Küresel Grafitli Dökme Demir Kalıp Malzemesi Üzerine Farklı Toz Malzemeleri Kullanılarak Lazer Dolgu Kaynağı Uygulaması
Yıl 2022,
, 402 - 415, 30.06.2022
Adem Karşı
,
Meryem Altay
,
Hakan Aydın
,
Ali Bayram
Öz
Lazer dolgu kaynağı, toz malzemenin püskürtülerek bir lazer ışını yardımı ile temel malzemenin ergitilmesi prensibine dayanır; yüzey modifikasyonu yaratarak yeni bir yaklaşım sağlaması ile ön plana çıkmaktadır. UTP PLASweld Ferro55 ve UTP PLASweld 73G3 toz malzemeleri kullanılarak GGG-70L küresel grafitli dökme demir kalıp malzemesi üzerine lazer dolgu kaynağı uygulanmıştır; farklı iki toz dolgu malzemesinin kaplama kalitesi üzerindeki etkileri araştırılmıştır, elde edilen çıktıların otomotiv sac metal şekillendirme kalıplarının tamiratında kullanılması hedeflenmiştir. Lazer gücü, ilerleme hızı, toz debisi parametreleri değişimlerinin kaynak geometrisi, mikro sertlik, çatlak ve gözenek oluşumuna etkisi incelenmiştir, Taguchi L9 ortagonal dizisi kullanılarak optimum proses parametreleri belirlenmiştir. Ferro55 malzemesi için yüksek seviye lazer gücü (1,7 kW), UTP 73G3 toz malzemesi için düşük seviye ilerleme hızı (9 mm/s) parametrelerinin kullanılması kaynak geometrisi açısından optimum sonuçlar vermektedir. Gözenek oluşumu açısından Ferro 55 malzemesi daha iyi konumda iken; UTP 73G3 malzemesinin çatlak oluşumu riski daha düşüktür. Elde edilen maksimum mikro sertlik değerleri birbirine yakındır (777,3 HV0,1).
Teşekkür
Coşkunoz Kalıp Makine A.Ş.'ye lazer dolgu kaynağı uygulamalarında sağladığı imkanlar ve kolaylıklar için teşekkür ederiz.
Kaynakça
- Dindar, Ç., Altay, M. & Aydın, H. (2021) Lazer Kaplama Prosesi ve Proses Parametreleri: Derleme Çalışması. Uludağ University Journal of The Faculty of Engineering, 26 (2), 723–36.
- Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., Xu, P. & Liu, Z. (2021) Recent research and development status of laser cladding: A review. Optics and Laser Technology, 138,106915.
- Siddiqui, A. A. & Dubey, A. K. (2021) Recent trends in laser cladding and surface alloying.Optics and Laser Technology, 134, 106619.
- Budde, L., Biester, K., Merkel, P., Lammers, M., Kriwall, M., Hermsdorf, J., Stonis, M., Behrens, B. & Overmeyer, L. (2022) Investigation of the material combination 20MnCr5 and X45CrSi9 3 in the Tailored Forming of shafts with bearing seats. Production Engineering, 16 (1).
Arif Z. U., Khalid M. Y., Rehman E., Ullah, S., Atif, M & Tariq A. (2021). A review on laser cladding of high-entropy alloys, their recent trends and potential applications. Journal of Manufacturing Processes; 68, 225–73.
- Meng, L., Zeng, X., Hou, K., Hu, Q. & Wang, D. (2019) Effect of laser cladding and laser-induction hybrid cladding coatings on the bending properties and fracture behavior of rails. Surface & Coatings Technology, 374, 1038-1050.
- Bergant, Z., Batic, B. S., Felde, I., Sturm, R. & Sadlacek, M. (2022) Tribological Properties of Solid Solution Strengthened Laser Cladded NiCr B Si/WC-12Co Metal Matrix Composite Coatings. Materials, 15, 342.
- Trojan, K., Ocelik, V., Capek, J. Cech, J., Yubero, D., Ganev, N., Kolarik, K. & Hosson, J. (2022). Microstructure and Mechanical Properties of Laser Additive Manufactured H13 Tool Steel. Metals, 12, 243.
- Wang, W., Zhang, S., Xiao, S., Sato, Y. S., Wang, D. & Liu, Y. (2022). Microstructure and properties of multilayer WC-40Co coating on Ti-6Al-4V by electron beam cladding. Materials Characterization, 183, 111585.
- Nie, M. H., Zhang, S., Wang, Z. Y., Zhang, C. H., Chen, H. T. & Chen, J. (2022). Effect of laser power on microstructure and interfacial bonding strength of laser cladding 17-4PH stainless steel coatings. Materials Chemistry and Physics, 275, 125236.
- Ruiz, J. E., Cortina, M., Arrizubieta, J. I. & Lamikiz, A. (2018) Study of the Influence of Shielding Gases on Laser Metal Deposition of Inconel 718 Superalloy. Materials, 11, 1388.
- Liu, Y., Ding, Y., Yang, L., Sun, R., Zhang, T. & Yang, X. (2021). Research and progress of laser cladding on engineering alloys: A review. Journal of Manufacturing Processes, 66, 341–63.
- Ocylok, S., Weisheit, A. & Kelbasha, I. (2010) Functionally graded multi-layers by laser cladding for increased wear and corrosion protection. Physics Procedia, 5, 359-367.
- Sun, W., Zhang, D., Chen, X., Wang, K., Zhang, J. & Jia, Y.(2022) Effect of the scanning speed of laser cladding on microstructure and mechanical properties of WC/Ni composite coatings.Journal of Mechanical Science and Technology, 36 (2), 679–687.
