Araştırma Makalesi
BibTex RIS Kaynak Göster

Seramik Enjeksiyon Kalıplama için İskelet Bağlayıcı Değişiminin Reolojik Özelliklerine Etkisi

Yıl 2022, , 314 - 323, 30.06.2022
https://doi.org/10.35193/bseufbd.1020523

Öz

Toz enjeksiyon kalıplama prosesi için reoloji çalışması önemli bir yere sahiptir. Seçilen bağlayıcıların özellikleri; kalıplama, ön sinterleme ve sinterleme aşamalarını doğrudan ilgilendirmektedir. Besleme stokuna eklenen bağlayıcı özelliklerinin yanı sıra bağlayıcıların (ana bağlayıcı/iskelet bağlayıcı/yağlayıcı) kullanım amacı da önemlidir. Bu çalışmada seramik enjeksiyon kalıplama süreci için su bazlı ana bağlayıcı kullanılarak akış özellikleri (reoloji) belirlenmiştir. Reoloji deneyleri hem kılcal hemde tork reometreleri ile gerçekleştirilmiştir. Deneylerde; polietilen glikol ana bağlayıcı ve polipropilen/polietilen iskelet bağlayıcı kullanılarak farklı karışım oranlarında hazırlanan besleme stokları ile gerçekleştirilmiştir. Ana bağlayıcı değiştirilmeden (PEG4000), iskelet bağlayıcı olarak ise iki farklı (PP/PE) bağlayıcı kullanılmıştır. Buna bağlı olarak viskozite, kayma hızı, sıcaklık ve erime davranış indeksleri tespit edilmiştir. Deney sonucunda her iki besleme stoku için kritik toz yüklemesinin hacimce %56 oranında olduğu tespit edilmiştir.

