Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparing MARS, RVM, and ANN-based modeling approaches with existing computation approaches for estimating the ultimate capacity of concrete-filled steel tube composite columns

Yıl 2024, , 64 - 85, 31.05.2024
https://doi.org/10.35193/bseufbd.1247732

Öz

The ductility and energy absorption characteristics of concrete-filled steel tube columns (CFSTCCs) make these columns a good choice. In this paper, the three-dimensional (3D) nonlinear finite element method (FEM) (3D-FEM) modeling, and simplified numerical modeling results, are compared to those of the computation methods presented in previous studies on estimating the ultimate load capacity of circular stub concrete-filled steel tube composite columns (CFSTCCs). Another comparison between practical design methodology approaches based on advanced analyses, namely, multivariate adaptive regression splines (MARS), relevance vector machine (RVM), and artificial neural network (ANN)-based models were also presented by Avci-Karatas. In order to improve the accuracy of the modeling process and achieve more precise predictions, a thorough set of experimental data was collected. This data encompassed the geometrical and mechanical properties of circular CFSTCC, including parameters such as height, diameter, thickness, steel yield stress, unconfined concrete strength, and Young's modulus for steel. In the present study, it is found that the predicted ultimate axial compression load capacity of circular stub CFSTCCs based on 3D-FEM, numerical modeling, and MARS, RVM, and ANN-based modeling is comparable with the experimentally measured values. In the MARS-based model, the minimum and maximum values of the predicted-to-experimental ultimate axial load ratios ((P_u^MARS)⁄(P_u^E )) were found to range from 0.87 to 1.10. For the RVM-based model, the ratios (P_u^RVM/P_u^E) varied between 0.90 and 1.06. Similarly, in the ANN-based model, the ratios ((P_u^ANN)⁄(P_u^E )) ranged from 0.92 to 1.04. As powerful statistical modeling tools as MARS- and RVM-based models are, ANN-based models, achieve high computational efficiency in terms of accuracy in the context of this paper.