- Xu, M., Zhou, C., Huang, X., Zhang, Z. & Wang, T. (2020) Multiobjective Optimization of 316L Laser Cladding Powder Using Gray Relational Analysis. Journal f Materials Engineering and Performance, 29, 7793–7806.
- Ya, W. (2015). Laser Materials Interactions During Cladding Analysis on Clad Formation, Thermal Cycles, Residual Stress and Defects. 1st Editio. University of Twente.
Laser Cladding Application Using Different Powder Materials on Spheroidal Graphite Cast Iron Mold Material
Yıl 2022,
, 402 - 415, 30.06.2022
Adem Karşı
,
Meryem Altay
,
Hakan Aydın
,
Ali Bayram
Öz
Laser cladding is based on the principle of melting the base material via a laser beam by spraying the powder material; it comes to stand out by providing a new approach by creating surface modification. Using UTP PLASweld Ferro55 and UTP PLASweld 73G3 powder materials, laser cladding was implemented on GGG-70L ductile cast iron die material; the effects of two different powder filling materials on the cladding quality were investigated. The obtained results were aimed to be used in automotive sheet metal forming die repairs. The effects of laser power, scanning speed, powder flow rate parameters on weld geometry, microhardness, crack, and pore formations were investigated, and optimum process parameters were determined by using Taguchi L9 orthogonal array. Using high-level laser power (1,7 kW) for Ferro55 material and low-level scanning speed (9 mm/s) parameters for UTP 73G3 powder material were achieved optimum results in terms of welding geometry. While Ferro 55 material was better in terms of pore formation; UTP 73G3 material had a lower risk of crack formation. The maximum microhardness values obtained were close to each other (777,3 HV0,1.).
Kaynakça
- Dindar, Ç., Altay, M. & Aydın, H. (2021) Lazer Kaplama Prosesi ve Proses Parametreleri: Derleme Çalışması. Uludağ University Journal of The Faculty of Engineering, 26 (2), 723–36.
- Zhu, L., Xue, P., Lan, Q., Meng, G., Ren, Y., Yang, Z., Xu, P. & Liu, Z. (2021) Recent research and development status of laser cladding: A review. Optics and Laser Technology, 138,106915.
- Siddiqui, A. A. & Dubey, A. K. (2021) Recent trends in laser cladding and surface alloying.Optics and Laser Technology, 134, 106619.
- Budde, L., Biester, K., Merkel, P., Lammers, M., Kriwall, M., Hermsdorf, J., Stonis, M., Behrens, B. & Overmeyer, L. (2022) Investigation of the material combination 20MnCr5 and X45CrSi9 3 in the Tailored Forming of shafts with bearing seats. Production Engineering, 16 (1).
Arif Z. U., Khalid M. Y., Rehman E., Ullah, S., Atif, M & Tariq A. (2021). A review on laser cladding of high-entropy alloys, their recent trends and potential applications. Journal of Manufacturing Processes; 68, 225–73.
- Meng, L., Zeng, X., Hou, K., Hu, Q. & Wang, D. (2019) Effect of laser cladding and laser-induction hybrid cladding coatings on the bending properties and fracture behavior of rails. Surface & Coatings Technology, 374, 1038-1050.
- Bergant, Z., Batic, B. S., Felde, I., Sturm, R. & Sadlacek, M. (2022) Tribological Properties of Solid Solution Strengthened Laser Cladded NiCr B Si/WC-12Co Metal Matrix Composite Coatings. Materials, 15, 342.
- Trojan, K., Ocelik, V., Capek, J. Cech, J., Yubero, D., Ganev, N., Kolarik, K. & Hosson, J. (2022). Microstructure and Mechanical Properties of Laser Additive Manufactured H13 Tool Steel. Metals, 12, 243.
- Wang, W., Zhang, S., Xiao, S., Sato, Y. S., Wang, D. & Liu, Y. (2022). Microstructure and properties of multilayer WC-40Co coating on Ti-6Al-4V by electron beam cladding. Materials Characterization, 183, 111585.
- Nie, M. H., Zhang, S., Wang, Z. Y., Zhang, C. H., Chen, H. T. & Chen, J. (2022). Effect of laser power on microstructure and interfacial bonding strength of laser cladding 17-4PH stainless steel coatings. Materials Chemistry and Physics, 275, 125236.
- Ruiz, J. E., Cortina, M., Arrizubieta, J. I. & Lamikiz, A. (2018) Study of the Influence of Shielding Gases on Laser Metal Deposition of Inconel 718 Superalloy. Materials, 11, 1388.
- Liu, Y., Ding, Y., Yang, L., Sun, R., Zhang, T. & Yang, X. (2021). Research and progress of laser cladding on engineering alloys: A review. Journal of Manufacturing Processes, 66, 341–63.
- Ocylok, S., Weisheit, A. & Kelbasha, I. (2010) Functionally graded multi-layers by laser cladding for increased wear and corrosion protection. Physics Procedia, 5, 359-367.
- Sun, W., Zhang, D., Chen, X., Wang, K., Zhang, J. & Jia, Y.(2022) Effect of the scanning speed of laser cladding on microstructure and mechanical properties of WC/Ni composite coatings.Journal of Mechanical Science and Technology, 36 (2), 679–687.
- Xu, M., Zhou, C., Huang, X., Zhang, Z. & Wang, T. (2020) Multiobjective Optimization of 316L Laser Cladding Powder Using Gray Relational Analysis. Journal f Materials Engineering and Performance, 29, 7793–7806.
- Ya, W. (2015). Laser Materials Interactions During Cladding Analysis on Clad Formation, Thermal Cycles, Residual Stress and Defects. 1st Editio. University of Twente.