Araştırma Makalesi
BibTex RIS Kaynak Göster

A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method

Yıl 2025, Cilt: 8 Sayı: 5, 1373 - 1400, 15.09.2025
https://doi.org/10.34248/bsengineering.1699472

Öz

In this study, the applicability of the widely used entropy method traditionally employed for calculating criterion weights in the Multi-Criteria Decision-Making (MCDM) literature is investigated as a novel approach for measuring the performance of alternatives. The proposed method, termed Entropy-Based Performance Measurement (EBPM), is grounded in the principle of continuously increasing uncertainty inherent in both natural and social systems. The primary motivation of this approach is to demonstrate, through sensitivity, comparative, and simulation analyses, that the method can produce ideally sensitive, reliable, consistent, stable, and robust results. The study aims to expand the application domain of the entropy method and to contribute to both the MCDM and entropy literature. EBPM is theoretically based on entropy’s inherent capability to quantify and enhance informational performance. Without manipulating the original entropy equation, the entropy function is reformulated into a positively increasing structure, enabling it to measure the performance of alternatives. In the methodology section, the characteristics of 15 widely recognized MCDM methods are introduced, the theoretical and mathematical foundations of the proposed approach are explained, and its applicability is demonstrated using the innovation performance data of seven countries selected from the 2024 Global Innovation Index. In the results and discussion section, the quantitative findings and comprehensive explanations of the proposed method are presented in detail. Thus, this study aims to broaden the potential of the entropy method within the field of MCDM and to offer a novel perspective for decision-making processes.

Etik Beyan

Ethics committee approval was not required for this study because of there was no study on animals or humans.