Kaynakça

  • Avcı, Ç. (2001). Çok katlı bir yapının çelik ve kompozit çözümünün karşılaştırılması. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yapı Mühendisliği ABD, İstanbul.
  • Sakino, K., Nakahara, H., Morino, S., Nishiyama, I. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering (ASCE), 130(2), 180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  • Schneider, S. P. (1998). Axially loaded concrete-filled steel tubes. Journal of Structural Engineering (ASCE), 124(10), 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  • Giakoumelis, G., Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  • Zeghiche, J., Chaoui, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61(1), 53–66. https://doi.org/10.1016/j.jcsr.2004.06.006.
  • de Oliveira, W. L. A., de Nardin, S., de Cresce El Debs, A. L. H., El Debs, M. K. (2009). Influence of concrete strength and length/diameter on the axial capacity of CFT columns. Journal of Constructional Steel Research, 65(12), 2103–2110. https://doi.org/10.1016/j.jcsr.2009.07.004.
  • Faxing, D., Lei, F., Zhiwu, Y., Gang, L. (2015). Mechanical performances of concrete-filled steel tubular stub columns with round ends under axial loading. Thin-Walled Structures, 97, 22–34. https://doi.org/10.1016/j.tws.2015.07.021.
  • Wang, F. C., Han, L. H. (2018). Analytical behavior of special-shaped CFST stub columns under axial compression. Thin-Walled Structures, 129, 404–417. https://doi.org/10.1016/j.tws.2018.04.013.
  • Ren, Q. X., Han, L. H., Lam, D., Hou, C. (2014). Experiments on special-shaped CFST stub columns under axial compression. Journal of Constructional Steel Research, 98, 123–133. https://doi.org/10.1016/j.jcsr.2014.03.002.
  • Tao, Z., Han, L. H., Wang, D. Y. (2007). Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Structures, 45(5), 517–527. https://doi.org/10.1016/j.tws.2007.04.003.
  • Yamamoto, T., Kawaguchi, J., Morino, S. (2000). Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns. Proceedings of the United Engineering Foundation Conference on Composite Construction in Steel and Concrete IV (AICE), June 2000, Banff, Canada, 879-891.
  • Yu, Q., Tao, Z., Wu, Y. X. (2008). Experimental behaviour of high performance concrete filled steel tubular columns. Thin-Walled Structures, 46(4), 362–370. https://doi.org/10.1016/j.tws.2007.10.001.
  • Liu, B., Zhang, L., Feng, M., Sun, H., Chai, Y. (2022). Experimental study of rubber-concrete-filled CST composite column under axial compression. International Journal of Steel Structures, 23, 247–262. https://doi.org/10.1007/s13296-022-00692-1.
  • Liu, J., Gao, P., Lin, X., Wang, X., Zhou, X., Chen, Y. F. (2023). Experimental assessment on the size effects of circular concrete-filled steel tubular columns under axial compression. Engineering Structures, 275(A), 115247. https://doi.org/10.1016/j.engstruct.2022.115247.
  • Furlong, R. W. (1967). Strength of steel-encased concrete beam columns. Journal of the Structural Division (ASCE), 93(5), 113–124. https://doi.org/10.1061/JSDEAG.0001761.
  • Al-Khaleef, A. M., Terro, M. J., Alex, A. P., Wang, Y. (2002). Prediction of fire resistance of concrete filled tubular steel columns using neural networks. Fire Safety Journal, 37(4), 339– 352. https://doi.org/10.1016/S0379-7112(01)00065-0. Lyu, X., Xu, Y., Xu, Q., Yu, Y. (2019). Axial compression performance of square thin walled concrete-filled steel tube stub columns with reinforcement stiffener under constant high-temperature. Materials, 12(7), Article 7. https://doi.org/10.3390/ma12071098.
  • Pour, A. K., Shirkhani, A., Hamzehkolaei, N. S., Zhuge, Y., Farsangi, E.N. (2023). Performance evaluation of composite concrete-filled steel tube columns by steel fibers and different cross-section shapes: Experimental and numerical investigations. Journal of Constructional Steel Research, 200, 107656. https://doi.org/10.1016/j.jcsr.2022.107656.
  • Dundu, M. (2012). Compressive strength of circular concrete filled steel tube columns. Thin-Walled Structures, 56, 62–70. https://doi.org/10.1016/j.tws.2012.03.008.
  • Ghannam, S., Jawad, Y. A., Hunaiti, Y. (2004). Failure of lightweight aggregate concrete-filled steel tubular columns. Steel and Composite Structures, 4(1), 1–8. https://doi.org/10.12989/scs.2004.4.
  • Sakino, K., Hayashi, H. (1991). Behavior of concrete filled steel tubular stub columns under concentric loading. Proceedings of the 3rd International Conference on Steel Concrete Composite Structures, September 1991, Fukuoka, Japan, 25–30.
  • Minghong, L., Mengtao, X., Zhouhong, Z., Gang, W., Xihong, Z. (2023). Residual axial capacity of concrete-filled double-skin steel tube columns under close-in blast loading. Journal of Constructional Steel Research, 201, 107697. https://doi.org/10.1016/j.jcsr.2022.107697.
  • Tomii, M., Yoshimura, K., Morishita, Y. (1977). Experimental studies on concrete filled steel tubular stub columns under concentric loading. Proceedings of the International Colloquium on Stability of Structures Under Static and Dynamic Loads, May 1977, Washington DC, USA, 718–741.
  • Xiong, M. X., Xiong, D. X., Liew, J. Y. R. (2017). Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Engineering Structures, 136, 494–510. https://doi.org/10.1016/j.engstruct.2017.01.037.
