Araştırma Makalesi
BibTex RIS Kaynak Göster

Toz Metalürjisi Yöntemi ile Üretilen 316L Östenitik Paslanmaz Çeliğin Kaynaklanabilirliğinin İncelenmesi

Yıl 2022, , 947 - 952, 31.12.2022
https://doi.org/10.35193/bseufbd.1135867

Öz

Bu çalışmada 600 MPa ve 700 MPa presleme basınçlarında toz metalürjisi yöntemi ile 316L östenitik paslanmaz çelikler üretilmiştir. Bu çeliklerin nokta direnç kaynak yöntemi uygulanarak kaynaklanabilirliği incelenmiştir. Kaynaklı numunenin mikroyapısı optik mikroskopta detaylı olarak analiz edilmiştir. Ayrıca nokta direnç kaynak işlemi sonucunda oluşan esas metal, ısının tesiri altındaki bölge ve kaynak metali bölgelerinin sertlik değerleri ölçülmüştür. Sonuç olarak, esas metal mikroyapısının ağırlıklı olarak östenit fazından oluştuğu görülmüştür. Nokta direnç kaynak işleminde meydana gelen yüksek ısı sebebiyle kaynak metalinin ağırlıklı olarak östenit matris içerisinde delta ferrit fazından oluştuğu gözlenmiştir. Esas metalden kaynak metaline doğru sertlik değerleri artış göstermiştir. Ayrıca 700 MPa presleme basıncında elde edilen numunenin farklı kaynak bölgelerinde ölçülen sertlik değerleri 600 MPa presleme basıncında elde edilen numuneye göre daha yüksek bulunmuştur.

Teşekkür

Kaynak işleminin gerçekleştirilmesinde katkı sağlayan ALBAKSAN MAKİNE ve Ayhan YILMAZ’a teşekkürlerimizi sunarız.

