The Sn-8.8 wt. % Zn eutectic alloy was produced by using casting furnace and vacuum melting furnace. Then cast alloys were directionally solidified upwards with a constant temperature gradient (G=4.16 K/mm) at different solidification rates (V=8.3-166.0 m/s) in a Bridgman type controlled directional solidification furnace. The undercooling (T) values are calculated with the Jackson-Hunt model by using the solidification rate, eutectic spacing (and system parameters (K1 and K2). At a constant temperature gradient (G=4.16 K/mm) with the increasing of solidification rate from 8.3 m/s to 166.0 m/s, undercooling increased from 0.87 K to 3.89 K. At minimum undercooling of 0.87 K, the rod eutectic spacing is obtained 3.22 m while the eutectic spacing is obtained 0.72 m at the 3.89 K. The results were compared with the literature.
Gündüz, M., & Çadırlı, E. (2002). Directional solidification of aluminium-copper alloys. Materials Science and Engineering A, 327, 167-185.
Allegretti, F., Borgia, B., Riva, R., Notaristefani, F. D., & Pizzini, S. (1989). Growth of BGO single crystals using a directional solidification technique. Journal of Crystal Growth, 94, 373-380.
Martorano, M. A., Neto, J. B. F., Oliveira T. S., & Tsubaki, T. O. (2011). Refining of metallurgical silicon by directional solidification. Materials Science and Engineering B, 176, 217-226.
Su, C. H. (2015). A method of promoting single crystal yield during melt growth of semiconductors by directional solidification. Journal of Crystal Growth, 410, 35-38.
Wang, D., Wang, W., Huang, Y., & Wang, X. (2022). An investigation on microstructures and mechanical properties of twinning-Induced plasticity steels prepared by directional solidification. Journal of Materials Engineering and Performance, 31, 3326-3340.
Orera, V. M., & Merino, R. I. (2015). Ceramics with photonic and optical applications. Cerámica y Vidrio, 54, 1-10.
Peng, Peng. (2020). Analysis on the growth and growth-dependent microhardness of Ni3Sn4 intermetallic compound phase in directionally solidified Sn-Ni alloy. Journal of Alloys and Compounds, 821, 1-7.
Şahin, M., & Karakurt, F. (2018). The effect of the solidification rate on the physical properties of the Sn-Zn eutectic alloy. PhysicaB: Condensed Matter, 545, 48-54.
Bayram, Ü., & Maraşlı, N. (2020). Effects of growth rate on eutectic spacing, microhardness, and ultimate tensile strength in the Al-Cu-Ti eutectic alloy. Physics of Metals and Metallography, 121, 382-390.
Santos, W. L. R., Cruz, C.B., Spinelli, J. E., Cheung, N., & Garcia, A. (2018). Tailoring microstructure, tensile properties and fracture process via transient directional solidification of Zn-Sn alloys. Materials Science and Engineering A, 712, 127-132.
Spinelli, J. E., Silva, B. L., Cheung, N., & Garcia, A. (2014). The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloy. Materials Characterization, 96, 115-125.
Kaygısız, Y. (2018). Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy. China Foundry, 15, 390-396.
Cui, C., Wang, Y., Zhang, K., Wu, C., Liu, W., Deng, L., Wang, C., & Su, H. (2021). Mechanical properties of Fe-Al-Ta eutectic composites at higher solidification rates. Materials Science and Engineering A, 824, 1-11.
Kakitani, R., Konno, C., Garcia, A., & Cheung, N. (2022). The effects of solidification cooling and growth rates on microstructure and hardness of supersaturated Al-7%Si-x%Zn alloys. Journal of Materials Engineering and Performance, 31, 1956-1970.
Chunjuan, C., Li, D., Wei, L., Yan, W., Yue, L., Yuanyuan, L., Haijun, S., & Yingying, L. (2022). High temperature tensile property and fracture behavior of directionally solidified Fe-Al-Ta eutectic composites. Journal of Wuhan University of Technology-Material Science Edition, 37, 110-116.
Wang, J., Zheng, L., Kang, J., & Hu, Y. (2020). Study on the directional solidification process of an aluminum alloy bar in multishell mold being gradually immersed in water. Materials, 13, 1-8.
