Araştırma Makalesi
BibTex RIS Kaynak Göster

Calculation the Undercooling of the Directionally Solidified Sn-Zn Eutectic Alloy

Yıl 2023, , 162 - 172, 31.05.2023
https://doi.org/10.35193/bseufbd.1202126

Öz

The Sn-8.8 wt. % Zn eutectic alloy was produced by using casting furnace and vacuum melting furnace. Then cast alloys were directionally solidified upwards with a constant temperature gradient (G=4.16 K/mm) at different solidification rates (V=8.3-166.0 m/s) in a Bridgman type controlled directional solidification furnace. The undercooling (T) values are calculated with the Jackson-Hunt model by using the solidification rate, eutectic spacing (and system parameters (K1 and K2). At a constant temperature gradient (G=4.16 K/mm) with the increasing of solidification rate from 8.3 m/s to 166.0 m/s, undercooling increased from 0.87 K to 3.89 K. At minimum undercooling of 0.87 K, the rod eutectic spacing is obtained 3.22 m while the eutectic spacing is obtained 0.72 m at the 3.89 K. The results were compared with the literature.

Kaynakça

  • Gündüz, M., & Çadırlı, E. (2002). Directional solidification of aluminium-copper alloys. Materials Science and Engineering A, 327, 167-185.
  • Allegretti, F., Borgia, B., Riva, R., Notaristefani, F. D., & Pizzini, S. (1989). Growth of BGO single crystals using a directional solidification technique. Journal of Crystal Growth, 94, 373-380.
  • Martorano, M. A., Neto, J. B. F., Oliveira T. S., & Tsubaki, T. O. (2011). Refining of metallurgical silicon by directional solidification. Materials Science and Engineering B, 176, 217-226.
  • Su, C. H. (2015). A method of promoting single crystal yield during melt growth of semiconductors by directional solidification. Journal of Crystal Growth, 410, 35-38.
  • Wang, D., Wang, W., Huang, Y., & Wang, X. (2022). An investigation on microstructures and mechanical properties of twinning-Induced plasticity steels prepared by directional solidification. Journal of Materials Engineering and Performance, 31, 3326-3340.
  • Orera, V. M., & Merino, R. I. (2015). Ceramics with photonic and optical applications. Cerámica y Vidrio, 54, 1-10.
  • Peng, Peng. (2020). Analysis on the growth and growth-dependent microhardness of Ni3Sn4 intermetallic compound phase in directionally solidified Sn-Ni alloy. Journal of Alloys and Compounds, 821, 1-7.
  • Şahin, M., & Karakurt, F. (2018). The effect of the solidification rate on the physical properties of the Sn-Zn eutectic alloy. PhysicaB: Condensed Matter, 545, 48-54.
  • Bayram, Ü., & Maraşlı, N. (2020). Effects of growth rate on eutectic spacing, microhardness, and ultimate tensile strength in the Al-Cu-Ti eutectic alloy. Physics of Metals and Metallography, 121, 382-390.
  • Santos, W. L. R., Cruz, C.B., Spinelli, J. E., Cheung, N., & Garcia, A. (2018). Tailoring microstructure, tensile properties and fracture process via transient directional solidification of Zn-Sn alloys. Materials Science and Engineering A, 712, 127-132.
  • Spinelli, J. E., Silva, B. L., Cheung, N., & Garcia, A. (2014). The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloy. Materials Characterization, 96, 115-125.
  • Kaygısız, Y. (2018). Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy. China Foundry, 15, 390-396.
  • Cui, C., Wang, Y., Zhang, K., Wu, C., Liu, W., Deng, L., Wang, C., & Su, H. (2021). Mechanical properties of Fe-Al-Ta eutectic composites at higher solidification rates. Materials Science and Engineering A, 824, 1-11.
  • Kakitani, R., Konno, C., Garcia, A., & Cheung, N. (2022). The effects of solidification cooling and growth rates on microstructure and hardness of supersaturated Al-7%Si-x%Zn alloys. Journal of Materials Engineering and Performance, 31, 1956-1970.
  • Chunjuan, C., Li, D., Wei, L., Yan, W., Yue, L., Yuanyuan, L., Haijun, S., & Yingying, L. (2022). High temperature tensile property and fracture behavior of directionally solidified Fe-Al-Ta eutectic composites. Journal of Wuhan University of Technology-Material Science Edition, 37, 110-116.