Kaynakça

  • Neystani, R., Beidokhti, B., & Amelzadeh, M. (2019). Fabrication of Dissimilar Fe-Cu-C Powder Metallurgy Compact/Steel Joint Using the Optimized Resistance Spot Welding. Journal of Manufacturing Processes, 43, 200–206.
  • Ahssi, M.A.M., Erden, M.A., Acarer, M., & Çuğ, H. (2020). The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium–Vanadium Microalloyed Powder Metallurgy Steels. Materials, 13, 4021.
  • Erden, M.A., & Aydın, F. (2021). Wear and Mechanical Properties of Carburized AISI 8620 Steel Produced by Powder Metallurgy. International Journal of Minerals, Metallurgy and Materials, 28, 430–439.
  • Funatani, K. (2004). Heat Treatment of Automotive Components: Current Status and Future Trends. Trans Indian Inst Met, 57, 381–396.
  • Ramazan, E., & Esener, E. (2017). Gaz Altı Ark Kaynağı İşleminde Proses Parametrelerinin Etkisinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 4, 30–35.
  • Wang, T., Shukla, S., Frank, M., & Mishra, R.S. (2019). Evolution of Bond Formation and Fracture Process of Ultrasonic Spot Welded Dissimilar Materials. Science and Technology of Welding and Joining, 24, 171–177.
  • Haghshenas, M., & Gerlich, A.P. (2018). Joining of Automotive Sheet Materials by Friction-Based Welding Methods: A Review. Engineering Science and Technology, an International Journal, 21, 130–148.
  • Güney, B. (2022). Sürtünme Karıştırma Kaynak Tekniği. Güncel Multidisipliner Teknik Araştırmalar. SRA, Klaipeda, 1-20.
  • Yazdi, S.R., Beidokhti, B., & Haddad-Sabzevar, M. (2019). Pinless Tool For FSSW of AA 6061-T6 Aluminium Alloy. Journal of Materials Processing Technology, 267, 44–51.
  • Kundu, J., Ray, T., Kundu, A., & Shome, M. (2019). Effect of the Laser Power on the Mechanical Performance of the Laser Spot Welds in Dual Phase Steels. Journal of Materials Processing Technology 267, 114–123.
  • Li, T., Yuan, X., Hu, Z., Wu, K., Wang, H., & Zhang, B. (2018). Dissimilar Resistance Spot Welding of DP 600/A5052/DP 600 Triple Sheets. International Journal of Precision Engineering and Manufacturing, 19, 1673–1679.
  • Thakur, A.G., & Nandedkar, V.M. (2010). Application of Taguchi Method to Determine Resistance Spot Welding Conditions of Austenitic Stainless Steel AISI 304. Journal of Scientific and Industrial Research, 69, 680-683.
  • Jia, Q., Liu, L., Guo, W., Peng, Y., Zou, G., Tian, Z., & Zhou, Y. N. (2018). Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel. Metals, 8, 48.
  • Vignesh, K., Elaya Perumal, A., & Velmurugan, P. (2017). Optimization of Resistance Spot Welding Process Parameters and Microstructural Examination for Dissimilar Welding of AISI 316L Austenitic Stainless Steel and 2205 Duplex Stainless Steel. The International Journal of Advanced Manufacturing Technology, 93, 455–465.
  • Güney, B., & Öz, A. (2020). Kaynağın Katılaşma Mekanizması. Mühendislik ve Fen Bilimlerinde Yeni Gelişmeler.SRA, Klaipeda, 85-124.
  • Eşme, U. (2009). Application of Taguchi Method for the Optimization of Resistance Spot Welding Process. Arabian Journal for Science & Engineering, 34, 519-528.
  • Güney, B. (2021). Microstructure Analysis of Welding Fume of Low And Medium Carbon Steels. Revista de Metalurgia, 57, 187.
  • Güney, B., Dilay, Y., Solomon, M.M., Gerengi, H., Özkan, A., & Yıldız, M. (2022). Corrosion Characteristics of Plasma Spray, Arc Spray, High Velocity Oxygen Fuel, and Diamond Jet Coated 30MnB5 Boron Alloyed Steel in 3.5 Wt.% NaCl Solution. Corrosion Reviews, 40, 51–63.
  • Sabzi, M., & Dezfuli, S. M. (2018). Drastic Improvement in Mechanical Properties and Weldability of 316L Stainless Steel Weld Joints by Using Electromagnetic Vibration During GTAW Process. Journal of Manufacturing Processes, 33, 74–85.
  • Skowrońska, B., Chmielewski, T., Pachla, W., Kulczyk, M., Skiba, J., & Presz, W. (2019). Friction Weldability of UFG 316L Stainless Steel. Archives of Metallurgy and Materials, 64, 1051-1058.
  • Huysmans, S., Peeters, E., De Bruycker, E., & De Prins, K. (2021). Weldability Study of Additive Manufactured 316L Austenitic Stainless Steel Components—Welding of AM With Conventional 316L Components. Welding in the World, 65, 1415–1427.
  • Sampath, V.K., Silori, P., Paradkar, P., Niauzorau, S., Sharstniou, A., Hasib, A., Villalobos, S., & Azeredo, B. (2022). 3D Printing of Stainless Steel 316L and Its Weldability for Corrosive Environments. Materials Science and Engineering: A, 833, 142439.
  • Matilainen, V. P., Pekkarinen, J., & Salminen, A. (2016). Weldability of Additive Manufactured Stainless Steel. Physics Procedia, 83, 808–817.
  • Ventrella, V. A., Berretta, J. R., & De Rossi, W. (2010). Pulsed Nd: YAG Laser Seam Welding of AISI 316L Stainless Steel Thin Foils. Journal of Materials Processing Technology, 210, 1838–1843.
  • Dadfar, M., Fathi, M. H., Karimzadeh, F., Dadfar, M. R., & Saatchi, A. (2007). Effect of TIG Welding on Corrosion Behavior Of 316L Stainless Steel. Materials Letters, 61, 2343–2346.
  • Erden, M. A. (2017) Presleme Basıncının Toz Metalürjisi ile Üretilen Alaşımsız Çeliklerin Mikroyapı ve Mekanik Özelliklerine Etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6, 257–264.
  • Pal, T. K., & Bhowmick, K. (2012). Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior Of DP 780 Steel Sheet. Journal of Materials Engineering and Performance, 21, 280–285.
  • Ma, C., Chen, D. L., Bhole, S. D., Boudreau, G., Lee, A., & Biro, E. (2008). Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel. Materials Science and Engineering: A, 485, 334–346.
  • Khan, M. I., Kuntz, M. L., Biro, E., & Zhou, Y. (2008). Microstructure and Mechanical Properties of Resistance Spot Welded Advanced High Strength Steels. Materials Transactions,49, 1629-1637.
  • Holovenko, O., Ienco, M. G., Pastore, E., Pinasco, M. R., Matteis, P., Scavino, G., & Firrao, D. (2013). Microstructural and Mechanical Characterization of Welded Joints on Innovative High-Strength Steels. La Metallurgia Italiana, 3, 3-12.
  • Gould, J. E., Khurana, S. P., & Li, T. (2006). Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels. Welding Journal, 85, 111-116.
  • Kwok, C. T., Fong, S. L., Cheng, F. T., & Man, H. C. (2006). Pitting and Galvanic Corrosion Behavior of Laser-Welded Stainless Steels. Journal of materials processing technology, 176, 168–178.
  • Sathiya, P., & Jaleel, M. A. (2010). Measurement of the Bead Profile and Microstructural Characterization of a CO2 Laser Welded AISI 904 L Super Austenitic Stainless Steel. Optics & Laser Technology, 42, 960–968.

