, Kara H. 2021. Investigation of the chemical characteristics and oxidative stability of some commercial cold-pressed oils. Konya J Engin Sci, 9(4): 904-916. https://doi.org/10.36306/konjes.913439.
  • Badem Ş, Baştürk, A. 2023. Oxidative stability and characterization of oleogels obtained from safflower oil-based beeswax and rice bran wax and their effect on the quality of cake samples. J American Oil Chemists' Soc, 2023: 1–15.
  • Barragán-Martínez LP, Román-Guerrero A, Vernon-Carter EJ, Alvarez-Ramirez J. 2022. Impact of fat replacement by a hybrid gel (canola oil/candelilla wax oleogel and gelatinized corn starch hydrogel) on dough viscoelasticity, color, texture, structure, and starch digestibility of sugar-snap cookies. Inter J Gastron Food Sci, 29: 100563. https://doi.org/10.1016/j.ijgfs.2022.100563.
  • Batista AP, Niccolai A, Bursic I, Sousa I, Raymundo A, Rodolfi L, Biondi N, Tredici MR. 2019. Microalgae as functional ingredients in savory food products: application to wheat crackers. Foods, 8: 611; doi:10.3390/foods8120611.
  • Bölükbaş B. 2023. Ekşi hamur mikroorganizmaları kullanımının krakerin kalite ve biyoaktif özellikleri ile glisemik indeks üzerine etkisi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği A.B.D., İstanbul, Türkiye, ss: 55.
  • Brito GB, Peixoto VODS, Martins MT, Rosário DKA, Ract JN, Conte-Júnior CA, Torres AG, Castelo-Branco VN. 2022. Development of chitosan-based oleogels via crosslinking with vanillin using an emulsion templated approach: Structural characterization and their application as fat-replacer. Food Struct, 32: 100264. https://doi.org/10.1016/j.foostr.2022.100264.
  • Choi KO, Hwang HS, Jeong S, Kim S, Lee S. 2020. The thermal, rheological, and structural characterization of grapeseed oil oleogels structured with binary blends of oleogelator. J Food Sci, 85(10): 3432-3441. https://doi.org/10.1111/1750-3841.15442.
  • Demirkesen I, Mert B. 2019. Utilization of beeswax oleogel‐shortening mixtures in gluten‐free bakery products. J American Oil Chem Soc, 96(5): 545-554. https://doi.org/10.1002/aocs.12195.
  • Demirkesen I, Mert B. 2020. Recent developments of oleogel utilizations in bakery products. Critical Rev Food Sci Nutri, 60(14): 2460-2479. https://doi.org/10.1080/10408398.2019.1649243.
  • Dülger-Altıner D. 2015. Sağlıklı bir atıştırmalık: enerjisi azaltılmış kraker üretimi. Doktora Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği A.B.D., Bursa, Türkiye, ss: 142.
  • Ekin MM, Kutlu N, Meral R, Ceylan Z, Cavidoglu İ. 2021. A novel nanotechnological strategy for obtaining fat-reduced cookies in bakery industry: Revealing of sensory, physical properties, and fatty acid profile of cookies prepared with oil-based nanoemulsions. Food BioSci, 42: 101184. https://doi.org/10.1016/j.fbio.2021.101184.
  • Espert M, Wang Q, Sanz T, Salvador A. 2023. Sunflower Oil-based Oleogel as Fat Replacer in Croissants: Textural and Sensory Characterisation. Food Bioprocess Technol, 16(9): 1943-1952. https://doi.org/10.1007/s11947-023-03029-w.
  • Fayaz G, Polenghi O, Giardina A, Cerne V, Calligaris S. 2020. Structural and rheological properties of medium‐chain triacylglyceride oleogels. Inter J Food Sci Technol, 56(2): 1040-1047. https://doi.org/10.1111/ijfs.14757.
  • Flores-Garcia CL, Medina-Herrera N, Rodriguez-Romero BA, Martinez-Avila GCG, Rojas R, Meza-Carranco Z. 2023. Impact of fat replacement by using organic-candelilla-wax-based oleogels on the physicochemical and sensorial properties of a model cookie. Gels, 9(8): 757. https://doi.org/10.1111/ijfs.14757.
