Araştırma Makalesi
BibTex RIS Kaynak Göster

BDÇT Kolonların Nihai Dayanımının Sonlu Elemanlar ile Modellenmesi ve Tasarım Kodları ile Karşılaştırılması

Yıl 2022, , 324 - 339, 30.06.2022
https://doi.org/10.35193/bseufbd.1033827

Öz

Beton dolgulu çelik tüpler (BDÇT), yüksek mukavemet, rijitlik ve süneklik özelliklerine sahiptir, bu da onları yapısal uygulamalarda avantajlı kılmaktadır. Bu çalışma, eksenel yüke maruz beton dolgulu çelik tüp şeklindeki dairesel kolonların nihai dayanımını tasarlamak için bir sonlu elemanlar analiz modeli oluşturmayı amaçlamaktadır. Bu amaçla, daha önceki deneysel çalışmalarda sunulan 314 test numunesi incelenmiştir. Çalışmada, çelik boru et kalınlığı ve akma dayanımı, beton basınç dayanımı ve kolon çapı ve uzunluğu tasarım parametreleri olarak belirlenmiştir. Bu bağlamda, bu çalışmada önerilen sonlu elemanlaryöntemi kullanılarak oluşturulan tasarım modeli, ACI, AS, AISC, AIJ, Eurocode 4, DL/T ve CISC gibi mevcut tasarım kodlarında verilen mevcut tasarım modelleri ile karşılaştırmalı olarak değerlendirilmiştir. Ayrıca tüm tasarım modellerin tahmin performansı da istatistiksel olarak incelenmiştir.

