Araştırma Makalesi
BibTex RIS Kaynak Göster

Influence of Alkali Resistant Basalt Fiber Strengthened with Saturated Ca(OH)2 on Cement Mortar Performance

Yıl 2023, , 18 - 32, 31.05.2023
https://doi.org/10.35193/bseufbd.1101748

Öz

In this study, to prepare basalt fiber reinforced cement mortars with higher compatibility between reinforcing fibers and cement matrix, basalt fibers were treated with Ca(OH)2 and without surface treatment, and used in cement mortar separately and the physical and mechanical properties of the mortar were compared. In this study, an experimental investigation of the variation of flexural and compressive strength and drying shrinkage of fiber reinforced cement mortars is presented. Chopped basalt fibers were used at the rate of 0.05%, 0.10%, 0.15%, 0.20% and 0.25% by weight of the total mixture in fiber reinforced cement mortars. Samples were produced as 40×40×160 mm and then cured in water. This study was completed as a comparison of five different groups of cement mortars. The first group mortar samples were produced as a series of reference samples, which did not contain basalt fiber. In the second group of mortars, untreated basalt fibers were used as a separate batch in cement mortar. In the third group, 0.10% by weight TiO2 was added to the cement mortar mix design and untreated bare basalt fibers were used. In the fourth and fifth group cement mortars, basalt fibers were used in a way to increase resistance to alkaline environment and chemical stability by keeping them in pre-prepared saturated Ca(OH)2 solutions for 28 days and 56 days, respectively. According to the results of the study, while untreated basalt fibers increased compressive strength of mortars at 3 and 7 days, 28-day compressive strengths decreased with the use of more than 0.10% untreated fiber. With the addition of TiO2 to the mortar mixture, the compressive strength values improved compared to the reference mortar. As the soaking time of basalt fiber in saturated Ca(OH)2 solutions increases, higher amount of solution absorption is provided into the fiber. With this process, it was observed that both the alkali resistance of the fiber improved and the strength of the mortar improved by increasing the bonding ability of the fiber in cement hydration. In addition, it has been determined that as the fiber ratio increases, the drying shrinkage decreases, and more effective results can be obtained by using Ca(OH)2-treated fibers.