  • Gallagher E, O'Brien CM, Scannell AGM, Arendt EK. 2003. Use of response surface methodology to produce functional short dough biscuits. J Food Engin, 56: 269–271. https://doi.org/10.1016/S0260-8774(02)00265-0.
  • Giacomozzi AS, Carrin ME, Palla CA. 2018. Muffins elaborated with optimized monoglycerides oleogels: from solid fat replacer obtention to product quality evaluation. J Food Sci, 83(6): 1505-1515. https://doi.org/10.1111/1750-3841.14174.
  • Giacomozzi AS, Carrín ME, Palla CA. 2022. Muffins made with monoglyceride oleogels: Impact of fat replacement on sensory properties and fatty acid profile. JAOCS, 100(4): 343-349. https://doi.org/10.1002/aocs.12674.
  • Giannoutsos K, Achilleas PZ, Koukoumaki DI, George M, Mourtzinos I, Sarris D, Gkatzionis K. 2023. Production of functional crackers based on non-conventional flours. Study of the physicochemical and sensory properties. Food Chem Adv, 2023(2): 100194. https://doi.org/10.1016/j.focha.2023.100194.
  • IUPAC. 1987. Standard methods for analysis of oils, fats and derivatives. Blackwell Scientific Publications, IUPAC Method 2.301, Report of IUPAC Working Group WG 2/87, Network, USA, 7th ed., pp: 253.
  • İzci L, Şengül B. 2015. Sensory acceptability and fatty acid profile of fish crackers made from carassius gibelio. Food Sci Technol, 35(4): 643-646. https://doi.org/10.1590/1678-457X.6723.
  • Jadhav HB, Pratap AP, Gogate PR, Annapure US. 2022. Ultrasound-assisted synthesis of highly stable MCT based oleogel and evaluation of its baking performance. Applied Food Res, 2(2): 156. https://doi.org/10.1016/j.afres.2022.100156.
  • Kahraman SD, Küplülü Ö. 2011. Trans yağ asitleri. Vet Hekim Dern Derg, 82(2): 15-24.
  • Kara S. 2019. Karnauba ve balmumu vaksları ile hazırlanan oleojellerin dsc ve ft-ır spektroskopisi ile karakterizasyonu. Yüksek Lisans Tezi, İstanbul Sabahattin Zaim Üniversitesi Gıda Mühendisliği Anabilim Dalı, İstanbul, Türkiye, ss: 80.
  • Kim JY, Lim J, Lee J, Hwang HS, Lee S. 2017. Utilization of oleogels as a replacement for solid fat in aerated baked goods: physicochemical, rheological, and tomographic characterization. J Food Sci, 82(2): 445-452. https://doi.org/10.1111/1750-3841.13583
  • Lee JY, Lim T, Kim J, Hwang KT. 2022. Physicochemical characteristics and sensory acceptability of crackers containing red ginseng marc. J Food Sci Technol, 59(1): 212-219. https://doi.org/10.1007/s13197-021-05002-x.
  • Lee S, Inglett GE. 2006. Rheological and physical evaluation of jet‐cooked oat bran in low calorie cookies. Inter J Food Sci Technol, 41(5): 553-559. https://doi.org/10.1111/j.1365-2621.2005.01105.x.
  • Li J, Guo R, Wang M, Bi Y, Zhang H, Xu X. 2022. Development and Characterization of Compound Oleogels Based on Monoglycerides and Edible Waxes. ACS Food Sci Technol, 2(2): 302-314. https://doi.org/10.1021/acsfoodscitech.1c00390.
  • Meng Z, Guo Y, Wang Y, Liu Y. 2018. Oleogels from sodium stearoyl lactylate-based lamellar crystals: structural characterization and bread application. Food Chem, 292: 134-142, https://doi.org/10.1016/j.foodchem.2018.11.042.