Wang, L., Yao, C., Shen, J., Zhang, Y., Wang, T., Ge, Y., Gao, L., & Zhang, G. (2020). Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. Intermetallics, 118, 1-10.
Cruz, C., Lima, T., Kakitani, R., Barros, A., Garcia, A., & Cheung, N. (2020). Plate-like growth in a eutectic Bi–Ni alloy: effects of morphological microstructure evolution and Bi3Ni intermetallic phase on tensile properties. Journal of Materials Research Technology, 9, 4940-4950.
Gandolfi, M., Xavier, M. G. C., Gomes, L. F., Reyes, R. A. V., Garcia, A., & Spinelli, J. E. (2021). Relationship between Microstructure Evolution and Tensile Properties of AlSi10Mg Alloys with Varying Mg Content and Solidification Cooling Rates. Metals, 11, 1-14.
Massalski, T. B. 1990. Binary alloy phase diagrams. ASM International, Materials Park. Ohıo.
Garcia, L. R., Osorio, W. R., Peixoto L. C., & Garcia, A. (2010). Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Materials Characterization, 61, 212-220.
Cui, C., Lai, Y., Liu, W., Wang, P., Liu, Y., Wang, C., & Su, H. (2019). Tensile and fatigue properties of the Bridgman directionally solidified Fe-Al-Ta eutectic. Materials Science and Engineering A, 765, 1-10.
Hu, L., Hu, W., Gottstein, G, Bogner, S., Hollad, S., & Polaczek, A. B. (2012). Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification. Materials Science and Engineering A, 539, 211-222.
Kakitani, R., Gouvei, G. L., Garcia, A., Cheung, N., & Spinelli, J. E., Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. (2019). Journal of Thermal Analysis and Calorimetry, 137, 983-996.
Gancarz, T., Fima, P., & Pstrus, J. (2014). Thermal Expansion, Electrical Resistivity, and Spreading Area of Sn-Zn-In Alloys. Journal of Materials Engineering and Performance, 23, 1524-1529.
Islam, R. A., Chan, Y. C., Jillek, W., & Islam, S. (2006). Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders. Microelectronics Journal, 37, 705-713.
Jackson, K. A., & Hunt, J. D. (1966). Lamellar and eutectic growth. Transactions of the Metallurgical Socıety of AIME, 236, 1129-1142.
Stefanescu, D. M., Abbaschian, G. J., & Bayuzick, R. J. (1988). Solidification processing of eutectic alloys. The Metallurgical Society, Inc., Ohio.
Şahin, M. (2012). İkili ve üçlü metalik alaşımların doğrusal katılaştırılması ve fiziksel özelliklerinin incelenmesi. Doktora Tezi Niğde Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde.
Crocker, M. N., Baragar, D., & Smith, R.W. (1975). Anamolous eutectic growth. Journal of Crystal Growth, 30, 198- 212.
Saatçi, B. (2000). İkili metalik alaşımların katı-sıvı arayüzey enerjilerinin ölçümü. Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.
Bouchhard D., & Kirkaldy J. S. (1997). Prediction of dendrite arm spacings in unsteady and steady-state heat flow of undirectionally solidified binary alloys. Metallurgical and Materials Transactions B, 28, 651-663.
Böyük, U., Engin, S., Kaya, H., & Maraşlı, N. (2010). Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder. Materials Characterization, 61, 1260-1267.
Koçak, Y., Engin, S., Böyük, U., & Maraşlı, N. (2013). The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of directional solidified bismuth-lead eutectic alloy. Current Applied Physics, 13, 587-593.
Ma, D., Jie, W.Q., Xu, W., Li, Y., & Liu, S. (1998). Unidirectional solidification of Al-Cu eutectic with the accelerated crucible rotation technique, Journal of Crystal Growth, 194, 398-405.
Şahin, M., & Çadırlı, E. (2012). The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder. Journal of Materials Science: Materials in Electronics, 23, 484-492.