Kaynakça

  • Aghamammadli F, Toptancı Ş, Karamaşa Ç. 2024. Analyzing the energy consumption of OECD countries through an interval-valued circular intuitionistic fuzzy AHP-based CRADIS. Res Square, 1(1):1-31. https://doi.org/10.21203/rs.3.rs-6283480/v1
  • Akmaludin, Suriyanto AD, Iriadi N, Widianto K. 2024. Integrated MCDM-AHP and MABAC for selection head of branch offices. Sinkron J Penelit Tek Inform, 8(4):2335-2344. https://doi.org/10.33395/sinkron.v8i4.13669
  • Aksakal E, Çalışkan E. 2020. Olimpiyatlarda aday şehirlerin seçim sürecinde dikkate alınacak kriterlerin entropi yönetimi ile değerlendirilmesi. In: Kabak M, Çınar Y, editors. Çok kriterli karar verme yöntemleri MS Excel çözümlü uygulamalar. Nobel, Ankara, Türkiye, pp: 169-179.
  • Aksoy E. 2021. An analysis on Türkiye's merger and acquisition activities: MAIRCA method. Gümüşhane Univ Sos Bilim Enst Elektron Derg, 12(1):1-11
  • Aktaş R, Doğanay MM, Türen U, Gazibey Y, Gökmen Y. 2015. Sayısal karar verme yöntemleri. Beta Yayınları, İstanbul, Türkiye, pp: 412.
  • AlAli AM, Salih A, Hassaballa A. 2023. Geospatial-based analytical hierarchy process (AHP) and weighted product model (WPM) techniques for mapping and assessing flood susceptibility in the Wadi Hanifah Drainage Basin, Riyadh Region, Saudi Arabia. Water, 15(1943):1-130. https://doi.org/10.3390/w15101943
  • Alossta A, Elmansouri O, Badi I. 2021. Resolving a location selection problem by means of an integrated AHP-RAFSI approach. Rep Mech Eng, 2(1):135-142. https://doi.org/10.31181/rme200102135a
  • Alqoud A, Milisavljevic-Syed J, Salonitis K. 2025. Multi-criteria decision making in evaluating digital retrofitting solutions: Utilizing AHP and TOPSIS. Procedia CIRP, 132:184-190. https://doi.org/10.1016/j.procir.2025.01.031
  • Altın H. 2020. ARAS ve MOOSRA yöntemlerinin performans sonuçlarının karşılaştırılması: Amerika kıtası ülkeleri. Pressacademia J Econ Finance Account, 7(2):173-186
  • Anđić D. 2024. Comparison of a tower geodetic micro-network optimization results obtained using the MABAC, MAIRCA, COCOSO and ROV methods with those obtained applying the VIKOR method. Int J Eng Res Dev, 20(10):81-95
  • Andrejic M, Vukasin P. 2025. Integrated BWM–QFD–MARCOS framework for strategic decision-making in cold chain logistics. J Oper Strateg Anal, 3(1):23-33. https://doi.org/10.56578/josa030103
  • Apaydın F. 2004. Kuantum fiziği. Hacettepe Üniversitesi Yayınları, Ankara, Türkiye, pp: 356.
  • Arisantoso, Somaida MH, Sanwasih M, Shalahudin MI. 2023. Multi-criteria decision making using the WASPAS method in webcam selection decision support systems. Int J Informatics Comput Sci, 7(1):1-11. https://doi.org/10.30865/ijics.v7i1.6001
  • Arslan HM. 2017. Determination of optimal vehicle selection of logistics companies with AHP-ARAS hybrid method. Alphanumeric J, 5(2):272-281. https://doi.org/10.17093/alphanumeric.339476
  • Atan M, Altan Ş. 2020. Örnek uygulamalarla çok kriterli karar verme yöntemleri. Gazi Kitapevi, Ankara, Türkiye, pp: 276.
  • Ayçin E. 2019. Çok kriterli karar verme. Nobel Yayın, Ankara, Türkiye, pp: 198.
  • Aydemir MF. 2025. Evaluation of foreign direct investment attractiveness of BRICS-T countries: The CRITIC-LOPCOW based ARAS approach. Polit Ekonomik Kuram, 9(1):372-392. https://doi.org/10.30586/pek.1613421
  • Azadfallah M. 2025. Incorporating negative values into the simple additive weighting (SAW) under uncertain conditions: An application in project manager selection problem. In: Strang KD, Vajjhala NR, editors. International program and project management — best practices in selected industries. Springer, Cham, Switzerland, pp: 1-12.
  • Bahadır O, Türkmençalıkoğlu H. 2021. Shannon entropy and its applications in information theory. Eur J Sci Technol, (32):491-498. https://doi.org/10.31590/ejosat.1039771,
  • Ballamudi S. 2024. Evaluating IoT platforms: An approach using the COPRAS method. J Data Sci Inform Technol, 2:55-65
  • Baş F. 2021. Çok kriterli karar verme yöntemlerinde kriter ağırlıklarının belirlenmesi. Nobel Bilimsel, Ankara, Türkiye, pp: 144.
  • Başdar C. 2019. Finansal performans ve çok kriterli karar verme teknikleri. Ekin Yayınevi, Bursa, Türkiye, pp: 232.
  • Begam S. 2024. Identification of groundwater recharge zone in periurban watershed with the help of MAUT and MEREC techniques. Res Square, 1(1):1-29. https://doi.org/10.21203/rs.3.rs-4178085/v1
  • Bektaş S. 2023. MEREC ve MABAC yöntemleri ile BİST 100’de işlem gören enerji firmalarının finansal performanslarının değerlendirilmesi. Dokuz Eylül Univ İşletme Fakültesi Derg, 24(2):115-128
  • Bircan H. 2020. Çok kriterleri karar verme problemlerinde kriter ağırlıklandırma yöntemleri. Nobel Akademik, Ankara, Türkiye, pp: 184.
  • Chaipetch P, Amprayn C, Pawan P, Vatanavongs R. 2025. A multi-criteria decision support system for prioritizing road maintenance: Integrating AHP and TOPSIS with a focus on low-volume roads. IOP Conf Ser Earth Environ Sci, 1450(1):1-11. https://doi.org/10.1088/1755-1315/1450/1/012004
  • Chakraborty S, Zavadskas EK, Antucheviciene J. 2015. Applications of WASPAS method as a multi-criteria tool. Econ Comput Econ Cybern Stud Res, 49(1):5-22
  • Chen LC, Chang KH, Hung JF. 2025. WASPAS-based natural language processing method for handling content words extraction and ranking issues: An example of SDGs corpus. Information, 16(198):1-19. https://doi.org/10.3390/info16030198
  • Chinnasamy S, Ramachandran M, Rajkumar S, Sivaji C. 2023. A survey on transportation system using the WPM method. Build Mater Eng Struct, 1(2):37-44. http://doi.org/10.46632/bmes/1/2/5
  • Chinnasay S, Ramachandran M, Sravanan V. 2023. Analysis of blast resistant buildings using the WPM method. REST J Emerg Trends Model Manuf, 9(1):26-36. https://doi.org/10.46632/jemm/9/1/4
  • Ciardiello F, Genovese A. 2023. A comparison between TOPSIS and SAW methods. Ann Oper Res, 325:967-994. https://doi.org/10.1007/s10479-023-05339-w
  • Cincotta PM, Giordano CM, Silva RA, Beaugé C. 2021. Shannon entropy diffusion estimates: Sensitivity on the parameters of the method. Celest Mech Dyn Astron, 133(7):1-20. https://doi.org/10.1007/s10569-021-10006-y
  • Ćirovic G, Pamučar D. 2022. Multiple-criteria decision making. MDPI AG, Basel, Switzerland, pp: 244.
  • Çankaya Kurnaz S. 2025. Çok kriterli karar verme yöntemlerinden TOPSIS ile AB ülkelerinin e-devlet performanslarının karşılaştırılması. Sos Bilim EKEV Akad Derg, 101:149-173. https://orcid.org/my-orcid?orcid=0000-0001-6977-300X
  • Çelikbilek Y. 2018. Çok kriterli karar verme yöntemleri. Nobel Akademik Yayıncılık, Ankara, Türkiye, pp: 212.
  • Çetinkaya C, Erbaş M, Kabak M, Özceylan E. 2023. A mass vaccination site selection problem: An application of GIS and entropy-based MAUT approach. Socio Econ Plan Sci, 85:1-11. https://doi.org/10.1016/j.seps.2022.101376,
  • Çilek A, Şeyranlioğlu O. 2025. Measuring the financial performance of reinsurance companies in Türkiye with LODECI, CRADIS and AROMAN MCDM methods. Int J Bus Econ Stud, 7(1):1-18. https://doi.org/10.54821/uiecd.1587675
  • Demir G. 2021. Özel sermayeli mevduat bankalarında performans analizi: RAFSI bütünleşik model uygulaması. Atatürk Univ İktisadi İdari Bilim Derg, 35(4):1359-1382
  • Demir G, Arslan R. 2022. Sensitivity analysis in multi-criteria decision-making problems. Ankara Hacı Bayram Veli Univ İktisadi İdari Bil Fak Derg, 24(3):1025-1056
  • Demir G, Özyalçın AT, Bircan H. 2021. Çok kriterli karar verme yöntemleri ve ÇKKV yazılımı ile problem çözümü. Nobel, Ankara, Türkiye, pp: 198.
  • Demirci A. 2020. Sağlık hizmetleri yönetiminde çok kriterli karar verme teknikleri. Gazi Kitapevi, Ankara, Türkiye, pp: 224.
  • Dinçer SE. 2019. Çok kriterli karar alma. Gece Akademi, Ankara, Türkiye, pp: 164.
  • Doković L, Doljanica D. 2023. Application of AHP and MABAC methods in the framework of multi criteria decision making in the selection of investment projects. J Process Manag New Technol, 11(3-4):105-114, pp: 105-114.
  • Ecer F. 2020. Çok kriterli karar verme. Seçkin Yayıncılık, Ankara, Türkiye, pp: 186.
  • El-Araby A, Sabry I, El-Assal A. 2024. Ranking performance of MARCOS method for location selection problem in the presence of conflicting criteria. Decis Mak Adv, 2(1):148-162. https://doi.org/10.31181/dma21202435
  • Ersoy N. 2024. Assessing renewable energy impact in Nordic-Baltic region: Sensitivity analysis and MCDM approach. Renew Energy Res Appl, 6(1):47-60. https://doi.org/10.22044/rera.2023.13416.1238
  • Fan J, Yao X, Wu M. 2025. Extended WPA CRITIC WASPAS model based on picture fuzzy soft sets for green building materials selection. Int J Fuzzy Syst, 1(1):1-15. https://doi.org/10.1007/s40815-025-01982-6
  • Gini A. 2000. What happens if work goes away. Bus Ethics Q, 10(1):181-188. https://doi.org/10.2307/3857704
  • Goswami SS, Behera DK, Afzal A, Kaladgi AR, Khan SA, Rajendran P, Asif M. 2021. Analysis of a robot selection problem using two newly developed hybrid MCDM models of TOPSIS-ARAS and COPRAS-ARAS. Symmetry, 13(1331):1-35. https://doi.org/10.3390/sym13081331
  • Goswami SS, Mohanty SK, Behera DK. 2022. Selection of a green renewable energy source in India with the help of MEREC integrated PIV MCDM tool. Mater Today, 52(3):1152-1160. https://doi.org/10.1016/j.matpr.2021.11.019
  • Gressman PT, Strain RM. 2010. Global classical solutions of the Boltzmann equation with long-range interactions. Proc Natl Acad Sci USA, 107(13):5744-5749. https://doi.org/10.1073/pnas.1001185107
  • Han F, Alkhawaji RN, Shafieezadeh MM. 2025. Evaluating sustainable water management strategies using TOPSIS and fuzzy TOPSIS methods. Appl Water Sci, 15(4):1-13. https://doi.org/10.1007/s13201-024-02336-7
  • Handayani N, Heriyani N, Septian F, Alexander AD. 2023. Multi-criteria decision making using the WASPAS method. J Teknoinfo, 17(1):260-270
  • Hwang CL, Yoon K. 1981. Multiple attribute decision making - methods and applications. Springer Verlag, Berlin, Germany, pp: 357.
  • Işık Ö, Çalık A, Shabir M. 2025. A consolidated MCDM framework for overall performance assessment of listed insurance companies based on ranking strategies. Comput Econ, 65:271-312. https://doi.org/10.1007/s10614-024-10578-5
  • Kaya İ, Karaşan A. 2020. Çok kriterli karar verme. Umuttepe Yayınları, Kocaeli, Türkiye, pp:15-56.
  • Kaymaz ÇK, Kızılkan Y, Birinci S. 2020. Ordu ili turizm merkezlerinin çok kriterli karar verme yöntemlerine göre analizi. Kriter Yayınevi, İstanbul, Türkiye, pp:25-45.
  • Keeney R, Raiffa H. 1976. Decision with multiple objectives: Preferences and value trade off. John Wiley & Sons, New York, USA, pp:14,16.
  • Keleş N. 2023. Uygulamalarla klasik ve güncel karar verme yöntemleri. Nobel Bilimsel, Ankara, Türkiye, pp:45-49.
  • Keshavarz-Ghorabaee, M, Amiri M, Zavadskas EK, Turskis Z, Antucheviciene J. 2021. Determination of objective weights using a new method based on the removal effects of criteria (merec). Symmetry, 13(525): 1-21. https://doi.org/10.3390/sym13040525.
  • Khan NZ, Ansari TA, Siddiquee AN, Khan ZA. 2019. Selection of e-learning websites using a novel proximity ındexed value (piv) mcdm method. J Comput Educ 6: 241-256. https://doi.org/10.1007/s40692-019-00135-7.
  • Köksal K, Köseoğlu R. 2010. Fenciler için kuantum mekaniği. Nobel Yayın, Ankara, Türkiye, pp:14-16.
  • Krippendorff K. 2009. Mathematical theory of communication. In: Encyclopedia of communication theory, SW. Littlejohn, KA. Foss Editors. Sage, Los Angeles: USA, pp: 614-618.