  • Millar KA, Barry-Ryan C, Burke R, Hussey K, McCarthy S, Gallagher E. 2017. Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers. Inter J Food Sci Technol, 52: 1155–1163. https://doi.org/10.1111/ijfs.13388.
  • Naeli MH, Milani JM, Farmani J, Zargaraan A. 2023. Ethyl cellulose/hydroxypropyl methyl cellulose‐based oleogel shortening: Effect on batter rheology and physical properties of sponge cake. J American Oil Chem Soc, 100(9): 743-755. https://doi.org/10.1002/aocs.12695.
  • Noonim P, Rajasekaran B, Venkatachalam K. 2022. Structural characterization and peroxidation stability of palm oil-based oleogel made with different concentrations of carnauba wax and processed with ultrasonication. Gels, 8(12): 763. https://doi.org/10.3390/gels8120763.
  • Nutter J, Shi X, Lamsal B, Acevedo NC. 2023. Plant-based bigels as a novel alternative to commercial solid fats in short dough products: Textural and structural properties of short dough and shortbread. Food BioSci, 54: 102865. https://doi.org/10.1016/j.fbio.2023.102865.
  • Orhan NO, Eroglu Z. 2022. Structural characterization and oxidative stability of black cumin oil oleogels prepared with natural waxes. J Food Process Preserv, 46(12): 17211. https://doi.org/10.1111/jfpp.17211.
  • Palamutoğlu R, 2021. Replacement of beef fat in meatball with oleogels (black cumin seed oil/sunflower oil). J Hellenic Vet Med Soc, 72(3): 3031–3040. https://doi.org/10.12681/jhvms.28484.
  • Pehlivanoğlu H, Ozulku G, Yildirim RM, Demirci M, Toker OS, Sagdic O. 2018. Investigating the usage of unsaturated fatty acid-rich and low-calorie oleogels as a shortening mimetics in cake. J Food Process Preserv, 42(6): e13621. https://doi.org/10.1111/jfpp.13621.
  • Rafati M, Ghasemi A, Saeedi M, Habibi E, Salehifar E, Mosazadeh M, Maham M. 2019. Nigella sativa L. for prevention of acute radiation dermatitis in breast cancer: A randomized, double-blind, placebo-controlled, clinical trial. Complement Ther Med, 47: 102205. https://doi.org/10.1016/j.ctim.2019.102205.
  • Schwarz W. 2000. Formation of trans polyalkenoic fatty acids during vegetable oil refining. European J Lipid Sci Technol, 102: 648-649. https://doi.org/10.1002/1438-9312(200010)102:10<648:AID-EJLT648>3.0.CO;2-V.
  • Swe MTH, Asavapichayont P. 2018. Effect of silicone oil on the microstructure, gelation and rheological properties of sorbitan monostearate-sesame oil oleogels, Asian J Pharmaceut Sci, 13: 485–497, 2018. https://doi.org/10.1016/j.ajps.2018.04.006.
  • Szydłowska-Czerniak A, Momot M, Stawicka B, Rabiej-Kozioł D, 2022. Effects of the chemical composition on the antioxidant and sensory characteristics and oxidative stability of cold-pressed black cumin oils, Antioxidants, 11: 1556. https://doi.org/10.3390/antiox11081556.
  • Talbott SM, Talbott JA. 2022. Effect of thymoquin black cumin seed oil as a natural immune modulator of upper-respiratory tract complaints and psychological mood state. Food Sci Nutri Res, 5(1): 1-6.
  • Tang YR, Ghosh S. 2021. Canola protein thermal denaturation improved emulsion-templated oleogelation and its cake-baking application. Royal Soc Chem, RSC Adv, 11(41): 25141-25157. https://doi.org/10.1039/d1ra02250d.
  • Tanislav AE, Puscas A, Paucean A, Muresan AE, Semeniuc CA, Muresan V, Mudura E. 2022. Evaluation of structural behavior in the process dynamics of oleogel-based tender dough products. Gels, 8(5): 317. https://doi.org/10.3390/gels8050317.