Kaynakça

  • Lee, J. J., Song, J., & Kim, H. (2014). Chemical Stability of Basalt Fiber in Alkaline Solution. Fibers and Polymers, 15(11), 2329-2334.
  • Ralegaonkar, R., Gavali, H., Aswath, P., & Abolmaali, S. (2018). Application of chopped basalt fibers in reinforced mortar: A review. Construction and Building Materials, 164, 589-602.
  • Gajanan, D. (2007). Basalt - The Technical Fibre. Man-madeTextiles in India, 50(7), 258-261.
  • Lipatov, Y.V., Gutnikov, S.I., Manylov, M.S., Zhukovskaya, E.S. & Lazoryak B.I. (2015). High alkali-resistant basalt fiber forrein forcing concrete. Materials and Design, 73, 60–66.
  • Pakharenko, V. V., Yanchar, I., Pakharenko, V.A. & Efanova, V. V. (2008). Polymer composite materials with fibrous and dis-perse basaltfillers. Fibre Chemistry, 40(3), 246-252.
  • Liu, Q., Shaw, M. T. & Parnas, R. S. (2006). Investigation of basalt fiber composite mechanical properties for applications in transportation. Polymer Composites, 27(1), 40-48
  • Jiang, H., Valdez, J. A., Zhu, Y. T., Beyerlein, I. J. & Lowe, T. C. (2000). Strength and Toughness of Bone-Shaped Steel Wire Reinforced Cement. Composite Science and Technology, 60, 1753.
  • Guo, Z., Wan, C., Xu, M. & Chen, J. (2018). Review of Basalt Fiber-Reinforced Concrete in China: Alkali Resistance of Fibers and Static Mechanical Properties of Composites. Advances in Materials Science and Engineering, 2018, 9198656.
  • Huang, K. J. & Deng, M. (2010). Stability of basalt fibers in alkaline solution and its effect on the mechanical property of concrete. Acta Materiae Compositae Sinica, 27(1), 150–154.
  • Wydra, M., Dolny, P., Sadowski, G. & Fangrat, J. (2021). Flexural Behaviour of Cementitious Mortars with the Addition of Basalt Fibres. Materials, 14(6), 1334.
  • Borhan T. M. & Bailey, C. G. (2014). Modelling basalt fibre reinforced glass concrete slabs at ambient and elevated temperatures. Materials and Structures, 47(6), 999–1009.
  • Wang, L., Chen, Y. & Li, Z. W. (2000). Properties of continuous basalt fiber and composites. Fiber Reinforced Plastics/Composites, 6(6), 22–24.
  • Li, R. Bi, Z., Wang, Y. & Liu, H. Y. (2008). Experimental study on mechanical properties of short basalt fiber self-compacting concrete. China Concrete and Cement Products, 2, 48–50.
  • Rybin, V. A., Utkin, А. V., & Baklanova, N. I. (2016). Corrosion of uncoated and oxide-coated basalt fibre in different alkaline media. Corrosion Science, 102, 503-509.
  • TS EN 1015-11, (2020), Kagirharcı - Deneymetotları - Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, TSE, Ankara, s15.
  • ASTM C596-09, Standard Test Method For Drying Shrinkage Of MortarContaining Hydraulic Cement, ASTM International
  • TS EN 1015-3 Kasım 2000 KagirHarcı- DeneyMetotları- Bölüm 3: Taze Harç Kıvamının Tayini (Yayılma Tablası İle) Ankara, TSE.
  • ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International
  • Guo, Y. & Yokota, H. (2018). Performance evaluation of basalt fiber reinforced mortar under freeze-thaw and chloride-rich environments. Journal of Asian Concrete Federation, 4(1), 29-34.
  • Jiang, C., Fan, K., Wu, F. & Chen, D. (2014). Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials & Design, 58, 187-193.
  • Jiang, C.H., McCarthy, T.J., Chen, D., & Dong, Q.Q. (2010). Influence of Basalt Fiber on Performance of Cement Mortar. Key Engineering Material, 426, 93-96.
  • Vyacheslav, S., Tamara, R., Aleksandr, G., & Rozalina, G. (2016). Effective light-weight masonry mortars with dispersed reinforcement. Procedia Engineering, 153, 630-637.
  • Lipatov, Y. V., Gutnikov, S. I., Manylov, M. S., & Lazoryak, B. I. (2012). Effect of ZrO2 on the alkali resistance and mechanical properties of basalt fibers. Inorganic materials, 48(7), 751-756.
  • GB/T 23265-2009, Chopped Basalt Fiber for Cement, Cement Mortar and Concrete, Standards Press of China, Beijing, China, 2009.
  • JCT 572-94, Alkali-Resistant Glass Fiber Twistless Roving, Standards Press of China, Beijing, China, 1978.
  • Jiang, C., Huang, S., Zhu, Y., Lin, Y., & Chen, D. (2016). Effect of polypropylene and basalt fiber on the behavior of mortars for repair applications. Advances in Materials Science and Engineering, 2016, 5927609.

Doymuş Ca(OH)2 ile Alkali Direnci Kuvvetlendirilmiş Bazalt Lifinin Çimento Harcı Performansına Etkisi