  • Lendvai L, Jakab S, Singh T. 2025. Optimal design of agroresidue filled poly(lactic acid) biocomposites using an integrated critic-cocoso multi-criteria decision-making approach. Sci Rep, 15(11586): 1-18. https://doi.org/10.1038/s41598-025-92724-z.
  • Lopez LM, Ishizaka A, Qin J. 2023. Multi criteria decision making sorting methods: Applications to real world., Acad Press, Cambridge-Massachusetts, USA, pp:56-78.
  • Madić M, Radovanović M. 2015. Ranking of some most commonly used nontraditional machining processes using rov and critic methods. U.P.B. Sci Bull D, 72(2): 193-204.
  • Madić M, Radovanović M, Manić, M. 2016. Application of the rov method for the selection of cutting fluids. Dec SciLett5: 245–254.
  • Mehdiabadi A, Sadeghi A, Yazdi AK, Tan Y. 2025. Sustainability service chain capabilities in the oil and gas industry: A fuzzy hybrid approach swara-mabac. Spectr Oper Res, 2(1): 92-112. https://doi.org/10.31181/sor21202512.
  • Mishra S, Ayyub, BM. 2019. Shannon entropy for quantifying uncertainty and risk in economic disparity. Risk Anal., 39(10): 2160-2181. https://doi.org/10.1111/risa.13313.
  • Muni GD, Sudipa G, Meinarni NS, Wiguna, IA, Sandhiyasa, IS. 2024. Comparison of magıq, mabac, marcos, and moora methods in multi-criteria problems. Sinkron : Jurnal dan Penelitian Teknik Informatika, 8(3): 1286-1303. https://doi.org/10.33395/sinkron.v8i3.13639.
  • Munier N. 2021. Mathematical modelling of decision problems. Springer Cham., Gewerbestrasse, Switzerland, pp:45-46.
  • Munier N. 2024. Strategic Approach in multi criteria decision making. Springer Int Pub AG, Gewerbestrasse, Switzerland, pp:47-89
  • Nanda A. 2020. Shannon's entropy and ıts generalisations towards statistical ınference in last seven decades: Review on entropy. Int Stat Rev, 87(11): 167-186 https://doi.org/10.1111/insr.12374
  • Narang V, Rai R, Johal RS. 2024. Clausius' theorem and the Second law in the process of isoenergetic thermalization. arXiv:1-17 https://doi.org/10.1103/PhysRevE.110054103
  • Organ A, Yalçın E. 2016. Performance evaluation of research assistants by copras method. Eur Sci J Spec Issue: 102-109
  • Owen C. 2023. Multiple-criteria decision making: techniques, analysis and applications. States Acad Press, New York, USA, pp:15-56
  • Özbek A. 2019. Çok kriterli karar verme yöntemleri ve excel ile problem çözümü kavram-teori-uygulama. Seçkin Yayıncılık, Ankara, Türkiye, pp:45-49
  • Özbek A, Erol E. 2017. Ranking of factoring companies in accordance with aras and copras. Int J Acad Res Acc Financ Manag Sci, 2(7): 105-116 http://dx.doi.org/10.6007/IJARAFMS/v7-i2/2876
  • Özdemir M. 2018. Çok kriterli karar verme yöntemleri. Nobel Yayımcılık, Ankara, Türkiye, pp:35-37
  • Özekenci SY. 2024. Financial performance measurement of companies in the bıst sustainability 25 ındex with lbwa and merec-based cradis methods. J Mehmet Akif Ersoy Univ Econ Admin Sci Fac, 11(24): 1184-1211 https://doi.org/10.30798/makuiibf.1465069
  • Özkaya G. 2024. An analysis of the circular economy in europe through comparative research employing the crıtıc-based maut and copras methods. Verimlilik Derg, 58(3): 337-358 https://doi.org/10.51551/verimlilik.1462098
  • Öztaş T, Öztaş GZ. 2024. Innovation performance analysis of g20 countries: a novel ıntegrated lopcow-maırca mcdm approach ıncluding the covıd-19 period. J Prod Spec Issue: Productivity for Innovations: 1-20 https://doi.org/10.51551/verimlilik.1320794
  • Öztel A, Alp İ. 2020. Çok kriterli karar verme seçiminde yeni bir yaklaşım. Kriter Yayıncılık, İstanbul, Türkiye, pp:15-16
  • Paksoy S. 2017. Çok kriterli karar vermede güncel yaklaşımlar. Karahan Kitapevi, Adana, Türkiye, pp:265-258
  • Pamućar DS, Tarle SP, Parezanovic T. 2018. New hybrid multi-criteria decision-making dematel-mairca sustainable selection of a location for the development of multimodal logistics centre. 31(1): 1641-1665 https://doi.org/10.1080/1331677X.2018.1506706
  • Pamućar D, Ćirović G. 2015. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison. Expert Syst Appl, 42: 3016–3028
  • Paradhita AN, Fajariyanti Y, Amanda MT, Puspitasari A, Sulistyowati V. 2025. Implementation of topsıs method to assist the process of accepting new employees in the company. People Behav Anal, 3(1): 35-48 https://doi.org/10.31098/pba.v3i1.3135
  • Permata KI, Putri DS, Sasmita GA. 2025. Multi-criteria decision support system for web-based credit approval: a study of topsıs, mabac, waspas, and maut methods. J Penelit Teknol Inform Dan Sains, 3(1): 114-130 https://doi.org/10.54066/jptis.v3i1.3152
  • Puška A, Božanić D, Mastilo Z, Pamučar D. 2023. A model based on merec-cradis objective decision-making methods and the application of double normalization: A case study of the selection of electric cars. Res Square, pp: 2-19 https://doi.org/10.21203/rs.3.rs-2092146/v1
  • Radomska-Zalas A. 2023. Application of the waspas method in a selected technological. Procedia Comput Sci, 225: 177–187 https://doi.org/10.1016/j.procs.2023.10.002
  • Radulescu CZ, Radulescu M. 2024. A hybrid group multi-criteria approach based on saw,topsıs, vıkor, and copras methods for complex IoT selection problem. Electronics, 13(789): 1-27 https://doi.org/10.3390/electronics13040789
  • Rasoanaivo RG, Yazdani M, Zaraté P, Fateh A. 2024. Combined compromise for ıdeal solution (CoCoFISo): A multi-criteria decision-making based on the CoCoSo method algorithm. Expert Syst Appl, pp: 1-35 https://doi.org/10.1016/j.eswa.2024.124079
  • Robinson DW. 2008. Entropy and uncertainty. Entropy, 10: 493-506 https://doi.org/10.3390/e10040493
  • Roshanravan B, Kreuzer OP, Buckingham A. 2025. BWM-MARCOS: A new hybrid mcdm approach for mineral potential modelling. J Geochem Explor, 269: 1-13 https://doi.org/10.1016/j.gexplo.2024.107639
  • Rudnicki L. 2011. Shannon entropy as a measure of uncertainty. J Russ Laser Res, 32: 393–399 https://doi.org/10.1007/s10946-011-9227-x
  • Sakurai JJ, Napolitano J. 2012. Modern kuantum mekaniği. (Translated by G. Önengüt). Palme Yayınevi, Ankara, Türkiye, pp:45-49
  • Shankar R. 2014. Thermodynamics II. In: Fundamentals of Physics: Mechanics, relativity, and thermodynamics. Yale University Press, New Haven, USA, pp:65-68
  • Sharma LP, Patel N, Ghose MK, Debnath P. 2015. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat Hazards, 75: 1555–1576 https://doi.org/10.1007/s11069-014-1378-y
  • Stevenson D. 2021. Application of shannon entropy metrics to cultural diversity and language evaluation. Academia Lett, 2503: 1-7 https://doi.org/10.20935/AL2503
  • Stević Ž, Pamučar D, Puškac A, Chatterjee P. 2020. Sustainable supplier selection in healthcare ındustries using a new mcdm method: measurement of alternatives and ranking according to compromise solution (MARCOS). Comput Ind Eng, 140: 1-15
  • Sutoyo MN, Paliling A. 2025. The Integration of dematel and saw methods for developing a research performance assessment model for lecturers. J Appl Data Sci, 6(2): 1026-1036 https://doi.org/10.47738/jads.v6i2.550
  • Taherdoost H, Mohebi A. 2024. A Comprehensive guide to the copras method for multi-criteria decision making. J Manag Sci Eng Res, 7(2): 1-11 https://doi.org/10.30564/jmser.v7i2.6280
  • Taşcı MZ. 2024. Merec ve cradis yöntemlerini içeren entegre bir çkkv modeli ile dask özelinde bir uygulama. Doğuş Univ Derg, 25(1): 35-53 https://doi.org/10.31671/doujournal.1294336
  • Tepe S. 2021. Örnek uygulamalarla çok kriterli karar verme yöntemleri. Akademisyen Kitapevi, Ankara, Türkiye, pp:36-123
  • Tesic D, Bozanic D, Radovanovic M, Petrovski A. 2023. Optimising assault boat selection for military operations: an application of the dibr ii-bm-cocoso mcdm model. J Intell Manag Dec, 2(4): 160-171 https://doi.org/10.56578/jimd020401
  • Thakkar JJ. 2021. Multi criteria decision making. Springer Singapore, Singapore, Singapore, pp:45-59
  • Thanh NV. 2021. Multi criteria decision making model for supply change management. Eliva, Chișinău, Moldovia, pp:63-68
  • Trung D. 2021. Application of edas, marcos, topsıs, moora and pıv methods for multi-criteria decision making ın milling process. J Mech Eng, 71(2): 69-84
  • Trung DD, Tan TN. 2023. Combination of doe and pıv methods for multi-criteria decision making. J Appl Eng Sci, 21(1): 361-373 https://doi.org/10.5937/jaes0-41482
  • Trung D, Thinh HX, Ha LD. 2022. Comparison of the rafsi and piv method in multi-criteria decision making: application to turning processes. Int J Metrol Qual Eng, 13(14): 1-9 https://doi.org/10.1051/ijmqe/2022014
  • Turan H, Bulak ME. 2023. An application of multi criteria methods in choosing location for disaster logistics. Meriç Uluslar Sos Sos Stratej Araştır Derg, 7(Special Issue): 78-93
  • Uludağ AS, Doğan H. 2021. Üretim yönetiminde çok kriterli karar verme. Nobel, Ankara, Türkiye, pp:48-98
  • Ulutaş A. 2019. Swara ve mairca yöntemleri ile catering firması seçimi. BMIJ, 7(4): 1467-1479
  • Ulutaş A, Topal A. 2020. Bütünleştirilmiş çok kriterli karar verme yöntemlerinin üretim sektörü uygulamaları. Akademisyen Kitapevi, Ankara, Türkiye, pp:58-69
  • van Stokkum R. 2024. An information measure of ınstitutional complexity for social psychology. Adv Soc Sci Res J, 11(2): 33-53 https://doi.org/10.14738/assrj.112.16387
  • World Intellectual Property Organization (WIPO) 2024. Global innovation index 2024: Unlocking the promise of social entrepreneurship. WIPO, Geneva, Switzerland, pp:45-49
  • Yadav A, Kant R, Kumar V. 2025. Evaluation and ranking of solutions to mitigate Industry 4.0 adoption risks in manufacturing: A hybrid spherical fuzzy fucom-mabac approach. Int J Comput Integr Manuf, 1-27 https://doi.org/10.1080/0951192X.2025.2503315
  • Yakowitz DS, Lane LJ, Szidarrovszky F. 1993. Multi-attribute decision making: dominance with respect to an importance order of the attributes. Appl Math Comput, 54(2-3): 167-181
  • Yazdani M, Zarate P, Zavadskas E, Turskis Z. 2019. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag Dec, pp: 1-19
  • Zaeemzadeh A, Tononi G. 2024. Shannon information and integrated information: Message and meaning. arXiv: 1-26 https://doi.org/10.48550/arXiv.2412.10626
  • Zardari NH, Ahmed K, Shirazi SM, Yusop ZB. 2014. Weighting methods and their effects on multi criteria decision making model outcomes in water resources management. Springer Nature, Berlin, Germany, pp:47-132
  • Zavadskas EK, Turskis Z. 2010. A new addiadditive ratio assessment (aras) method in multicriteria decision-making. Technol Econ Dev Econ, 16(2): 159–172
  • Zavadskas EK, Kaklauskas A, Šarka V. 1994. The new method of multicriteria complex proportional assessment of projects. Technol Econ Dev Econ, 1(3): 131-139
  • Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevičius A. 2012. Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 6(122): 3-6
  • Zhang QR. 2008. A general information theoretical proof for the second law of thermodynamics. Int J Mod Phys E, pp: 531-537 https://doi.org/10.1142/S0218301308009859
  • Zhang X, Wang C, Li E, X C. 2014. Assessment model of ecoenvironmental vulnerability based on ımproved entropy weight method. Sci World J, pp: 1-7 http://dx.doi.org/10.1155/2014/797814
  • Žižovic M, Pamucar D, Albijanic M, Chatterjee P, Pribicevi. 2020. Eliminating rank reversal problem using a new multi-attribute model: The rafsi method. Mathematics, 8: 1-16 https://doi.10.3390/math8061015
  • Zolfani SH, Ecer F, Pamučar D, Raslanas S. 2020. Neighborhood selection for a newcomer via a novel bwm-based revised mairca ıntegrated model: A case from the coquimbo-la serena conurbation, Chile. Int J Strateg Prop Manag, 24(2): 102-118 https://doi.org/10.3846/ijspm.2020.11543