Kaynakça

  • Tsuda, K., Matsui, C., & Ishibashi, Y. (1995). Stability design of slender concrete filled steel tubular columns. In: Proc. of the Fifth Asia-Pacific Conference on Structural Engineering and Construction (EASEC-5), 439-444.
  • Zeghiche, J., & Chaoui, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61, 53-66.
  • Lu, Z.H., & Zhao, Y.G. (2010). Suggested empirical models for the axial capacity of circular CFT stub column. Journal of Constructional Steel Research, 66, 850-862.
  • Han, L.H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211-228.
  • Li, N., Lu, Y.Y., Li, S., & Liang, H.J. (2015). Statistical-based evaluation of design codes for circular concrete-filled steel tube columns. Steel and Composite Structure, 18, 519-546.
  • Zhao, X.L., & Han, L.H. (2006). Double skin composite construction. Progress in Structural Engineering and Materials, 8, 93-102.
  • Roeder, C.W., Lehman, D.E., & Bishop, E. (2010). Strength and stiffness of circular concrete-filled tubes. Journal of Structural Engineering, 136, 1545-1553.
  • Lu, Z.H., & Zhao, Y.G. (2010). Suggested empirical models for the axial capacity of circular CFT stub column. Journal of Constructional Steel Research, 66, 850-862.
  • Ho, J.C.M., & Lai, M.H. (2013). Behaviour of uni-axially loaded CFST columns connected by tie bars. Journal of Constructional Steel Research, 83, 37-50.
  • D’Aniello, M., Güneyisi, E.M., Landolfo, R., & Mermerdaş, K. (2014). Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams. Thin-Walled Structures, 77, 141-152.
  • Güneyisi, E.M., Gültekin, A., & Mermerdaş, K. (2016). Ultimate capacity prediction of axially loaded CFST short columns. International Journal of Steel Structures, 16, 99-104.
  • İpek, S., & Güneyisi, E.M. (2019). Ultimate axial strength of concrete-filled double skin steel tubular column sections. Advances in Civil Engineering, 11, 1-19.
  • Güneyisi, E.M., & Nour, A.I. (2019). Axial compression capacity of circular CFST columns transversely strengthened by FRP. Engineering Structures, 191, 417-431.
  • Furlong, R.W. (1967). Strength of steel-encased concrete beam-columns. Journal of the Structural Division (ASCE), 93, 113-124.
  • Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60, 1049-1068.
  • Rao, S.S. (2004). The finite element method in engineering (4th Ed). Butterworth-Heinemann.
  • Gupta, P.K., Sarda, S.M., & Kumar, M.S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63, 182-193.
  • Dai, X., & Lam, D. (2010). Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns. Journal of Constructional Steel Research, 66, 931-942.
  • El-Heweity, M.M. (2012). On the performance of circular concrete-filled high-strength steel columns under axial loading. Alexandria Engineering Journal, 51, 109-119.
  • Wang, R., Han, L.H., & Hou, C.C. (2013). The behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model. Journal of Constructional Steel Research, 80, 188-201.
  • Al-Ani, Y.R. (2018). Finite element study to address the axial capacity of the circular concrete filled steel tubular stub columns. Thin-Walled Structures, 126, 2-15.
  • Ellobody, E., Young, B., & Lam, D. (2006). Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62, 706-715.
  • ABAQUS. (2014). Analysis user’s manuals and example problems manuals. Dassault Systemes Simulia Corp, Providence, RI, USA.
  • ACI318-05. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). Farmington Hills (MI, USA): American Concrete Institute.
  • AS4100. (1998). Steel structures. Sydney (Australia): Standards Association of Australia.
  • AS3600. (2001). Concrete structures. Sydney (Australia): Standards Association of Australia; 2001.
  • AISC. (2005). Load and resistance factor design (LRFD) specification for structural steel buildings. Chicago (IL, USA): American Institute of Steel Construction.
  • AIJ. (1997). Recommendations for design and construction of concrete filled steel tubular structures. Tokyo (Japan): Architectural Institute of Japan.
  • AIJ. (2001). Standards for structural calculation of steel reinforced concrete structures 5th ed. Tokyo (Japan): Architectural Institute of Japan.
  • EN 1994. (2004). Design of composite steel and concrete structures – Eurocode 4: Part 1.1, General rules and rules for buildings. European Committee for Standardization: British Standards Institution.
  • DL/T 5085. (1999). Chinese design code for steel-concrete composite structures. Beijing (China): Chinese Electricity Press.
  • CISC. (1997). Canadian Institute of Steel Construction, Handbook of Steel Construction, 7th Ed. ISBN 0-88811-088-X, Ontario.