Yıl 2023, , 18 - 32, 31.05.2023
https://doi.org/10.35193/bseufbd.1101748

Öz

Bu çalışmada, takviye lifler ile çimento matrisi arasında daha yüksek uyumluluğa sahip bazalt lif takviyeli çimento harçları hazırlamak için, bazalt lifleri yüzey işlemi yapılmadan, Ca(OH)2 ile muamele edilerek ayrı ayrı çimento harcında kullanılmış ve harcın fiziksel ve mekanik özellikleri karşılaştırılmıştır. Kıyılmış bazalt lifleri toplam karışımın ağırlıkça %0.05, %0.10, %0.15, %0.20 ve %0.25oranında kullanılmış ve lif takviyeli çimento harçları 40×40×160 mm test numuneleri olarak üretildikten sonra suda küre tabi tutulmuşlar ve birim hacim kütle, yayılma, eğilme ve basınç dayanımı ve kuruma büzülmesi özelliklerinin değişimine dair deneysel bir araştırma sunulmaktadır. Bu çalışma, beş farklı grup çimento harcının karşılaştırması şeklinde tamamlanmıştır. Birinci grup harç numuneleri, bazalt lifi içermeyen kontrol numuneleri olmak üzere bir seri olarak üretilmiştir. İkinci grup harçlarda, işlem görmemiş yalın bazalt lifleri ayrı bir seri olarak çimento harcında kullanılmıştır. Üçüncü grupta, çimento harcı karışım dizaynına ağırlıkça %0.10 TiO2 ilave edilmiş ve işlem görmemiş yalın bazalt lifleri kullanılmıştır. Dördüncü ve beşinci grup çimento harcında ise, sırasıyla 28 gün ve 56 gün boyunca önceden hazırlanmış doymuş Ca(OH)2 solüsyonlarında bekletilerek alkali ortama direnci ve kimyasal kararlılığı artırma işlemi yapılmış bazalt lifleri kullanılmıştır. Çalışma sonuçlarına göre, 3 ve 7 günlük basınç dayanımlarında işlem görmemiş yalın bazalt lifleri harcın dayanımını artırırken, 28 günlük basınç dayanımları %0.10’un üzerinde yalın lif kullanımıyla azalmıştır. Harç karışımına TiO2 ilave edilmesiyle birlikte basınç dayanım değerleri kontrol harcına kıyasla iyileşmiştir. Bazalt lifinin doymuş Ca(OH)2 solüsyonlarında bekletilme süresi arttıkça, lifin bünyesine daha yüksek miktarda çözelti emilimi sağlanmaktadır. Bu işlemle lifin hem alkali dayanımı iyileştiği hem de çimento hidratasyonunda lifin bağ yeteneğinin artarak harcın dayanımının iyileştiği gözlemlenmiştir. Ayrıca, lif oranı arttıkça kuruma büzülmesinin azaldığı, Ca(OH)2 ile işlem görmüş liflerin kullanılmasıyla bu azalmada daha etkin sonuçlar alınabileceği tespit edilmiştir.