A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method

Yıl 2025, Cilt: 8 Sayı: 5, 1373 - 1400, 15.09.2025
https://doi.org/10.34248/bsengineering.1699472

Öz

In this study, the applicability of the widely used entropy method traditionally employed for calculating criterion weights in the Multi-Criteria Decision-Making (MCDM) literature is investigated as a novel approach for measuring the performance of alternatives. The proposed method, termed Entropy-Based Performance Measurement (EBPM), is grounded in the principle of continuously increasing uncertainty inherent in both natural and social systems. The primary motivation of this approach is to demonstrate, through sensitivity, comparative, and simulation analyses, that the method can produce ideally sensitive, reliable, consistent, stable, and robust results. The study aims to expand the application domain of the entropy method and to contribute to both the MCDM and entropy literature. EBPM is theoretically based on entropy’s inherent capability to quantify and enhance informational performance. Without manipulating the original entropy equation, the entropy function is reformulated into a positively increasing structure, enabling it to measure the performance of alternatives. In the methodology section, the characteristics of 15 widely recognized MCDM methods are introduced, the theoretical and mathematical foundations of the proposed approach are explained, and its applicability is demonstrated using the innovation performance data of seven countries selected from the 2024 Global Innovation Index. In the results and discussion section, the quantitative findings and comprehensive explanations of the proposed method are presented in detail. Thus, this study aims to broaden the potential of the entropy method within the field of MCDM and to offer a novel perspective for decision-making processes.