Investigation of Weldability of 316L Austenitic Stainless Steel Produced by Powder Metallurgy Method

Yıl 2022, , 947 - 952, 31.12.2022
https://doi.org/10.35193/bseufbd.1135867

Öz

316L austenitic stainless steels were produced by powder metallurgy method at 600 MPa and 700 MPa pressing pressures in this study. The weldability of these steels was investigated by applying the resistance spot welding method. The microstructure of the welded sample was analyzed in detail with optical microscope. In addition, the hardness values of the base metal, heat-affected zone and weld metal regions formed as a result of resistance spot welding process were measured. Consequently, it was observed that the base metal microstructure was mainly composed of austenite phase. Due to the high heat occurring in resistance spot welding process, weld metal mainly consisted of delta ferrite phase in the austenite matrix. Hardness values increased from base metal to weld metal. Also, the hardness values measured in different welding regions of the sample obtained at 700 MPa pressing pressure were found to be higher than the sample obtained at 600 MPa pressing pressure.

Kaynakça

  • Neystani, R., Beidokhti, B., & Amelzadeh, M. (2019). Fabrication of Dissimilar Fe-Cu-C Powder Metallurgy Compact/Steel Joint Using the Optimized Resistance Spot Welding. Journal of Manufacturing Processes, 43, 200–206.
  • Ahssi, M.A.M., Erden, M.A., Acarer, M., & Çuğ, H. (2020). The Effect of Nickel on the Microstructure, Mechanical Properties and Corrosion Properties of Niobium–Vanadium Microalloyed Powder Metallurgy Steels. Materials, 13, 4021.
  • Erden, M.A., & Aydın, F. (2021). Wear and Mechanical Properties of Carburized AISI 8620 Steel Produced by Powder Metallurgy. International Journal of Minerals, Metallurgy and Materials, 28, 430–439.
  • Funatani, K. (2004). Heat Treatment of Automotive Components: Current Status and Future Trends. Trans Indian Inst Met, 57, 381–396.
  • Ramazan, E., & Esener, E. (2017). Gaz Altı Ark Kaynağı İşleminde Proses Parametrelerinin Etkisinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 4, 30–35.
  • Wang, T., Shukla, S., Frank, M., & Mishra, R.S. (2019). Evolution of Bond Formation and Fracture Process of Ultrasonic Spot Welded Dissimilar Materials. Science and Technology of Welding and Joining, 24, 171–177.
  • Haghshenas, M., & Gerlich, A.P. (2018). Joining of Automotive Sheet Materials by Friction-Based Welding Methods: A Review. Engineering Science and Technology, an International Journal, 21, 130–148.
  • Güney, B. (2022). Sürtünme Karıştırma Kaynak Tekniği. Güncel Multidisipliner Teknik Araştırmalar. SRA, Klaipeda, 1-20.
  • Yazdi, S.R., Beidokhti, B., & Haddad-Sabzevar, M. (2019). Pinless Tool For FSSW of AA 6061-T6 Aluminium Alloy. Journal of Materials Processing Technology, 267, 44–51.
  • Kundu, J., Ray, T., Kundu, A., & Shome, M. (2019). Effect of the Laser Power on the Mechanical Performance of the Laser Spot Welds in Dual Phase Steels. Journal of Materials Processing Technology 267, 114–123.
  • Li, T., Yuan, X., Hu, Z., Wu, K., Wang, H., & Zhang, B. (2018). Dissimilar Resistance Spot Welding of DP 600/A5052/DP 600 Triple Sheets. International Journal of Precision Engineering and Manufacturing, 19, 1673–1679.
  • Thakur, A.G., & Nandedkar, V.M. (2010). Application of Taguchi Method to Determine Resistance Spot Welding Conditions of Austenitic Stainless Steel AISI 304. Journal of Scientific and Industrial Research, 69, 680-683.
  • Jia, Q., Liu, L., Guo, W., Peng, Y., Zou, G., Tian, Z., & Zhou, Y. N. (2018). Microstructure and Tensile-Shear Properties of Resistance Spot-Welded Medium Mn Steel. Metals, 8, 48.
  • Vignesh, K., Elaya Perumal, A., & Velmurugan, P. (2017). Optimization of Resistance Spot Welding Process Parameters and Microstructural Examination for Dissimilar Welding of AISI 316L Austenitic Stainless Steel and 2205 Duplex Stainless Steel. The International Journal of Advanced Manufacturing Technology, 93, 455–465.
  • Güney, B., & Öz, A. (2020). Kaynağın Katılaşma Mekanizması. Mühendislik ve Fen Bilimlerinde Yeni Gelişmeler.SRA, Klaipeda, 85-124.