Sn-8.8Zn (kütlece %) ötektik alaşımı döküm fırını ve vakumlu eritme fırını kullanılarak üretildi. Daha sonra döküm alaşımları sabit sıcaklık gradyentinde (G=4.16 K/mm), farklı katılaştırma hızlarında (V=8.3-166.0 m/s) Bridgman tipi kontrollü doğrusal katılaştırma fırınında yukarı yönlü doğrusal katılaştırıldı. Altsoğuma (T) değerleri; katılaştırma hızı, ötektik mesafe () ve sistem parametreleri (K1 ve K2) kullanılarak Jackson-Hunt modeli ile hesaplandı. Sabit bir sıcaklık gradyentinde (G=4.16 K/mm) katılaştırma hızının 8.3 m/s’den 166.0 m/s’ye artmasıyla, altsoğuma 0.87 K’den 3.89 K değerine arttı. 0.87 K değerindeki minimum altsoğumada çubuksal ötektik mesafe 3.22 m, 3.89 K’de ise ötektik mesafe 0.72 m değerlerinde elde edildi. Sonuçlar literatür ile karşılaştırıldı.
Gündüz, M., & Çadırlı, E. (2002). Directional solidification of aluminium-copper alloys. Materials Science and Engineering A, 327, 167-185.
Allegretti, F., Borgia, B., Riva, R., Notaristefani, F. D., & Pizzini, S. (1989). Growth of BGO single crystals using a directional solidification technique. Journal of Crystal Growth, 94, 373-380.
Martorano, M. A., Neto, J. B. F., Oliveira T. S., & Tsubaki, T. O. (2011). Refining of metallurgical silicon by directional solidification. Materials Science and Engineering B, 176, 217-226.
Su, C. H. (2015). A method of promoting single crystal yield during melt growth of semiconductors by directional solidification. Journal of Crystal Growth, 410, 35-38.
Wang, D., Wang, W., Huang, Y., & Wang, X. (2022). An investigation on microstructures and mechanical properties of twinning-Induced plasticity steels prepared by directional solidification. Journal of Materials Engineering and Performance, 31, 3326-3340.
Orera, V. M., & Merino, R. I. (2015). Ceramics with photonic and optical applications. Cerámica y Vidrio, 54, 1-10.
Peng, Peng. (2020). Analysis on the growth and growth-dependent microhardness of Ni3Sn4 intermetallic compound phase in directionally solidified Sn-Ni alloy. Journal of Alloys and Compounds, 821, 1-7.
Şahin, M., & Karakurt, F. (2018). The effect of the solidification rate on the physical properties of the Sn-Zn eutectic alloy. PhysicaB: Condensed Matter, 545, 48-54.
Bayram, Ü., & Maraşlı, N. (2020). Effects of growth rate on eutectic spacing, microhardness, and ultimate tensile strength in the Al-Cu-Ti eutectic alloy. Physics of Metals and Metallography, 121, 382-390.
Santos, W. L. R., Cruz, C.B., Spinelli, J. E., Cheung, N., & Garcia, A. (2018). Tailoring microstructure, tensile properties and fracture process via transient directional solidification of Zn-Sn alloys. Materials Science and Engineering A, 712, 127-132.
Spinelli, J. E., Silva, B. L., Cheung, N., & Garcia, A. (2014). The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloy. Materials Characterization, 96, 115-125.
Kaygısız, Y. (2018). Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy. China Foundry, 15, 390-396.
Cui, C., Wang, Y., Zhang, K., Wu, C., Liu, W., Deng, L., Wang, C., & Su, H. (2021). Mechanical properties of Fe-Al-Ta eutectic composites at higher solidification rates. Materials Science and Engineering A, 824, 1-11.
Kakitani, R., Konno, C., Garcia, A., & Cheung, N. (2022). The effects of solidification cooling and growth rates on microstructure and hardness of supersaturated Al-7%Si-x%Zn alloys. Journal of Materials Engineering and Performance, 31, 1956-1970.
Chunjuan, C., Li, D., Wei, L., Yan, W., Yue, L., Yuanyuan, L., Haijun, S., & Yingying, L. (2022). High temperature tensile property and fracture behavior of directionally solidified Fe-Al-Ta eutectic composites. Journal of Wuhan University of Technology-Material Science Edition, 37, 110-116.