Etik Beyan

Ethics committee approval was not required for this study because of there was no study on animals or humans.

Kaynakça

  • Aghamammadli F, Toptancı Ş, Karamaşa Ç. 2024. Analyzing the energy consumption of OECD countries through an interval-valued circular intuitionistic fuzzy AHP-based CRADIS. Res Square, 1(1):1-31. https://doi.org/10.21203/rs.3.rs-6283480/v1
  • Akmaludin, Suriyanto AD, Iriadi N, Widianto K. 2024. Integrated MCDM-AHP and MABAC for selection head of branch offices. Sinkron J Penelit Tek Inform, 8(4):2335-2344. https://doi.org/10.33395/sinkron.v8i4.13669
  • Aksakal E, Çalışkan E. 2020. Olimpiyatlarda aday şehirlerin seçim sürecinde dikkate alınacak kriterlerin entropi yönetimi ile değerlendirilmesi. In: Kabak M, Çınar Y, editors. Çok kriterli karar verme yöntemleri MS Excel çözümlü uygulamalar. Nobel, Ankara, Türkiye, pp: 169-179.
  • Aksoy E. 2021. An analysis on Türkiye's merger and acquisition activities: MAIRCA method. Gümüşhane Univ Sos Bilim Enst Elektron Derg, 12(1):1-11
  • Aktaş R, Doğanay MM, Türen U, Gazibey Y, Gökmen Y. 2015. Sayısal karar verme yöntemleri. Beta Yayınları, İstanbul, Türkiye, pp: 412.
  • AlAli AM, Salih A, Hassaballa A. 2023. Geospatial-based analytical hierarchy process (AHP) and weighted product model (WPM) techniques for mapping and assessing flood susceptibility in the Wadi Hanifah Drainage Basin, Riyadh Region, Saudi Arabia. Water, 15(1943):1-130. https://doi.org/10.3390/w15101943
  • Alossta A, Elmansouri O, Badi I. 2021. Resolving a location selection problem by means of an integrated AHP-RAFSI approach. Rep Mech Eng, 2(1):135-142. https://doi.org/10.31181/rme200102135a
  • Alqoud A, Milisavljevic-Syed J, Salonitis K. 2025. Multi-criteria decision making in evaluating digital retrofitting solutions: Utilizing AHP and TOPSIS. Procedia CIRP, 132:184-190. https://doi.org/10.1016/j.procir.2025.01.031
  • Altın H. 2020. ARAS ve MOOSRA yöntemlerinin performans sonuçlarının karşılaştırılması: Amerika kıtası ülkeleri. Pressacademia J Econ Finance Account, 7(2):173-186
  • Anđić D. 2024. Comparison of a tower geodetic micro-network optimization results obtained using the MABAC, MAIRCA, COCOSO and ROV methods with those obtained applying the VIKOR method. Int J Eng Res Dev, 20(10):81-95
  • Andrejic M, Vukasin P. 2025. Integrated BWM–QFD–MARCOS framework for strategic decision-making in cold chain logistics. J Oper Strateg Anal, 3(1):23-33. https://doi.org/10.56578/josa030103
  • Apaydın F. 2004. Kuantum fiziği. Hacettepe Üniversitesi Yayınları, Ankara, Türkiye, pp: 356.
  • Arisantoso, Somaida MH, Sanwasih M, Shalahudin MI. 2023. Multi-criteria decision making using the WASPAS method in webcam selection decision support systems. Int J Informatics Comput Sci, 7(1):1-11. https://doi.org/10.30865/ijics.v7i1.6001
  • Arslan HM. 2017. Determination of optimal vehicle selection of logistics companies with AHP-ARAS hybrid method. Alphanumeric J, 5(2):272-281. https://doi.org/10.17093/alphanumeric.339476
  • Atan M, Altan Ş. 2020. Örnek uygulamalarla çok kriterli karar verme yöntemleri. Gazi Kitapevi, Ankara, Türkiye, pp: 276.
  • Ayçin E. 2019. Çok kriterli karar verme. Nobel Yayın, Ankara, Türkiye, pp: 198.
  • Aydemir MF. 2025. Evaluation of foreign direct investment attractiveness of BRICS-T countries: The CRITIC-LOPCOW based ARAS approach. Polit Ekonomik Kuram, 9(1):372-392. https://doi.org/10.30586/pek.1613421
  • Azadfallah M. 2025. Incorporating negative values into the simple additive weighting (SAW) under uncertain conditions: An application in project manager selection problem. In: Strang KD, Vajjhala NR, editors. International program and project management — best practices in selected industries. Springer, Cham, Switzerland, pp: 1-12.
  • Bahadır O, Türkmençalıkoğlu H. 2021. Shannon entropy and its applications in information theory. Eur J Sci Technol, (32):491-498. https://doi.org/10.31590/ejosat.1039771,
  • Ballamudi S. 2024. Evaluating IoT platforms: An approach using the COPRAS method. J Data Sci Inform Technol, 2:55-65
  • Baş F. 2021. Çok kriterli karar verme yöntemlerinde kriter ağırlıklarının belirlenmesi. Nobel Bilimsel, Ankara, Türkiye, pp: 144.
  • Başdar C. 2019. Finansal performans ve çok kriterli karar verme teknikleri. Ekin Yayınevi, Bursa, Türkiye, pp: 232.
  • Begam S. 2024. Identification of groundwater recharge zone in periurban watershed with the help of MAUT and MEREC techniques. Res Square, 1(1):1-29. https://doi.org/10.21203/rs.3.rs-4178085/v1
  • Bektaş S. 2023. MEREC ve MABAC yöntemleri ile BİST 100’de işlem gören enerji firmalarının finansal performanslarının değerlendirilmesi. Dokuz Eylül Univ İşletme Fakültesi Derg, 24(2):115-128
  • Bircan H. 2020. Çok kriterleri karar verme problemlerinde kriter ağırlıklandırma yöntemleri. Nobel Akademik, Ankara, Türkiye, pp: 184.
  • Chaipetch P, Amprayn C, Pawan P, Vatanavongs R. 2025. A multi-criteria decision support system for prioritizing road maintenance: Integrating AHP and TOPSIS with a focus on low-volume roads. IOP Conf Ser Earth Environ Sci, 1450(1):1-11. https://doi.org/10.1088/1755-1315/1450/1/012004
  • Chakraborty S, Zavadskas EK, Antucheviciene J. 2015. Applications of WASPAS method as a multi-criteria tool. Econ Comput Econ Cybern Stud Res, 49(1):5-22
  • Chen LC, Chang KH, Hung JF. 2025. WASPAS-based natural language processing method for handling content words extraction and ranking issues: An example of SDGs corpus. Information, 16(198):1-19. https://doi.org/10.3390/info16030198
  • Chinnasamy S, Ramachandran M, Rajkumar S, Sivaji C. 2023. A survey on transportation system using the WPM method. Build Mater Eng Struct, 1(2):37-44. http://doi.org/10.46632/bmes/1/2/5
  • Chinnasay S, Ramachandran M, Sravanan V. 2023. Analysis of blast resistant buildings using the WPM method. REST J Emerg Trends Model Manuf, 9(1):26-36. https://doi.org/10.46632/jemm/9/1/4
  • Ciardiello F, Genovese A. 2023. A comparison between TOPSIS and SAW methods. Ann Oper Res, 325:967-994. https://doi.org/10.1007/s10479-023-05339-w
  • Cincotta PM, Giordano CM, Silva RA, Beaugé C. 2021. Shannon entropy diffusion estimates: Sensitivity on the parameters of the method. Celest Mech Dyn Astron, 133(7):1-20. https://doi.org/10.1007/s10569-021-10006-y
  • Ćirovic G, Pamučar D. 2022. Multiple-criteria decision making. MDPI AG, Basel, Switzerland, pp: 244.
  • Çankaya Kurnaz S. 2025. Çok kriterli karar verme yöntemlerinden TOPSIS ile AB ülkelerinin e-devlet performanslarının karşılaştırılması. Sos Bilim EKEV Akad Derg, 101:149-173. https://orcid.org/my-orcid?orcid=0000-0001-6977-300X
  • Çelikbilek Y. 2018. Çok kriterli karar verme yöntemleri. Nobel Akademik Yayıncılık, Ankara, Türkiye, pp: 212.
  • Çetinkaya C, Erbaş M, Kabak M, Özceylan E. 2023. A mass vaccination site selection problem: An application of GIS and entropy-based MAUT approach. Socio Econ Plan Sci, 85:1-11. https://doi.org/10.1016/j.seps.2022.101376,
  • Çilek A, Şeyranlioğlu O. 2025. Measuring the financial performance of reinsurance companies in Türkiye with LODECI, CRADIS and AROMAN MCDM methods. Int J Bus Econ Stud, 7(1):1-18. https://doi.org/10.54821/uiecd.1587675
  • Demir G. 2021. Özel sermayeli mevduat bankalarında performans analizi: RAFSI bütünleşik model uygulaması. Atatürk Univ İktisadi İdari Bilim Derg, 35(4):1359-1382
  • Demir G, Arslan R. 2022. Sensitivity analysis in multi-criteria decision-making problems. Ankara Hacı Bayram Veli Univ İktisadi İdari Bil Fak Derg, 24(3):1025-1056
  • Demir G, Özyalçın AT, Bircan H. 2021. Çok kriterli karar verme yöntemleri ve ÇKKV yazılımı ile problem çözümü. Nobel, Ankara, Türkiye, pp: 198.
  • Demirci A. 2020. Sağlık hizmetleri yönetiminde çok kriterli karar verme teknikleri. Gazi Kitapevi, Ankara, Türkiye, pp: 224.