  • Han, L.H., & Huo, J.S. (2003). Concrete-filled HSS columns after exposure to ISO-834 standard fire. Journal of Structural Engineering, 129, 68-78.
  • Hu, H.T., Huang, C.H., Wu, M.H., & Wu, Y.M. (2003). Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect.Journal of Structural Engineering, 129(10), 1322-1329.
  • Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 27(7), 1040-1051.
  • İpek, S., Erdoğan, A., & Güneyisi E.M. (2021). Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section. Journal of Building Engineering, 38, 102200.
  • Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H., & Wu, M.H. (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 128, 1222-1230.
  • Lin-Hai, H., & Guo-Huang, Y. (2004). Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, 42, 1357-1377.
  • Gardner, N.J., &Jacobson, E.R. (1967). Structural behavior of concrete-filled steel tubes. ACI Structural Journal, 64, 404-412.
  • Lin, C.Y. (1988). Axial capacity of concrete infilled cold-formed steel columns. In: The Ninth International Specialty Conference on Cold-Formed Steel Structures, November 8-9, St Louis, Missouri, USA, 443-457.
  • O’Shea, M.D., &Bridge, R.Q. (2000). Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering,126(11), 1295-1303.
  • Saisho, M., Abe, T., & Nakaya, K. (1999). Ultimate bending strength of high-strength concrete filled steel tube column. Journal of Structural and Construction Engineering, 523, 133-140.
  • Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 130, 180-188.
  • Luksha, L.K., & Nesterovich, A.P. (1991). Strength testing of larger-diameter concrete filled steel tubular members. In: The 3rd International Conference on Steel-concrete Composite Structures, September 26-29, Fukuoka, Japan, 67-70.
  • Sakino, K., & Hayashi, H. (1991). Behavior of concrete filled steel tubular stub columns under concentric loading. In: In: The 3rd International Conference on Steel-concrete Composite Structures, September 26-29, Fukuoka, Japan, 25-30.
  • O'Shea, M.D., & Bridge, R.Q. (1994). Tests of thin-walled concrete-fılled steel tubes. In: The Twelfth International Specialty Conference on Cold-Formed Steel Structures; October 18-19, St. Louis, Missouri, USA, 399-419.
  • Kato, B. (1995). Compressive strength and deformation capacity of concrete-filled tubular stub columns (Strength and rotation capacity of concrete-filled tubular columns, Part 1). Journal of Structural and Construction Engineering, 468, 183-191.
  • Yamamoto, T., Kawaguchi, J., & Morino, S. (2002). Experimental study of the size effect on the behaviour of concrete filled circular steel tube columns under axial compression. Journal of Structural and Construction Engineering, 561, 237-244.
  • Yu, Z., Ding, F., & Lin, S. (2002). Researches on behavior of high-performance concrete filled tubular steel short columns. Journal of Building Engineering, 23, 41-47.
  • Han, L.H., & Yao, G.H. (2003). Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. Journal of Constructional Steel Research, 59, 1455-1475.
  • Zhang, S., & Wang, Y. (2004). Failure modes of short columns of high-strength concrete filled steel tubes. China Civil Engineering Journal, 37, 1-10.
  • Han, L.H., Yao, G.F., & Zhao, X.L. (2005). Experiment behavior of thin-walled hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61, 124-169.
  • Kang, H.S., Lim, S.H., Moon, T.S., & Stiemer, S.F. (2005). Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads. Steel and Composite Structures, 5, 17-34.
  • Tan, K. (2006). Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete. Journal of Southwest University of Science and Technology, 21, 7-10.
  • Yu, Z.W., Ding, F.X., & Cai, C.S. (2007). Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 63, 165-174.
  • Tao, Z., Han, L.H., & Wang, L.L. (2007). Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire. Journal of Constructional Steel Research, 63, 1116-1126.
  • Yu, Q., Tao, Z., & Wu, Y.X. (2008). Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Structures, 46, 362-370.
  • Lam, D., & Gardner, L. (2008). Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research, 64, 1275-1282.
  • Huo, J., Huang, G., & Xiao, Y. (2009). Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns. Journal of Constructional Steel Research, 65, 1664-1676.
  • Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H., & Choi, S.M. (2001). Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, 67, 1-13.
  • Abed, F., Al Hamaydeh, M., & Abdalla, S. (2013). Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, 80, 429-439.
  • Chang, X., Fu, L., Zhao, H.B., & Zhang, Y.B. (2013). Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes. Thin-Walled Structures, 73, 273-280.