Wang, J., Zheng, L., Kang, J., & Hu, Y. (2020). Study on the directional solidification process of an aluminum alloy bar in multishell mold being gradually immersed in water. Materials, 13, 1-8.
Wang, L., Yao, C., Shen, J., Zhang, Y., Wang, T., Ge, Y., Gao, L., & Zhang, G. (2020). Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. Intermetallics, 118, 1-10.
Cruz, C., Lima, T., Kakitani, R., Barros, A., Garcia, A., & Cheung, N. (2020). Plate-like growth in a eutectic Bi–Ni alloy: effects of morphological microstructure evolution and Bi3Ni intermetallic phase on tensile properties. Journal of Materials Research Technology, 9, 4940-4950.
Gandolfi, M., Xavier, M. G. C., Gomes, L. F., Reyes, R. A. V., Garcia, A., & Spinelli, J. E. (2021). Relationship between Microstructure Evolution and Tensile Properties of AlSi10Mg Alloys with Varying Mg Content and Solidification Cooling Rates. Metals, 11, 1-14.
Massalski, T. B. 1990. Binary alloy phase diagrams. ASM International, Materials Park. Ohıo.
Garcia, L. R., Osorio, W. R., Peixoto L. C., & Garcia, A. (2010). Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Materials Characterization, 61, 212-220.
Cui, C., Lai, Y., Liu, W., Wang, P., Liu, Y., Wang, C., & Su, H. (2019). Tensile and fatigue properties of the Bridgman directionally solidified Fe-Al-Ta eutectic. Materials Science and Engineering A, 765, 1-10.
Hu, L., Hu, W., Gottstein, G, Bogner, S., Hollad, S., & Polaczek, A. B. (2012). Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification. Materials Science and Engineering A, 539, 211-222.
Kakitani, R., Gouvei, G. L., Garcia, A., Cheung, N., & Spinelli, J. E., Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. (2019). Journal of Thermal Analysis and Calorimetry, 137, 983-996.
Gancarz, T., Fima, P., & Pstrus, J. (2014). Thermal Expansion, Electrical Resistivity, and Spreading Area of Sn-Zn-In Alloys. Journal of Materials Engineering and Performance, 23, 1524-1529.
Islam, R. A., Chan, Y. C., Jillek, W., & Islam, S. (2006). Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders. Microelectronics Journal, 37, 705-713.
Jackson, K. A., & Hunt, J. D. (1966). Lamellar and eutectic growth. Transactions of the Metallurgical Socıety of AIME, 236, 1129-1142.
Stefanescu, D. M., Abbaschian, G. J., & Bayuzick, R. J. (1988). Solidification processing of eutectic alloys. The Metallurgical Society, Inc., Ohio.
Şahin, M. (2012). İkili ve üçlü metalik alaşımların doğrusal katılaştırılması ve fiziksel özelliklerinin incelenmesi. Doktora Tezi Niğde Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde.
Crocker, M. N., Baragar, D., & Smith, R.W. (1975). Anamolous eutectic growth. Journal of Crystal Growth, 30, 198- 212.
Saatçi, B. (2000). İkili metalik alaşımların katı-sıvı arayüzey enerjilerinin ölçümü. Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.
Bouchhard D., & Kirkaldy J. S. (1997). Prediction of dendrite arm spacings in unsteady and steady-state heat flow of undirectionally solidified binary alloys. Metallurgical and Materials Transactions B, 28, 651-663.
Böyük, U., Engin, S., Kaya, H., & Maraşlı, N. (2010). Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder. Materials Characterization, 61, 1260-1267.
Koçak, Y., Engin, S., Böyük, U., & Maraşlı, N. (2013). The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of directional solidified bismuth-lead eutectic alloy. Current Applied Physics, 13, 587-593.
Ma, D., Jie, W.Q., Xu, W., Li, Y., & Liu, S. (1998). Unidirectional solidification of Al-Cu eutectic with the accelerated crucible rotation technique, Journal of Crystal Growth, 194, 398-405.
Şahin, M., & Çadırlı, E. (2012). The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder. Journal of Materials Science: Materials in Electronics, 23, 484-492.