Kaynakça

  • German, R.M. & Bose, A. (1997). Injection Molding of Metals and Ceramics Metal Powder Industries Federation, Princeton 10-250.
  • P. Thomas-Vielma, A. Cervera, B. & Levenfeld, A. (2008). Várez Journal of the European Ceramic Society, 28, 763-771.
  • Hanemann, T., & Weber, O. (2014). Polymethylmethacrylate/polyethyleneglycol-based partially water-soluble binder system for micro ceramic injection moulding, Microsystem Technology, 20, 51–58.
  • Subaşı M., Yılmaz O., Same, K., Safarian A., & Karataş Ç., (2020). Toz Enjeksiyon Kalıplamada 316 L Besleme Stokunun Çekme Yüzdesinin Yapay Sinir Ağları İle Tahmin Edilmesi, El-Cezeri Journal of Science and Engineering, 7 (3):1063-1073.
  • German, R.M. (1990). Toz Enjeksiyon Kalıplama MPIF, ABD. 1-225.
  • Weber O, & Hanemann T, (2011). Molding Compounds on partially water-soluble organic binder for production of complex shaped ceramic micro parts, In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, South Korea.
  • Bleyan D, Svoboda P, & Hausnerova B, (2015). Specific interactions of low molecular weight analogues of carnaubawax and polyethyleneglycol binders of ceramic injection moulding feedstocks, Ceram. Int., 41: 3975–3982.
  • D. Claudel, M. Sahli, T. Barriere, & J.C. Gelin. (2017). Influence of particle-size distribution and temperature on the rheological properties of highly concentrated Inconel feedstock alloy 718. Powder Technol., 322, 273-289.
  • Park MS, Kim JK, Ahn S, & Sung HJ, (2001). Water-soluble binder of cellulose acetate butyrate/poly (ethylene glycol) blend for powder injection moulding, J. Mater. Sci., 36:5531–5536.
  • Hwang BJ, Lin ST, Sarma LS, & Cheng MY., (2003). Feedstock for Injection Molding, US, 10/170464.
  • C.I. Chung, B.O. Rhee, M.Y. Cao,& C.X. Liu (1989). Requirements of binder for powder injection molding Advances in Powder Metallurgy Proceeding, Powder Metallurgy Conference Exhibition, MPIF, Princeton, NJ, USA, 67-78.
  • Gao Y, Huang K, Fan Z, & Xie Z, (2007). Injection molding of zirconia ceramics using watersoluble binders, Key Eng. Mater., 336–338:1017–1020.
  • J.M. Contreras, A. Jiménez-Morales, & J.M. Torralba (2010). Experimental and theoretical methods for optimal solid loading calculation in MIM feedstocks fabricated from powders with different particle characteristics. Powder Metall, 53 (1). 34-40.
  • R. Supati, N.H. Loh, K.A. Khor, & S.B. Tor (2000) Mixing and characterization of feedstock for powder injection molding. Mater Lett, 46. 109-114.
  • Karatas C, Kocer A, Unal HI, & Saritas S, (2004). Rheological properties of feedstocks prepared with steatite powder and polyethylene-based thermoplastic binders, J.Mater. Process. Technol., 2005, 152, 77–83.
  • Greiner A, Kauzlaric D, Korvink JG, Heldele R, & Schulz M, (2011). Simulation of micro powder injection moulding: Powder segregation and yield stress effects during form filling, J. Eur. Ceram. Soc., 31, 2525–2534.
  • Wei WCJ, Tsai SJ, & Hsu KC, (1998). Effects of mixing sequence on alumina prepared by injection molding, J. Eur. Ceram. Soc., 18, 1445–1451.
  • Chhabra, R. P. (2006). Non-Newtonian fluid behavior. In Bubbles, Drops, and Particles in Non-Newtonian Fluids (37-76). CRC Press.
  • Krauss VA, Pires EN, Klein AN, & Fredel MC, (2005). Rheological properties of alumina injection feedstocks, Mater. Res., 8, 187–189.
  • J. Wen, W. Liu, Z. Xie, C. Lou, & X. Yang (2018). Effects of the binder compositions on the homogeneity of ceramic injection molded compacts. Ceram. Int., 44, 3218-3225.
  • Pugh RJ, & Bergström L, (1994). Surface and Colloid Chemistry in Advanced Ceramic Processing; III. Series, Institute for Surface Chemistry Surfactant Sciences Series; CRC Press, Stockholm, Sweden.
  • K.S. Weil, E. Nyberg, & K. Simmons (2006). A new binder for powder injection molding titanium and other reactive metals J. Mater. Process. Technol., 176, 205-209.
  • S.Y.M. Amin, K.R. Jamaludin, & N. Muhamad (2009). Rheological investigation of SS316L MIM feedstock prepared with different particle sizes and powder loadings J. Inst. Eng. Malaysia, 71 (2), 59-63.
  • Arifin, A., Sulong, A. B., & Muhamad, N. (2012). Optimizing injection parameter of metal injection molding processes using the feedstock of 16 µm stainless steel powder (SS316L), PEG, PMMA and stearic acid. Journal of Applied Sciences Research.
  • G. Thavanayagam, K.L. Pickering, J.E. Swan, & P. Cao (2015). Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol., 269, 227-232.
  • Thavanayagam, G., & Swan, J. E. (2018). Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding. Powder Technology., 326, 402-410.
  • Askari, A., Alaei, M. H., Mehdipoor Omrani, A., Nekouee, K., & Park, S. J. (2020). Rheological and thermal characterization of AISI 4605 low-alloy steel feedstock for metal injection molding process. Metals and Materials International, 26(12), 1820-1829.
  • Urtekin L, Uslan I, & Tuc B, (2012). Investigation of effect of feedstock rheologies for injection molding of steatite, Journal of The Faculty of Engineering and Architecture of Gazi University, 27(2), 333-341.
  • Urtekin, L. (2008). Toz enjeksiyon kaliplanmiş steatit seramiklerin özelliklerine kaliplama ve sinterleme parametrelerinin etkisinin deneysel olarak incelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Urtekin L, Uslan I, & Tuc B, (2012).Investigation of properties of powder injection-molded steatites, Journal of Materials Engineering and Performance, 21 (3), 358-365.
  • Urtekin L, & Taşkın A, (2017). Ti–6Al–4V alloy cortical bone screw production by powder injection molding method, Materials Express, 7 (4), 245-252.
  • Urtekin L, Genc A, & Bozkurt F, (2019). Fabrication and simulation of feedstock for titanium powder injection molding cortical bone screws, Materials and Technology, 53 (5), 619-625.