  • Toğrul İ. 2021. Gölevez (Colocasia Esculenta (L.) Schott) unu ilavesinin glutensiz krakerlerin besleyici ve duyusal özelliklerine etkisi. Yüksek Lisans Tezi, Kocaeli Üniversitesi, Sosyal Bilimler Enstitüsü, Turizm İşletmeciliği A.B.D., Gastronomi ve Mutfak Sanatları A.B.D., Kocaeli, Türkiye, ss: 118.
  • Vingering N, Oseredczuk M, du Chaffaut L, Ireland J, Ledoux M. 2010. Fatty acid composition of commercial vegetable oils from the French market analysed using a long highly polar column. Oléagineux, Corps gras, Lipides, 17(3): 185-192. https://doi.org/10.1051/ocl.2010.0309.
  • Yashini M, Sahana S, Hemanth SD, Sunil CK. 2021. Partially defatted tomato seed flour as a fat replacer: effect on physicochemical and sensory characteristics of millet-based cookies. J Food Sci Technol, 58(12): 4530-4541. https://doi.org/10.1007/s13197-020-04936-y.
  • Yılmaz E, Ogutcu M. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct, 6(4): 1194-1204. https://doi.org/10.1039/c5fo00019j.
  • Zhao M, Rao J, Chen B. 2022. Effect of high oleic soybean oil oleogels on the properties of doughs and corresponding bakery products. J American Oil Chem Soc, 99(11): 1071-1083. https://doi.org/10.1002/aocs.12594.
  • Zhou J, Faubion JM, Walker CE. 2011. Evaluation of different types of fats for use in high-ratio layer cakes. LWT-Food Sci Technol, 44(8): 1802-1808. https://doi.org/10.1016/j.lwt.2011.03.013.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Research Articles
Yazarlar

Necla Özdemir Orhan 0000-0003-2581-1275

Zeynep Eroğlu 0000-0002-6817-546X

Erken Görünüm Tarihi 1 Mart 2024
Yayımlanma Tarihi 15 Mart 2024
Gönderilme Tarihi 3 Ocak 2024
Kabul Tarihi 27 Şubat 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Özdemir Orhan, N., & Eroğlu, Z. (2024). Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması. Black Sea Journal of Engineering and Science, 7(2), 342-350. https://doi.org/10.34248/bsengineering.1410249
AMA Özdemir Orhan N, Eroğlu Z. Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması. BSJ Eng. Sci. Mart 2024;7(2):342-350. doi:10.34248/bsengineering.1410249
Chicago Özdemir Orhan, Necla, ve Zeynep Eroğlu. “Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması”. Black Sea Journal of Engineering and Science 7, sy. 2 (Mart 2024): 342-50. https://doi.org/10.34248/bsengineering.1410249.
EndNote Özdemir Orhan N, Eroğlu Z (01 Mart 2024) Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması. Black Sea Journal of Engineering and Science 7 2 342–350.
IEEE N. Özdemir Orhan ve Z. Eroğlu, “Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması”, BSJ Eng. Sci., c. 7, sy. 2, ss. 342–350, 2024, doi: 10.34248/bsengineering.1410249.
ISNAD Özdemir Orhan, Necla - Eroğlu, Zeynep. “Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması”. Black Sea Journal of Engineering and Science 7/2 (Mart 2024), 342-350. https://doi.org/10.34248/bsengineering.1410249.
JAMA Özdemir Orhan N, Eroğlu Z. Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması. BSJ Eng. Sci. 2024;7:342–350.
MLA Özdemir Orhan, Necla ve Zeynep Eroğlu. “Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması”. Black Sea Journal of Engineering and Science, c. 7, sy. 2, 2024, ss. 342-50, doi:10.34248/bsengineering.1410249.
Vancouver Özdemir Orhan N, Eroğlu Z. Katı Yağ Alternatifi Olarak Çörekotu Yağı Oleojelinin Kraker Yapımında Kullanım Potansiyelinin Araştırılması. BSJ Eng. Sci. 2024;7(2):342-50.

                                                24890