  • Wang, J., Zheng, L., Kang, J., & Hu, Y. (2020). Study on the directional solidification process of an aluminum alloy bar in multishell mold being gradually immersed in water. Materials, 13, 1-8.
  • Wang, L., Yao, C., Shen, J., Zhang, Y., Wang, T., Ge, Y., Gao, L., & Zhang, G. (2020). Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. Intermetallics, 118, 1-10.
  • Cruz, C., Lima, T., Kakitani, R., Barros, A., Garcia, A., & Cheung, N. (2020). Plate-like growth in a eutectic Bi–Ni alloy: effects of morphological microstructure evolution and Bi3Ni intermetallic phase on tensile properties. Journal of Materials Research Technology, 9, 4940-4950.
  • Gandolfi, M., Xavier, M. G. C., Gomes, L. F., Reyes, R. A. V., Garcia, A., & Spinelli, J. E. (2021). Relationship between Microstructure Evolution and Tensile Properties of AlSi10Mg Alloys with Varying Mg Content and Solidification Cooling Rates. Metals, 11, 1-14.
  • Massalski, T. B. 1990. Binary alloy phase diagrams. ASM International, Materials Park. Ohıo.
  • Garcia, L. R., Osorio, W. R., Peixoto L. C., & Garcia, A. (2010). Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Materials Characterization, 61, 212-220.
  • Cui, C., Lai, Y., Liu, W., Wang, P., Liu, Y., Wang, C., & Su, H. (2019). Tensile and fatigue properties of the Bridgman directionally solidified Fe-Al-Ta eutectic. Materials Science and Engineering A, 765, 1-10.
  • Hu, L., Hu, W., Gottstein, G, Bogner, S., Hollad, S., & Polaczek, A. B. (2012). Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification. Materials Science and Engineering A, 539, 211-222.
  • Kakitani, R., Gouvei, G. L., Garcia, A., Cheung, N., & Spinelli, J. E., Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. (2019). Journal of Thermal Analysis and Calorimetry, 137, 983-996.
  • Gancarz, T., Fima, P., & Pstrus, J. (2014). Thermal Expansion, Electrical Resistivity, and Spreading Area of Sn-Zn-In Alloys. Journal of Materials Engineering and Performance, 23, 1524-1529.
  • Islam, R. A., Chan, Y. C., Jillek, W., & Islam, S. (2006). Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders. Microelectronics Journal, 37, 705-713.
  • Jackson, K. A., & Hunt, J. D. (1966). Lamellar and eutectic growth. Transactions of the Metallurgical Socıety of AIME, 236, 1129-1142.
  • Stefanescu, D. M., Abbaschian, G. J., & Bayuzick, R. J. (1988). Solidification processing of eutectic alloys. The Metallurgical Society, Inc., Ohio.
  • Şahin, M. (2012). İkili ve üçlü metalik alaşımların doğrusal katılaştırılması ve fiziksel özelliklerinin incelenmesi. Doktora Tezi Niğde Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde.
  • Crocker, M. N., Baragar, D., & Smith, R.W. (1975). Anamolous eutectic growth. Journal of Crystal Growth, 30, 198- 212.
  • Saatçi, B. (2000). İkili metalik alaşımların katı-sıvı arayüzey enerjilerinin ölçümü. Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.
  • Bouchhard D., & Kirkaldy J. S. (1997). Prediction of dendrite arm spacings in unsteady and steady-state heat flow of undirectionally solidified binary alloys. Metallurgical and Materials Transactions B, 28, 651-663.
  • Böyük, U., Engin, S., Kaya, H., & Maraşlı, N. (2010). Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder. Materials Characterization, 61, 1260-1267.
  • Koçak, Y., Engin, S., Böyük, U., & Maraşlı, N. (2013). The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of directional solidified bismuth-lead eutectic alloy. Current Applied Physics, 13, 587-593.
  • Ma, D., Jie, W.Q., Xu, W., Li, Y., & Liu, S. (1998). Unidirectional solidification of Al-Cu eutectic with the accelerated crucible rotation technique, Journal of Crystal Growth, 194, 398-405.
  • Şahin, M., & Çadırlı, E. (2012). The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder. Journal of Materials Science: Materials in Electronics, 23, 484-492.