Effect of Skeleton Binder Change on Rheological Properties for Ceramic Injection Molding

Yıl 2022, , 314 - 323, 30.06.2022
https://doi.org/10.35193/bseufbd.1020523

Öz

Rheological characterization plays an important role in powder injection molding. Properties of the selected binders are related directly to the molding, pre-sintering and sintering stages. Besides the residual binding properties of the feedstock, the intended use of the binder (main binder/skeleton binder/lubricant) is also important. In this work, the flow properties of feedstock have been determined with the inclusion of a water-based main binder throughout the injection molding process of a studied ceramic composition. Rheology experiments have been carried out with both capillary and torque rheometers. In the experiments, polyethylene glycol main binder and polypropylene/polyethylene skeleton without changing the main binder (PEG4000), two different binders (PP / PE) were used as skeleton binders. Accordingly, viscosity, shear rate, temperature and melting behavior indexes were determined. In the experiment, it was determined that the critical powder volume concentration for both feedstocks was 56%.

Kaynakça

  • German, R.M. & Bose, A. (1997). Injection Molding of Metals and Ceramics Metal Powder Industries Federation, Princeton 10-250.
  • P. Thomas-Vielma, A. Cervera, B. & Levenfeld, A. (2008). Várez Journal of the European Ceramic Society, 28, 763-771.
  • Hanemann, T., & Weber, O. (2014). Polymethylmethacrylate/polyethyleneglycol-based partially water-soluble binder system for micro ceramic injection moulding, Microsystem Technology, 20, 51–58.
  • Subaşı M., Yılmaz O., Same, K., Safarian A., & Karataş Ç., (2020). Toz Enjeksiyon Kalıplamada 316 L Besleme Stokunun Çekme Yüzdesinin Yapay Sinir Ağları İle Tahmin Edilmesi, El-Cezeri Journal of Science and Engineering, 7 (3):1063-1073.
  • German, R.M. (1990). Toz Enjeksiyon Kalıplama MPIF, ABD. 1-225.
  • Weber O, & Hanemann T, (2011). Molding Compounds on partially water-soluble organic binder for production of complex shaped ceramic micro parts, In Proceedings of the 18th International Conference on Composite Materials, Jeju Island, South Korea.
  • Bleyan D, Svoboda P, & Hausnerova B, (2015). Specific interactions of low molecular weight analogues of carnaubawax and polyethyleneglycol binders of ceramic injection moulding feedstocks, Ceram. Int., 41: 3975–3982.
  • D. Claudel, M. Sahli, T. Barriere, & J.C. Gelin. (2017). Influence of particle-size distribution and temperature on the rheological properties of highly concentrated Inconel feedstock alloy 718. Powder Technol., 322, 273-289.
  • Park MS, Kim JK, Ahn S, & Sung HJ, (2001). Water-soluble binder of cellulose acetate butyrate/poly (ethylene glycol) blend for powder injection moulding, J. Mater. Sci., 36:5531–5536.
  • Hwang BJ, Lin ST, Sarma LS, & Cheng MY., (2003). Feedstock for Injection Molding, US, 10/170464.
  • C.I. Chung, B.O. Rhee, M.Y. Cao,& C.X. Liu (1989). Requirements of binder for powder injection molding Advances in Powder Metallurgy Proceeding, Powder Metallurgy Conference Exhibition, MPIF, Princeton, NJ, USA, 67-78.
  • Gao Y, Huang K, Fan Z, & Xie Z, (2007). Injection molding of zirconia ceramics using watersoluble binders, Key Eng. Mater., 336–338:1017–1020.
  • J.M. Contreras, A. Jiménez-Morales, & J.M. Torralba (2010). Experimental and theoretical methods for optimal solid loading calculation in MIM feedstocks fabricated from powders with different particle characteristics. Powder Metall, 53 (1). 34-40.
  • R. Supati, N.H. Loh, K.A. Khor, & S.B. Tor (2000) Mixing and characterization of feedstock for powder injection molding. Mater Lett, 46. 109-114.
  • Karatas C, Kocer A, Unal HI, & Saritas S, (2004). Rheological properties of feedstocks prepared with steatite powder and polyethylene-based thermoplastic binders, J.Mater. Process. Technol., 2005, 152, 77–83.