  • Dinçer SE. 2019. Çok kriterli karar alma. Gece Akademi, Ankara, Türkiye, pp: 164.
  • Doković L, Doljanica D. 2023. Application of AHP and MABAC methods in the framework of multi criteria decision making in the selection of investment projects. J Process Manag New Technol, 11(3-4):105-114, pp: 105-114.
  • Ecer F. 2020. Çok kriterli karar verme. Seçkin Yayıncılık, Ankara, Türkiye, pp: 186.
  • El-Araby A, Sabry I, El-Assal A. 2024. Ranking performance of MARCOS method for location selection problem in the presence of conflicting criteria. Decis Mak Adv, 2(1):148-162. https://doi.org/10.31181/dma21202435
  • Ersoy N. 2024. Assessing renewable energy impact in Nordic-Baltic region: Sensitivity analysis and MCDM approach. Renew Energy Res Appl, 6(1):47-60. https://doi.org/10.22044/rera.2023.13416.1238
  • Fan J, Yao X, Wu M. 2025. Extended WPA CRITIC WASPAS model based on picture fuzzy soft sets for green building materials selection. Int J Fuzzy Syst, 1(1):1-15. https://doi.org/10.1007/s40815-025-01982-6
  • Gini A. 2000. What happens if work goes away. Bus Ethics Q, 10(1):181-188. https://doi.org/10.2307/3857704
  • Goswami SS, Behera DK, Afzal A, Kaladgi AR, Khan SA, Rajendran P, Asif M. 2021. Analysis of a robot selection problem using two newly developed hybrid MCDM models of TOPSIS-ARAS and COPRAS-ARAS. Symmetry, 13(1331):1-35. https://doi.org/10.3390/sym13081331
  • Goswami SS, Mohanty SK, Behera DK. 2022. Selection of a green renewable energy source in India with the help of MEREC integrated PIV MCDM tool. Mater Today, 52(3):1152-1160. https://doi.org/10.1016/j.matpr.2021.11.019
  • Gressman PT, Strain RM. 2010. Global classical solutions of the Boltzmann equation with long-range interactions. Proc Natl Acad Sci USA, 107(13):5744-5749. https://doi.org/10.1073/pnas.1001185107
  • Han F, Alkhawaji RN, Shafieezadeh MM. 2025. Evaluating sustainable water management strategies using TOPSIS and fuzzy TOPSIS methods. Appl Water Sci, 15(4):1-13. https://doi.org/10.1007/s13201-024-02336-7
  • Handayani N, Heriyani N, Septian F, Alexander AD. 2023. Multi-criteria decision making using the WASPAS method. J Teknoinfo, 17(1):260-270
  • Hwang CL, Yoon K. 1981. Multiple attribute decision making - methods and applications. Springer Verlag, Berlin, Germany, pp: 357.
  • Işık Ö, Çalık A, Shabir M. 2025. A consolidated MCDM framework for overall performance assessment of listed insurance companies based on ranking strategies. Comput Econ, 65:271-312. https://doi.org/10.1007/s10614-024-10578-5
  • Kaya İ, Karaşan A. 2020. Çok kriterli karar verme. Umuttepe Yayınları, Kocaeli, Türkiye, pp:15-56.
  • Kaymaz ÇK, Kızılkan Y, Birinci S. 2020. Ordu ili turizm merkezlerinin çok kriterli karar verme yöntemlerine göre analizi. Kriter Yayınevi, İstanbul, Türkiye, pp:25-45.
  • Keeney R, Raiffa H. 1976. Decision with multiple objectives: Preferences and value trade off. John Wiley & Sons, New York, USA, pp:14,16.
  • Keleş N. 2023. Uygulamalarla klasik ve güncel karar verme yöntemleri. Nobel Bilimsel, Ankara, Türkiye, pp:45-49.
  • Keshavarz-Ghorabaee, M, Amiri M, Zavadskas EK, Turskis Z, Antucheviciene J. 2021. Determination of objective weights using a new method based on the removal effects of criteria (merec). Symmetry, 13(525): 1-21. https://doi.org/10.3390/sym13040525.
  • Khan NZ, Ansari TA, Siddiquee AN, Khan ZA. 2019. Selection of e-learning websites using a novel proximity ındexed value (piv) mcdm method. J Comput Educ 6: 241-256. https://doi.org/10.1007/s40692-019-00135-7.
  • Köksal K, Köseoğlu R. 2010. Fenciler için kuantum mekaniği. Nobel Yayın, Ankara, Türkiye, pp:14-16.
  • Krippendorff K. 2009. Mathematical theory of communication. In: Encyclopedia of communication theory, SW. Littlejohn, KA. Foss Editors. Sage, Los Angeles: USA, pp: 614-618.
  • Lendvai L, Jakab S, Singh T. 2025. Optimal design of agroresidue filled poly(lactic acid) biocomposites using an integrated critic-cocoso multi-criteria decision-making approach. Sci Rep, 15(11586): 1-18. https://doi.org/10.1038/s41598-025-92724-z.
  • Lopez LM, Ishizaka A, Qin J. 2023. Multi criteria decision making sorting methods: Applications to real world., Acad Press, Cambridge-Massachusetts, USA, pp:56-78.
  • Madić M, Radovanović M. 2015. Ranking of some most commonly used nontraditional machining processes using rov and critic methods. U.P.B. Sci Bull D, 72(2): 193-204.
  • Madić M, Radovanović M, Manić, M. 2016. Application of the rov method for the selection of cutting fluids. Dec SciLett5: 245–254.
  • Mehdiabadi A, Sadeghi A, Yazdi AK, Tan Y. 2025. Sustainability service chain capabilities in the oil and gas industry: A fuzzy hybrid approach swara-mabac. Spectr Oper Res, 2(1): 92-112. https://doi.org/10.31181/sor21202512.
  • Mishra S, Ayyub, BM. 2019. Shannon entropy for quantifying uncertainty and risk in economic disparity. Risk Anal., 39(10): 2160-2181. https://doi.org/10.1111/risa.13313.
  • Muni GD, Sudipa G, Meinarni NS, Wiguna, IA, Sandhiyasa, IS. 2024. Comparison of magıq, mabac, marcos, and moora methods in multi-criteria problems. Sinkron : Jurnal dan Penelitian Teknik Informatika, 8(3): 1286-1303. https://doi.org/10.33395/sinkron.v8i3.13639.
  • Munier N. 2021. Mathematical modelling of decision problems. Springer Cham., Gewerbestrasse, Switzerland, pp:45-46.
  • Munier N. 2024. Strategic Approach in multi criteria decision making. Springer Int Pub AG, Gewerbestrasse, Switzerland, pp:47-89
  • Nanda A. 2020. Shannon's entropy and ıts generalisations towards statistical ınference in last seven decades: Review on entropy. Int Stat Rev, 87(11): 167-186 https://doi.org/10.1111/insr.12374
  • Narang V, Rai R, Johal RS. 2024. Clausius' theorem and the Second law in the process of isoenergetic thermalization. arXiv:1-17 https://doi.org/10.1103/PhysRevE.110054103
  • Organ A, Yalçın E. 2016. Performance evaluation of research assistants by copras method. Eur Sci J Spec Issue: 102-109
  • Owen C. 2023. Multiple-criteria decision making: techniques, analysis and applications. States Acad Press, New York, USA, pp:15-56
  • Özbek A. 2019. Çok kriterli karar verme yöntemleri ve excel ile problem çözümü kavram-teori-uygulama. Seçkin Yayıncılık, Ankara, Türkiye, pp:45-49
  • Özbek A, Erol E. 2017. Ranking of factoring companies in accordance with aras and copras. Int J Acad Res Acc Financ Manag Sci, 2(7): 105-116 http://dx.doi.org/10.6007/IJARAFMS/v7-i2/2876
  • Özdemir M. 2018. Çok kriterli karar verme yöntemleri. Nobel Yayımcılık, Ankara, Türkiye, pp:35-37
  • Özekenci SY. 2024. Financial performance measurement of companies in the bıst sustainability 25 ındex with lbwa and merec-based cradis methods. J Mehmet Akif Ersoy Univ Econ Admin Sci Fac, 11(24): 1184-1211 https://doi.org/10.30798/makuiibf.1465069
  • Özkaya G. 2024. An analysis of the circular economy in europe through comparative research employing the crıtıc-based maut and copras methods. Verimlilik Derg, 58(3): 337-358 https://doi.org/10.51551/verimlilik.1462098
  • Öztaş T, Öztaş GZ. 2024. Innovation performance analysis of g20 countries: a novel ıntegrated lopcow-maırca mcdm approach ıncluding the covıd-19 period. J Prod Spec Issue: Productivity for Innovations: 1-20 https://doi.org/10.51551/verimlilik.1320794
  • Öztel A, Alp İ. 2020. Çok kriterli karar verme seçiminde yeni bir yaklaşım. Kriter Yayıncılık, İstanbul, Türkiye, pp:15-16
  • Paksoy S. 2017. Çok kriterli karar vermede güncel yaklaşımlar. Karahan Kitapevi, Adana, Türkiye, pp:265-258
  • Pamućar DS, Tarle SP, Parezanovic T. 2018. New hybrid multi-criteria decision-making dematel-mairca sustainable selection of a location for the development of multimodal logistics centre. 31(1): 1641-1665 https://doi.org/10.1080/1331677X.2018.1506706
  • Pamućar D, Ćirović G. 2015. The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison. Expert Syst Appl, 42: 3016–3028