Kaynakça

  • Lee, J. J., Song, J., & Kim, H. (2014). Chemical Stability of Basalt Fiber in Alkaline Solution. Fibers and Polymers, 15(11), 2329-2334.
  • Ralegaonkar, R., Gavali, H., Aswath, P., & Abolmaali, S. (2018). Application of chopped basalt fibers in reinforced mortar: A review. Construction and Building Materials, 164, 589-602.
  • Gajanan, D. (2007). Basalt - The Technical Fibre. Man-madeTextiles in India, 50(7), 258-261.
  • Lipatov, Y.V., Gutnikov, S.I., Manylov, M.S., Zhukovskaya, E.S. & Lazoryak B.I. (2015). High alkali-resistant basalt fiber forrein forcing concrete. Materials and Design, 73, 60–66.
  • Pakharenko, V. V., Yanchar, I., Pakharenko, V.A. & Efanova, V. V. (2008). Polymer composite materials with fibrous and dis-perse basaltfillers. Fibre Chemistry, 40(3), 246-252.
  • Liu, Q., Shaw, M. T. & Parnas, R. S. (2006). Investigation of basalt fiber composite mechanical properties for applications in transportation. Polymer Composites, 27(1), 40-48
  • Jiang, H., Valdez, J. A., Zhu, Y. T., Beyerlein, I. J. & Lowe, T. C. (2000). Strength and Toughness of Bone-Shaped Steel Wire Reinforced Cement. Composite Science and Technology, 60, 1753.
  • Guo, Z., Wan, C., Xu, M. & Chen, J. (2018). Review of Basalt Fiber-Reinforced Concrete in China: Alkali Resistance of Fibers and Static Mechanical Properties of Composites. Advances in Materials Science and Engineering, 2018, 9198656.
  • Huang, K. J. & Deng, M. (2010). Stability of basalt fibers in alkaline solution and its effect on the mechanical property of concrete. Acta Materiae Compositae Sinica, 27(1), 150–154.
  • Wydra, M., Dolny, P., Sadowski, G. & Fangrat, J. (2021). Flexural Behaviour of Cementitious Mortars with the Addition of Basalt Fibres. Materials, 14(6), 1334.
  • Borhan T. M. & Bailey, C. G. (2014). Modelling basalt fibre reinforced glass concrete slabs at ambient and elevated temperatures. Materials and Structures, 47(6), 999–1009.
  • Wang, L., Chen, Y. & Li, Z. W. (2000). Properties of continuous basalt fiber and composites. Fiber Reinforced Plastics/Composites, 6(6), 22–24.
  • Li, R. Bi, Z., Wang, Y. & Liu, H. Y. (2008). Experimental study on mechanical properties of short basalt fiber self-compacting concrete. China Concrete and Cement Products, 2, 48–50.
  • Rybin, V. A., Utkin, А. V., & Baklanova, N. I. (2016). Corrosion of uncoated and oxide-coated basalt fibre in different alkaline media. Corrosion Science, 102, 503-509.
  • TS EN 1015-11, (2020), Kagirharcı - Deneymetotları - Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, TSE, Ankara, s15.
  • ASTM C596-09, Standard Test Method For Drying Shrinkage Of MortarContaining Hydraulic Cement, ASTM International
  • TS EN 1015-3 Kasım 2000 KagirHarcı- DeneyMetotları- Bölüm 3: Taze Harç Kıvamının Tayini (Yayılma Tablası İle) Ankara, TSE.
  • ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International
  • Guo, Y. & Yokota, H. (2018). Performance evaluation of basalt fiber reinforced mortar under freeze-thaw and chloride-rich environments. Journal of Asian Concrete Federation, 4(1), 29-34.
  • Jiang, C., Fan, K., Wu, F. & Chen, D. (2014). Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Materials & Design, 58, 187-193.
  • Jiang, C.H., McCarthy, T.J., Chen, D., & Dong, Q.Q. (2010). Influence of Basalt Fiber on Performance of Cement Mortar. Key Engineering Material, 426, 93-96.
  • Vyacheslav, S., Tamara, R., Aleksandr, G., & Rozalina, G. (2016). Effective light-weight masonry mortars with dispersed reinforcement. Procedia Engineering, 153, 630-637.
  • Lipatov, Y. V., Gutnikov, S. I., Manylov, M. S., & Lazoryak, B. I. (2012). Effect of ZrO2 on the alkali resistance and mechanical properties of basalt fibers. Inorganic materials, 48(7), 751-756.
  • GB/T 23265-2009, Chopped Basalt Fiber for Cement, Cement Mortar and Concrete, Standards Press of China, Beijing, China, 2009.
  • JCT 572-94, Alkali-Resistant Glass Fiber Twistless Roving, Standards Press of China, Beijing, China, 1978.
  • Jiang, C., Huang, S., Zhu, Y., Lin, Y., & Chen, D. (2016). Effect of polypropylene and basalt fiber on the behavior of mortars for repair applications. Advances in Materials Science and Engineering, 2016, 5927609.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Lütfullah Gündüz 0000-0003-2487-467X

Şevket Onur Kalkan 0000-0003-0250-8134

Yayımlanma Tarihi 31 Mayıs 2023
Gönderilme Tarihi 11 Nisan 2022
Kabul Tarihi 20 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gündüz, L., & Kalkan, Ş. O. (2023). Doymuş Ca(OH)2 ile Alkali Direnci Kuvvetlendirilmiş Bazalt Lifinin Çimento Harcı Performansına Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(1), 18-32. https://doi.org/10.35193/bseufbd.1101748