  • Eşme, U. (2009). Application of Taguchi Method for the Optimization of Resistance Spot Welding Process. Arabian Journal for Science & Engineering, 34, 519-528.
  • Güney, B. (2021). Microstructure Analysis of Welding Fume of Low And Medium Carbon Steels. Revista de Metalurgia, 57, 187.
  • Güney, B., Dilay, Y., Solomon, M.M., Gerengi, H., Özkan, A., & Yıldız, M. (2022). Corrosion Characteristics of Plasma Spray, Arc Spray, High Velocity Oxygen Fuel, and Diamond Jet Coated 30MnB5 Boron Alloyed Steel in 3.5 Wt.% NaCl Solution. Corrosion Reviews, 40, 51–63.
  • Sabzi, M., & Dezfuli, S. M. (2018). Drastic Improvement in Mechanical Properties and Weldability of 316L Stainless Steel Weld Joints by Using Electromagnetic Vibration During GTAW Process. Journal of Manufacturing Processes, 33, 74–85.
  • Skowrońska, B., Chmielewski, T., Pachla, W., Kulczyk, M., Skiba, J., & Presz, W. (2019). Friction Weldability of UFG 316L Stainless Steel. Archives of Metallurgy and Materials, 64, 1051-1058.
  • Huysmans, S., Peeters, E., De Bruycker, E., & De Prins, K. (2021). Weldability Study of Additive Manufactured 316L Austenitic Stainless Steel Components—Welding of AM With Conventional 316L Components. Welding in the World, 65, 1415–1427.
  • Sampath, V.K., Silori, P., Paradkar, P., Niauzorau, S., Sharstniou, A., Hasib, A., Villalobos, S., & Azeredo, B. (2022). 3D Printing of Stainless Steel 316L and Its Weldability for Corrosive Environments. Materials Science and Engineering: A, 833, 142439.
  • Matilainen, V. P., Pekkarinen, J., & Salminen, A. (2016). Weldability of Additive Manufactured Stainless Steel. Physics Procedia, 83, 808–817.
  • Ventrella, V. A., Berretta, J. R., & De Rossi, W. (2010). Pulsed Nd: YAG Laser Seam Welding of AISI 316L Stainless Steel Thin Foils. Journal of Materials Processing Technology, 210, 1838–1843.
  • Dadfar, M., Fathi, M. H., Karimzadeh, F., Dadfar, M. R., & Saatchi, A. (2007). Effect of TIG Welding on Corrosion Behavior Of 316L Stainless Steel. Materials Letters, 61, 2343–2346.
  • Erden, M. A. (2017) Presleme Basıncının Toz Metalürjisi ile Üretilen Alaşımsız Çeliklerin Mikroyapı ve Mekanik Özelliklerine Etkisi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 6, 257–264.
  • Pal, T. K., & Bhowmick, K. (2012). Resistance Spot Welding Characteristics and High Cycle Fatigue Behavior Of DP 780 Steel Sheet. Journal of Materials Engineering and Performance, 21, 280–285.
  • Ma, C., Chen, D. L., Bhole, S. D., Boudreau, G., Lee, A., & Biro, E. (2008). Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel. Materials Science and Engineering: A, 485, 334–346.
  • Khan, M. I., Kuntz, M. L., Biro, E., & Zhou, Y. (2008). Microstructure and Mechanical Properties of Resistance Spot Welded Advanced High Strength Steels. Materials Transactions,49, 1629-1637.
  • Holovenko, O., Ienco, M. G., Pastore, E., Pinasco, M. R., Matteis, P., Scavino, G., & Firrao, D. (2013). Microstructural and Mechanical Characterization of Welded Joints on Innovative High-Strength Steels. La Metallurgia Italiana, 3, 3-12.
  • Gould, J. E., Khurana, S. P., & Li, T. (2006). Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels. Welding Journal, 85, 111-116.
  • Kwok, C. T., Fong, S. L., Cheng, F. T., & Man, H. C. (2006). Pitting and Galvanic Corrosion Behavior of Laser-Welded Stainless Steels. Journal of materials processing technology, 176, 168–178.
  • Sathiya, P., & Jaleel, M. A. (2010). Measurement of the Bead Profile and Microstructural Characterization of a CO2 Laser Welded AISI 904 L Super Austenitic Stainless Steel. Optics & Laser Technology, 42, 960–968.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Muhammed Elitaş 0000-0001-5358-1783

Mehmet Akif Erden 0000-0003-1081-4713

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 25 Haziran 2022
Kabul Tarihi 8 Eylül 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Elitaş, M., & Erden, M. A. (2022). Toz Metalürjisi Yöntemi ile Üretilen 316L Östenitik Paslanmaz Çeliğin Kaynaklanabilirliğinin İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 947-952. https://doi.org/10.35193/bseufbd.1135867