  • Greiner A, Kauzlaric D, Korvink JG, Heldele R, & Schulz M, (2011). Simulation of micro powder injection moulding: Powder segregation and yield stress effects during form filling, J. Eur. Ceram. Soc., 31, 2525–2534.
  • Wei WCJ, Tsai SJ, & Hsu KC, (1998). Effects of mixing sequence on alumina prepared by injection molding, J. Eur. Ceram. Soc., 18, 1445–1451.
  • Chhabra, R. P. (2006). Non-Newtonian fluid behavior. In Bubbles, Drops, and Particles in Non-Newtonian Fluids (37-76). CRC Press.
  • Krauss VA, Pires EN, Klein AN, & Fredel MC, (2005). Rheological properties of alumina injection feedstocks, Mater. Res., 8, 187–189.
  • J. Wen, W. Liu, Z. Xie, C. Lou, & X. Yang (2018). Effects of the binder compositions on the homogeneity of ceramic injection molded compacts. Ceram. Int., 44, 3218-3225.
  • Pugh RJ, & Bergström L, (1994). Surface and Colloid Chemistry in Advanced Ceramic Processing; III. Series, Institute for Surface Chemistry Surfactant Sciences Series; CRC Press, Stockholm, Sweden.
  • K.S. Weil, E. Nyberg, & K. Simmons (2006). A new binder for powder injection molding titanium and other reactive metals J. Mater. Process. Technol., 176, 205-209.
  • S.Y.M. Amin, K.R. Jamaludin, & N. Muhamad (2009). Rheological investigation of SS316L MIM feedstock prepared with different particle sizes and powder loadings J. Inst. Eng. Malaysia, 71 (2), 59-63.
  • Arifin, A., Sulong, A. B., & Muhamad, N. (2012). Optimizing injection parameter of metal injection molding processes using the feedstock of 16 µm stainless steel powder (SS316L), PEG, PMMA and stearic acid. Journal of Applied Sciences Research.
  • G. Thavanayagam, K.L. Pickering, J.E. Swan, & P. Cao (2015). Analysis of rheological behaviour of titanium feedstocks formulated with a water-soluble binder system for powder injection moulding. Powder Technol., 269, 227-232.
  • Thavanayagam, G., & Swan, J. E. (2018). Aqueous debinding of polyvinyl butyral based binder system for titanium metal injection moulding. Powder Technology., 326, 402-410.
  • Askari, A., Alaei, M. H., Mehdipoor Omrani, A., Nekouee, K., & Park, S. J. (2020). Rheological and thermal characterization of AISI 4605 low-alloy steel feedstock for metal injection molding process. Metals and Materials International, 26(12), 1820-1829.
  • Urtekin L, Uslan I, & Tuc B, (2012). Investigation of effect of feedstock rheologies for injection molding of steatite, Journal of The Faculty of Engineering and Architecture of Gazi University, 27(2), 333-341.
  • Urtekin, L. (2008). Toz enjeksiyon kaliplanmiş steatit seramiklerin özelliklerine kaliplama ve sinterleme parametrelerinin etkisinin deneysel olarak incelenmesi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Urtekin L, Uslan I, & Tuc B, (2012).Investigation of properties of powder injection-molded steatites, Journal of Materials Engineering and Performance, 21 (3), 358-365.
  • Urtekin L, & Taşkın A, (2017). Ti–6Al–4V alloy cortical bone screw production by powder injection molding method, Materials Express, 7 (4), 245-252.
  • Urtekin L, Genc A, & Bozkurt F, (2019). Fabrication and simulation of feedstock for titanium powder injection molding cortical bone screws, Materials and Technology, 53 (5), 619-625.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Levent Urtekin 0000-0003-4348-4749

Faik Yılan 0000-0001-7166-8604

İbrahim Uslan 0000-0003-1486-4865

Bedri Tuc 0000-0003-0658-2251

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 8 Kasım 2021
Kabul Tarihi 24 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Urtekin, L., Yılan, F., Uslan, İ., Tuc, B. (2022). Seramik Enjeksiyon Kalıplama için İskelet Bağlayıcı Değişiminin Reolojik Özelliklerine Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 314-323. https://doi.org/10.35193/bseufbd.1020523