Doğrusal Katılaştırılmış Sn-Zn Ötektik Alaşımında Altsoğumanın Hesaplanması

Yıl 2023, , 162 - 172, 31.05.2023
https://doi.org/10.35193/bseufbd.1202126

Öz

Sn-8.8Zn (kütlece %) ötektik alaşımı döküm fırını ve vakumlu eritme fırını kullanılarak üretildi. Daha sonra döküm alaşımları sabit sıcaklık gradyentinde (G=4.16 K/mm), farklı katılaştırma hızlarında (V=8.3-166.0 m/s) Bridgman tipi kontrollü doğrusal katılaştırma fırınında yukarı yönlü doğrusal katılaştırıldı. Altsoğuma (T) değerleri; katılaştırma hızı, ötektik mesafe () ve sistem parametreleri (K1 ve K2) kullanılarak Jackson-Hunt modeli ile hesaplandı. Sabit bir sıcaklık gradyentinde (G=4.16 K/mm) katılaştırma hızının 8.3 m/s’den 166.0 m/s’ye artmasıyla, altsoğuma 0.87 K’den 3.89 K değerine arttı. 0.87 K değerindeki minimum altsoğumada çubuksal ötektik mesafe 3.22 m, 3.89 K’de ise ötektik mesafe 0.72 m değerlerinde elde edildi. Sonuçlar literatür ile karşılaştırıldı.