Finite Element Modelling of Ultimate Strength of CFST Column and Its Comparison with Design Codes

Yıl 2022, , 324 - 339, 30.06.2022
https://doi.org/10.35193/bseufbd.1033827

Öz

Concrete-filled steel tube (CFST) members have high strength, stiffness, and ductility properties, which makes them favorable in structural applications. This study purposes to create a finite element analysis-based model for designing the peak strength of axially loaded CFSTcircular columns. To this aim, 314 test specimens presented in the previous experimental studies were investigated. In the study, the wall thickness and yield strength of steel tube, compressive strength of concrete, and column diameter and length were designated as the design parameters. In this regard, the design model created using the finite element analysis proposed in this study was evaluated comparatively with existing ones given in the existing design codes and standards such as ACI, AS, AISC, AIJ, Eurocode 4, DL/T, and CISC. Besides, the estimation performance of all design models was examined statistically as well.

Kaynakça

  • Tsuda, K., Matsui, C., & Ishibashi, Y. (1995). Stability design of slender concrete filled steel tubular columns. In: Proc. of the Fifth Asia-Pacific Conference on Structural Engineering and Construction (EASEC-5), 439-444.
  • Zeghiche, J., & Chaoui, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61, 53-66.
  • Lu, Z.H., & Zhao, Y.G. (2010). Suggested empirical models for the axial capacity of circular CFT stub column. Journal of Constructional Steel Research, 66, 850-862.
  • Han, L.H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100, 211-228.
  • Li, N., Lu, Y.Y., Li, S., & Liang, H.J. (2015). Statistical-based evaluation of design codes for circular concrete-filled steel tube columns. Steel and Composite Structure, 18, 519-546.
  • Zhao, X.L., & Han, L.H. (2006). Double skin composite construction. Progress in Structural Engineering and Materials, 8, 93-102.
  • Roeder, C.W., Lehman, D.E., & Bishop, E. (2010). Strength and stiffness of circular concrete-filled tubes. Journal of Structural Engineering, 136, 1545-1553.
  • Lu, Z.H., & Zhao, Y.G. (2010). Suggested empirical models for the axial capacity of circular CFT stub column. Journal of Constructional Steel Research, 66, 850-862.
  • Ho, J.C.M., & Lai, M.H. (2013). Behaviour of uni-axially loaded CFST columns connected by tie bars. Journal of Constructional Steel Research, 83, 37-50.
  • D’Aniello, M., Güneyisi, E.M., Landolfo, R., & Mermerdaş, K. (2014). Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams. Thin-Walled Structures, 77, 141-152.
  • Güneyisi, E.M., Gültekin, A., & Mermerdaş, K. (2016). Ultimate capacity prediction of axially loaded CFST short columns. International Journal of Steel Structures, 16, 99-104.
  • İpek, S., & Güneyisi, E.M. (2019). Ultimate axial strength of concrete-filled double skin steel tubular column sections. Advances in Civil Engineering, 11, 1-19.
  • Güneyisi, E.M., & Nour, A.I. (2019). Axial compression capacity of circular CFST columns transversely strengthened by FRP. Engineering Structures, 191, 417-431.
  • Furlong, R.W. (1967). Strength of steel-encased concrete beam-columns. Journal of the Structural Division (ASCE), 93, 113-124.
  • Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60, 1049-1068.
  • Rao, S.S. (2004). The finite element method in engineering (4th Ed). Butterworth-Heinemann.
  • Gupta, P.K., Sarda, S.M., & Kumar, M.S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63, 182-193.
  • Dai, X., & Lam, D. (2010). Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns. Journal of Constructional Steel Research, 66, 931-942.
  • El-Heweity, M.M. (2012). On the performance of circular concrete-filled high-strength steel columns under axial loading. Alexandria Engineering Journal, 51, 109-119.
  • Wang, R., Han, L.H., & Hou, C.C. (2013). The behavior of concrete filled steel tubular (CFST) members under lateral impact: Experiment and FEA model. Journal of Constructional Steel Research, 80, 188-201.
  • Al-Ani, Y.R. (2018). Finite element study to address the axial capacity of the circular concrete filled steel tubular stub columns. Thin-Walled Structures, 126, 2-15.
  • Ellobody, E., Young, B., & Lam, D. (2006). Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62, 706-715.
  • ABAQUS. (2014). Analysis user’s manuals and example problems manuals. Dassault Systemes Simulia Corp, Providence, RI, USA.
  • ACI318-05. (2005). Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). Farmington Hills (MI, USA): American Concrete Institute.
  • AS4100. (1998). Steel structures. Sydney (Australia): Standards Association of Australia.
  • AS3600. (2001). Concrete structures. Sydney (Australia): Standards Association of Australia; 2001.
  • AISC. (2005). Load and resistance factor design (LRFD) specification for structural steel buildings. Chicago (IL, USA): American Institute of Steel Construction.
  • AIJ. (1997). Recommendations for design and construction of concrete filled steel tubular structures. Tokyo (Japan): Architectural Institute of Japan.
  • AIJ. (2001). Standards for structural calculation of steel reinforced concrete structures 5th ed. Tokyo (Japan): Architectural Institute of Japan.
  • EN 1994. (2004). Design of composite steel and concrete structures – Eurocode 4: Part 1.1, General rules and rules for buildings. European Committee for Standardization: British Standards Institution.
  • DL/T 5085. (1999). Chinese design code for steel-concrete composite structures. Beijing (China): Chinese Electricity Press.