  • Paradhita AN, Fajariyanti Y, Amanda MT, Puspitasari A, Sulistyowati V. 2025. Implementation of topsıs method to assist the process of accepting new employees in the company. People Behav Anal, 3(1): 35-48 https://doi.org/10.31098/pba.v3i1.3135
  • Permata KI, Putri DS, Sasmita GA. 2025. Multi-criteria decision support system for web-based credit approval: a study of topsıs, mabac, waspas, and maut methods. J Penelit Teknol Inform Dan Sains, 3(1): 114-130 https://doi.org/10.54066/jptis.v3i1.3152
  • Puška A, Božanić D, Mastilo Z, Pamučar D. 2023. A model based on merec-cradis objective decision-making methods and the application of double normalization: A case study of the selection of electric cars. Res Square, pp: 2-19 https://doi.org/10.21203/rs.3.rs-2092146/v1
  • Radomska-Zalas A. 2023. Application of the waspas method in a selected technological. Procedia Comput Sci, 225: 177–187 https://doi.org/10.1016/j.procs.2023.10.002
  • Radulescu CZ, Radulescu M. 2024. A hybrid group multi-criteria approach based on saw,topsıs, vıkor, and copras methods for complex IoT selection problem. Electronics, 13(789): 1-27 https://doi.org/10.3390/electronics13040789
  • Rasoanaivo RG, Yazdani M, Zaraté P, Fateh A. 2024. Combined compromise for ıdeal solution (CoCoFISo): A multi-criteria decision-making based on the CoCoSo method algorithm. Expert Syst Appl, pp: 1-35 https://doi.org/10.1016/j.eswa.2024.124079
  • Robinson DW. 2008. Entropy and uncertainty. Entropy, 10: 493-506 https://doi.org/10.3390/e10040493
  • Roshanravan B, Kreuzer OP, Buckingham A. 2025. BWM-MARCOS: A new hybrid mcdm approach for mineral potential modelling. J Geochem Explor, 269: 1-13 https://doi.org/10.1016/j.gexplo.2024.107639
  • Rudnicki L. 2011. Shannon entropy as a measure of uncertainty. J Russ Laser Res, 32: 393–399 https://doi.org/10.1007/s10946-011-9227-x
  • Sakurai JJ, Napolitano J. 2012. Modern kuantum mekaniği. (Translated by G. Önengüt). Palme Yayınevi, Ankara, Türkiye, pp:45-49
  • Shankar R. 2014. Thermodynamics II. In: Fundamentals of Physics: Mechanics, relativity, and thermodynamics. Yale University Press, New Haven, USA, pp:65-68
  • Sharma LP, Patel N, Ghose MK, Debnath P. 2015. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat Hazards, 75: 1555–1576 https://doi.org/10.1007/s11069-014-1378-y
  • Stevenson D. 2021. Application of shannon entropy metrics to cultural diversity and language evaluation. Academia Lett, 2503: 1-7 https://doi.org/10.20935/AL2503
  • Stević Ž, Pamučar D, Puškac A, Chatterjee P. 2020. Sustainable supplier selection in healthcare ındustries using a new mcdm method: measurement of alternatives and ranking according to compromise solution (MARCOS). Comput Ind Eng, 140: 1-15
  • Sutoyo MN, Paliling A. 2025. The Integration of dematel and saw methods for developing a research performance assessment model for lecturers. J Appl Data Sci, 6(2): 1026-1036 https://doi.org/10.47738/jads.v6i2.550
  • Taherdoost H, Mohebi A. 2024. A Comprehensive guide to the copras method for multi-criteria decision making. J Manag Sci Eng Res, 7(2): 1-11 https://doi.org/10.30564/jmser.v7i2.6280
  • Taşcı MZ. 2024. Merec ve cradis yöntemlerini içeren entegre bir çkkv modeli ile dask özelinde bir uygulama. Doğuş Univ Derg, 25(1): 35-53 https://doi.org/10.31671/doujournal.1294336
  • Tepe S. 2021. Örnek uygulamalarla çok kriterli karar verme yöntemleri. Akademisyen Kitapevi, Ankara, Türkiye, pp:36-123
  • Tesic D, Bozanic D, Radovanovic M, Petrovski A. 2023. Optimising assault boat selection for military operations: an application of the dibr ii-bm-cocoso mcdm model. J Intell Manag Dec, 2(4): 160-171 https://doi.org/10.56578/jimd020401
  • Thakkar JJ. 2021. Multi criteria decision making. Springer Singapore, Singapore, Singapore, pp:45-59
  • Thanh NV. 2021. Multi criteria decision making model for supply change management. Eliva, Chișinău, Moldovia, pp:63-68
  • Trung D. 2021. Application of edas, marcos, topsıs, moora and pıv methods for multi-criteria decision making ın milling process. J Mech Eng, 71(2): 69-84
  • Trung DD, Tan TN. 2023. Combination of doe and pıv methods for multi-criteria decision making. J Appl Eng Sci, 21(1): 361-373 https://doi.org/10.5937/jaes0-41482
  • Trung D, Thinh HX, Ha LD. 2022. Comparison of the rafsi and piv method in multi-criteria decision making: application to turning processes. Int J Metrol Qual Eng, 13(14): 1-9 https://doi.org/10.1051/ijmqe/2022014
  • Turan H, Bulak ME. 2023. An application of multi criteria methods in choosing location for disaster logistics. Meriç Uluslar Sos Sos Stratej Araştır Derg, 7(Special Issue): 78-93
  • Uludağ AS, Doğan H. 2021. Üretim yönetiminde çok kriterli karar verme. Nobel, Ankara, Türkiye, pp:48-98
  • Ulutaş A. 2019. Swara ve mairca yöntemleri ile catering firması seçimi. BMIJ, 7(4): 1467-1479
  • Ulutaş A, Topal A. 2020. Bütünleştirilmiş çok kriterli karar verme yöntemlerinin üretim sektörü uygulamaları. Akademisyen Kitapevi, Ankara, Türkiye, pp:58-69
  • van Stokkum R. 2024. An information measure of ınstitutional complexity for social psychology. Adv Soc Sci Res J, 11(2): 33-53 https://doi.org/10.14738/assrj.112.16387
  • World Intellectual Property Organization (WIPO) 2024. Global innovation index 2024: Unlocking the promise of social entrepreneurship. WIPO, Geneva, Switzerland, pp:45-49
  • Yadav A, Kant R, Kumar V. 2025. Evaluation and ranking of solutions to mitigate Industry 4.0 adoption risks in manufacturing: A hybrid spherical fuzzy fucom-mabac approach. Int J Comput Integr Manuf, 1-27 https://doi.org/10.1080/0951192X.2025.2503315
  • Yakowitz DS, Lane LJ, Szidarrovszky F. 1993. Multi-attribute decision making: dominance with respect to an importance order of the attributes. Appl Math Comput, 54(2-3): 167-181
  • Yazdani M, Zarate P, Zavadskas E, Turskis Z. 2019. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manag Dec, pp: 1-19
  • Zaeemzadeh A, Tononi G. 2024. Shannon information and integrated information: Message and meaning. arXiv: 1-26 https://doi.org/10.48550/arXiv.2412.10626
  • Zardari NH, Ahmed K, Shirazi SM, Yusop ZB. 2014. Weighting methods and their effects on multi criteria decision making model outcomes in water resources management. Springer Nature, Berlin, Germany, pp:47-132
  • Zavadskas EK, Turskis Z. 2010. A new addiadditive ratio assessment (aras) method in multicriteria decision-making. Technol Econ Dev Econ, 16(2): 159–172
  • Zavadskas EK, Kaklauskas A, Šarka V. 1994. The new method of multicriteria complex proportional assessment of projects. Technol Econ Dev Econ, 1(3): 131-139
  • Zavadskas EK, Turskis Z, Antucheviciene J, Zakarevičius A. 2012. Optimization of weighted aggregated sum product assessment. Elektronika ir Elektrotechnika, 6(122): 3-6
  • Zhang QR. 2008. A general information theoretical proof for the second law of thermodynamics. Int J Mod Phys E, pp: 531-537 https://doi.org/10.1142/S0218301308009859
  • Zhang X, Wang C, Li E, X C. 2014. Assessment model of ecoenvironmental vulnerability based on ımproved entropy weight method. Sci World J, pp: 1-7 http://dx.doi.org/10.1155/2014/797814
  • Žižovic M, Pamucar D, Albijanic M, Chatterjee P, Pribicevi. 2020. Eliminating rank reversal problem using a new multi-attribute model: The rafsi method. Mathematics, 8: 1-16 https://doi.10.3390/math8061015
  • Zolfani SH, Ecer F, Pamučar D, Raslanas S. 2020. Neighborhood selection for a newcomer via a novel bwm-based revised mairca ıntegrated model: A case from the coquimbo-la serena conurbation, Chile. Int J Strateg Prop Manag, 24(2): 102-118 https://doi.org/10.3846/ijspm.2020.11543
Toplam 128 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çok Ölçütlü Karar Verme
Bölüm Research Articles
Yazarlar