Kaynakça

  • Gündüz, M., & Çadırlı, E. (2002). Directional solidification of aluminium-copper alloys. Materials Science and Engineering A, 327, 167-185.
  • Allegretti, F., Borgia, B., Riva, R., Notaristefani, F. D., & Pizzini, S. (1989). Growth of BGO single crystals using a directional solidification technique. Journal of Crystal Growth, 94, 373-380.
  • Martorano, M. A., Neto, J. B. F., Oliveira T. S., & Tsubaki, T. O. (2011). Refining of metallurgical silicon by directional solidification. Materials Science and Engineering B, 176, 217-226.
  • Su, C. H. (2015). A method of promoting single crystal yield during melt growth of semiconductors by directional solidification. Journal of Crystal Growth, 410, 35-38.
  • Wang, D., Wang, W., Huang, Y., & Wang, X. (2022). An investigation on microstructures and mechanical properties of twinning-Induced plasticity steels prepared by directional solidification. Journal of Materials Engineering and Performance, 31, 3326-3340.
  • Orera, V. M., & Merino, R. I. (2015). Ceramics with photonic and optical applications. Cerámica y Vidrio, 54, 1-10.
  • Peng, Peng. (2020). Analysis on the growth and growth-dependent microhardness of Ni3Sn4 intermetallic compound phase in directionally solidified Sn-Ni alloy. Journal of Alloys and Compounds, 821, 1-7.
  • Şahin, M., & Karakurt, F. (2018). The effect of the solidification rate on the physical properties of the Sn-Zn eutectic alloy. PhysicaB: Condensed Matter, 545, 48-54.
  • Bayram, Ü., & Maraşlı, N. (2020). Effects of growth rate on eutectic spacing, microhardness, and ultimate tensile strength in the Al-Cu-Ti eutectic alloy. Physics of Metals and Metallography, 121, 382-390.
  • Santos, W. L. R., Cruz, C.B., Spinelli, J. E., Cheung, N., & Garcia, A. (2018). Tailoring microstructure, tensile properties and fracture process via transient directional solidification of Zn-Sn alloys. Materials Science and Engineering A, 712, 127-132.
  • Spinelli, J. E., Silva, B. L., Cheung, N., & Garcia, A. (2014). The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloy. Materials Characterization, 96, 115-125.
  • Kaygısız, Y. (2018). Microstructure characterization and hardness of Al-Cu-Mn eutectic alloy. China Foundry, 15, 390-396.
  • Cui, C., Wang, Y., Zhang, K., Wu, C., Liu, W., Deng, L., Wang, C., & Su, H. (2021). Mechanical properties of Fe-Al-Ta eutectic composites at higher solidification rates. Materials Science and Engineering A, 824, 1-11.
  • Kakitani, R., Konno, C., Garcia, A., & Cheung, N. (2022). The effects of solidification cooling and growth rates on microstructure and hardness of supersaturated Al-7%Si-x%Zn alloys. Journal of Materials Engineering and Performance, 31, 1956-1970.
  • Chunjuan, C., Li, D., Wei, L., Yan, W., Yue, L., Yuanyuan, L., Haijun, S., & Yingying, L. (2022). High temperature tensile property and fracture behavior of directionally solidified Fe-Al-Ta eutectic composites. Journal of Wuhan University of Technology-Material Science Edition, 37, 110-116.
  • Wang, J., Zheng, L., Kang, J., & Hu, Y. (2020). Study on the directional solidification process of an aluminum alloy bar in multishell mold being gradually immersed in water. Materials, 13, 1-8.
  • Wang, L., Yao, C., Shen, J., Zhang, Y., Wang, T., Ge, Y., Gao, L., & Zhang, G. (2020). Microstructures and room temperature tensile properties of as-cast and directionally solidified AlCoCrFeNi2.1 eutectic high-entropy alloy. Intermetallics, 118, 1-10.
  • Cruz, C., Lima, T., Kakitani, R., Barros, A., Garcia, A., & Cheung, N. (2020). Plate-like growth in a eutectic Bi–Ni alloy: effects of morphological microstructure evolution and Bi3Ni intermetallic phase on tensile properties. Journal of Materials Research Technology, 9, 4940-4950.
  • Gandolfi, M., Xavier, M. G. C., Gomes, L. F., Reyes, R. A. V., Garcia, A., & Spinelli, J. E. (2021). Relationship between Microstructure Evolution and Tensile Properties of AlSi10Mg Alloys with Varying Mg Content and Solidification Cooling Rates. Metals, 11, 1-14.
  • Massalski, T. B. 1990. Binary alloy phase diagrams. ASM International, Materials Park. Ohıo.
  • Garcia, L. R., Osorio, W. R., Peixoto L. C., & Garcia, A. (2010). Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Materials Characterization, 61, 212-220.
  • Cui, C., Lai, Y., Liu, W., Wang, P., Liu, Y., Wang, C., & Su, H. (2019). Tensile and fatigue properties of the Bridgman directionally solidified Fe-Al-Ta eutectic. Materials Science and Engineering A, 765, 1-10.
  • Hu, L., Hu, W., Gottstein, G, Bogner, S., Hollad, S., & Polaczek, A. B. (2012). Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification. Materials Science and Engineering A, 539, 211-222.
  • Kakitani, R., Gouvei, G. L., Garcia, A., Cheung, N., & Spinelli, J. E., Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness. (2019). Journal of Thermal Analysis and Calorimetry, 137, 983-996.
  • Gancarz, T., Fima, P., & Pstrus, J. (2014). Thermal Expansion, Electrical Resistivity, and Spreading Area of Sn-Zn-In Alloys. Journal of Materials Engineering and Performance, 23, 1524-1529.
  • Islam, R. A., Chan, Y. C., Jillek, W., & Islam, S. (2006). Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders. Microelectronics Journal, 37, 705-713.
  • Jackson, K. A., & Hunt, J. D. (1966). Lamellar and eutectic growth. Transactions of the Metallurgical Socıety of AIME, 236, 1129-1142.
  • Stefanescu, D. M., Abbaschian, G. J., & Bayuzick, R. J. (1988). Solidification processing of eutectic alloys. The Metallurgical Society, Inc., Ohio.
  • Şahin, M. (2012). İkili ve üçlü metalik alaşımların doğrusal katılaştırılması ve fiziksel özelliklerinin incelenmesi. Doktora Tezi Niğde Ömer Halisdemir Üniversitesi, Fen Bilimleri Enstitüsü, Niğde.
  • Crocker, M. N., Baragar, D., & Smith, R.W. (1975). Anamolous eutectic growth. Journal of Crystal Growth, 30, 198- 212.
  • Saatçi, B. (2000). İkili metalik alaşımların katı-sıvı arayüzey enerjilerinin ölçümü. Doktora Tezi, Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Kayseri.
  • Bouchhard D., & Kirkaldy J. S. (1997). Prediction of dendrite arm spacings in unsteady and steady-state heat flow of undirectionally solidified binary alloys. Metallurgical and Materials Transactions B, 28, 651-663.
  • Böyük, U., Engin, S., Kaya, H., & Maraşlı, N. (2010). Effect of solidification parameters on the microstructure of Sn-3.7Ag-0.9Zn solder. Materials Characterization, 61, 1260-1267.
  • Koçak, Y., Engin, S., Böyük, U., & Maraşlı, N. (2013). The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of directional solidified bismuth-lead eutectic alloy. Current Applied Physics, 13, 587-593.
  • Ma, D., Jie, W.Q., Xu, W., Li, Y., & Liu, S. (1998). Unidirectional solidification of Al-Cu eutectic with the accelerated crucible rotation technique, Journal of Crystal Growth, 194, 398-405.
  • Şahin, M., & Çadırlı, E. (2012). The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder. Journal of Materials Science: Materials in Electronics, 23, 484-492.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mevlüt Şahin 0000-0002-6659-3756

Yayımlanma Tarihi 31 Mayıs 2023
Gönderilme Tarihi 10 Kasım 2022
Kabul Tarihi 3 Şubat 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Şahin, M. (2023). Doğrusal Katılaştırılmış Sn-Zn Ötektik Alaşımında Altsoğumanın Hesaplanması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(1), 162-172. https://doi.org/10.35193/bseufbd.1202126