  • CISC. (1997). Canadian Institute of Steel Construction, Handbook of Steel Construction, 7th Ed. ISBN 0-88811-088-X, Ontario.
  • Han, L.H., & Huo, J.S. (2003). Concrete-filled HSS columns after exposure to ISO-834 standard fire. Journal of Structural Engineering, 129, 68-78.
  • Hu, H.T., Huang, C.H., Wu, M.H., & Wu, Y.M. (2003). Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect.Journal of Structural Engineering, 129(10), 1322-1329.
  • Binici, B. (2005). An analytical model for stress-strain behavior of confined concrete. Engineering Structures, 27(7), 1040-1051.
  • İpek, S., Erdoğan, A., & Güneyisi E.M. (2021). Compressive behavior of concrete-filled double skin steel tubular short columns with the elliptical hollow section. Journal of Building Engineering, 38, 102200.
  • Huang, C.S., Yeh, Y.K., Liu, G.Y., Hu, H.T., Tsai, K.C., Weng, Y.T., Wang, S.H., & Wu, M.H. (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 128, 1222-1230.
  • Lin-Hai, H., & Guo-Huang, Y. (2004). Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, 42, 1357-1377.
  • Gardner, N.J., &Jacobson, E.R. (1967). Structural behavior of concrete-filled steel tubes. ACI Structural Journal, 64, 404-412.
  • Lin, C.Y. (1988). Axial capacity of concrete infilled cold-formed steel columns. In: The Ninth International Specialty Conference on Cold-Formed Steel Structures, November 8-9, St Louis, Missouri, USA, 443-457.
  • O’Shea, M.D., &Bridge, R.Q. (2000). Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering,126(11), 1295-1303.
  • Saisho, M., Abe, T., & Nakaya, K. (1999). Ultimate bending strength of high-strength concrete filled steel tube column. Journal of Structural and Construction Engineering, 523, 133-140.
  • Sakino, K., Nakahara, H., Morino, S., & Nishiyama, I. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering, 130, 180-188.
  • Luksha, L.K., & Nesterovich, A.P. (1991). Strength testing of larger-diameter concrete filled steel tubular members. In: The 3rd International Conference on Steel-concrete Composite Structures, September 26-29, Fukuoka, Japan, 67-70.
  • Sakino, K., & Hayashi, H. (1991). Behavior of concrete filled steel tubular stub columns under concentric loading. In: In: The 3rd International Conference on Steel-concrete Composite Structures, September 26-29, Fukuoka, Japan, 25-30.
  • O'Shea, M.D., & Bridge, R.Q. (1994). Tests of thin-walled concrete-fılled steel tubes. In: The Twelfth International Specialty Conference on Cold-Formed Steel Structures; October 18-19, St. Louis, Missouri, USA, 399-419.
  • Kato, B. (1995). Compressive strength and deformation capacity of concrete-filled tubular stub columns (Strength and rotation capacity of concrete-filled tubular columns, Part 1). Journal of Structural and Construction Engineering, 468, 183-191.
  • Yamamoto, T., Kawaguchi, J., & Morino, S. (2002). Experimental study of the size effect on the behaviour of concrete filled circular steel tube columns under axial compression. Journal of Structural and Construction Engineering, 561, 237-244.
  • Yu, Z., Ding, F., & Lin, S. (2002). Researches on behavior of high-performance concrete filled tubular steel short columns. Journal of Building Engineering, 23, 41-47.
  • Han, L.H., & Yao, G.H. (2003). Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. Journal of Constructional Steel Research, 59, 1455-1475.
  • Zhang, S., & Wang, Y. (2004). Failure modes of short columns of high-strength concrete filled steel tubes. China Civil Engineering Journal, 37, 1-10.
  • Han, L.H., Yao, G.F., & Zhao, X.L. (2005). Experiment behavior of thin-walled hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61, 124-169.
  • Kang, H.S., Lim, S.H., Moon, T.S., & Stiemer, S.F. (2005). Experimental study on the behavior of CFT stub columns filled with PCC subject to concentric compressive loads. Steel and Composite Structures, 5, 17-34.
  • Tan, K. (2006). Analysis of formulae for calculating loading bearing capacity of steel tubular high strength concrete. Journal of Southwest University of Science and Technology, 21, 7-10.
  • Yu, Z.W., Ding, F.X., & Cai, C.S. (2007). Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 63, 165-174.
  • Tao, Z., Han, L.H., & Wang, L.L. (2007). Compressive and flexural behaviour of CFRP-repaired concrete-filled steel tubes after exposure to fire. Journal of Constructional Steel Research, 63, 1116-1126.
  • Yu, Q., Tao, Z., & Wu, Y.X. (2008). Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Structures, 46, 362-370.
  • Lam, D., & Gardner, L. (2008). Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research, 64, 1275-1282.
  • Huo, J., Huang, G., & Xiao, Y. (2009). Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns. Journal of Constructional Steel Research, 65, 1664-1676.
  • Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H., & Choi, S.M. (2001). Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, 67, 1-13.
  • Abed, F., Al Hamaydeh, M., & Abdalla, S. (2013). Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, 80, 429-439.
  • Chang, X., Fu, L., Zhao, H.B., & Zhang, Y.B. (2013). Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes. Thin-Walled Structures, 73, 273-280.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşegül Erdoğan 0000-0001-8192-4675

Esra Mete Güneyisi 0000-0002-4598-5582

Süleyman İpek 0000-0001-8891-949X

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 7 Aralık 2021
Kabul Tarihi 25 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Erdoğan, A., Güneyisi, E. M., & İpek, S. (2022). Finite Element Modelling of Ultimate Strength of CFST Column and Its Comparison with Design Codes. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 324-339. https://doi.org/10.35193/bseufbd.1033827