Furkan Fahri Altıntaş 0000-0002-0161-5862

Erken Görünüm Tarihi 10 Eylül 2025
Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 14 Mayıs 2025
Kabul Tarihi 9 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Altıntaş, F. F. (2025). A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method. Black Sea Journal of Engineering and Science, 8(5), 1373-1400. https://doi.org/10.34248/bsengineering.1699472
AMA Altıntaş FF. A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method. BSJ Eng. Sci. Eylül 2025;8(5):1373-1400. doi:10.34248/bsengineering.1699472
Chicago Altıntaş, Furkan Fahri. “A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method”. Black Sea Journal of Engineering and Science 8, sy. 5 (Eylül 2025): 1373-1400. https://doi.org/10.34248/bsengineering.1699472.
EndNote Altıntaş FF (01 Eylül 2025) A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method. Black Sea Journal of Engineering and Science 8 5 1373–1400.
IEEE F. F. Altıntaş, “A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method”, BSJ Eng. Sci., c. 8, sy. 5, ss. 1373–1400, 2025, doi: 10.34248/bsengineering.1699472.
ISNAD Altıntaş, Furkan Fahri. “A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method”. Black Sea Journal of Engineering and Science 8/5 (Eylül2025), 1373-1400. https://doi.org/10.34248/bsengineering.1699472.
JAMA Altıntaş FF. A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method. BSJ Eng. Sci. 2025;8:1373–1400.
MLA Altıntaş, Furkan Fahri. “A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method”. Black Sea Journal of Engineering and Science, c. 8, sy. 5, 2025, ss. 1373-00, doi:10.34248/bsengineering.1699472.
Vancouver Altıntaş FF. A Contemporary Approach for Solving Selection Problems: The Entropy-Based Performance Measurement Method. BSJ Eng. Sci. 2025;8(5):1373-400.

                           24890