  • Lam, D., Gardner, L. (2008). Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research, 64(11), 1275–1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
  • [26] Chan, T. M., Huai, Y. M., Wang, W. (2015). Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns. Journal of Constructional Steel Research, 115, 434–444. https://doi.org/10.1016/j.jcsr.2015.08.029.
  • Zhao, X. L., Packer, J. A. (2009). Tests and design of concrete-filled elliptical hollow section stub columns. Thin-Walled Structures, 47(6), 617–628. https://doi.org/10.1016/j.tws.2008.11.004.
  • Han, L. H., Hou, C., Wang, Q. L. (2012). Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: Experiments. Journal of Constructional Steel Research, 71, 11–25. https://doi.org/10.1016/j.jcsr.2011.11.012.
  • Yan, J. B., Dong, X., Wang, T. (2020). Axial compressive behaviours of square CFST stub columns at low temperatures. Journal of Constructional Steel Research, 164, 105812. https://doi.org/10.1016/j.jcsr.2019.105812.
  • Du, Y., Chen, Z., Xiong, M. X. (2016). Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel. Construction and Building Materials, 125, 856–872. https://doi.org/10.1016/j.conbuildmat.2016.08.057.
  • Han, L. H., Zhao, X. L., Tao, Z. (2001). Tests and mechanics model for concrete-filled SHS stub columns, columns and beam–columns. Steel and Composite Structures, 1(1), 51–74. https://doi.org/10.12989/scs.2001.1.1.051.
  • Tao, Z., Wang, Z. B., Yu, Q. (2013b.) Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89(10), 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  • Dai, X. H., Lam, D., Jamaluddin, N., Ye, J. (2014). Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Structures, 77, 26–35. https://doi.org/10.1016/j.tws.2013.11.015.
  • Yang, H., Liu, F., Chan, T., Wang, W. (2017). Behaviours of concrete-filled cold-formed elliptical hollow section beam-columns with varying aspect ratios. Thin-Walled Structures, 120, 9–28. https://doi.org/10.1016/j.tws.2017.08.018.
  • Lai, Z., Jiang, H., Cai, Y. (2022). A new design equation to estimate the axial compressive strength of circular concrete-filled steel tubular stub columns. Structures, 46, 1043–1054. https://doi.org/10.1016/j.istruc.2022.10.101.
  • Han, L. H., Yao, G. H., Tao, Z. (2007) Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
  • Ahmed, M., Gohari, S., Sennah, K., Chen, W., Liang, Q. Q. (2023). Computational simulation of nonlinear inelastic behavior of circular concrete-filled stainless-steel tubular short columns incorporating confinement effects. Engineering Structures, 274, 115183. https://doi.org/10.1016/j.engstruct.2022.115183.
  • O’Shea, M. D., Bridge, R. Q. (2000). Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering (ASCE). 126(11), 1295–1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
  • Johansson, M., Gylltoft, K. (2002). Mechanical behavior of circular steel–concrete composite stub columns. Journal of Structural Engineering (ASCE), 128(8), 1073–1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073).
  • Han, L. H., Yao, G. H. (2004). Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, 42(9), 1357–1377. https://doi.org/10.1016/j.tws.2004.03.016.
  • Han, L. H., Yao, G. H., Zhao, X. L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61(9), 1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
  • Uy, B. (2001). Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research, 57(2):113–134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  • Liu, D. L., Gho, W. M. (2005). Axial load behaviour of high-strength rectangular concrete filled steel tubular stub columns. Thin-Walled Structures, 43(8), 1131–1142. https://doi.org/10.1016/j.tws.2005.03.007.
  • Aslani F, Uy B, Tao Z, Mashiri F (2015) Behaviour and design composite columns incorporating compact high-strength steel plates. Journal of Constructional Steel Research, 107:94–110. https://doi.org/10.1016/j.jcsr.2015.01.005.
  • AISC 360‒16. (2016). ANSI/AISC 360‒16 Specification for Structural Steel Buildings (pp. 676). Chicago, Illinois, USA. https://www.aisc.org/Specification-for-Structural-Steel-Buildings-ANSIAISC-360-16-1.
  • ACI (American Concrete Institute). (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. Farmington Hills, MI, USA.
  • Eurocode 4. (EC4): EN 1994-1-1. (2004). Design of composite steel and concrete structure –Part 1-1: General rules and rules for buildings (pp. 117). CEN, Brussels: European Committee for Standardization. [Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. https://eurocodes.jrc.ec.europa.eu/showpage.php?id=134.
  • AS 4100. (2020). Australian standard AS 4100-Steel structures, Sydney, New South Wales (NSW) 2001, Sydney, Australia.
  • Alatshan, F., Osman, S. A., Altlomate, A., Alkair, M., Hamid, R., Mashiri, F. (2023). Design model of rectangular concrete-filled steel tubular stub columns under axial compression. Buildings, 13(1), 128. https://doi.org/10.3390/buildings13010128.
  • Ellobody, E., Young, B., Lam, D. (2006). Behavior of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62(7), 706–715. https://doi.org/10.1016/j.jcsr.2005.11.002.
  • Duong, T. H., Le, T. T., Le, M. V. (2023). Practical machine learning application for predicting axial capacity of composite concrete-filled steel tube columns considering effect of cross-sectional shapes. International Journal of Steel Structures, 23, 263–278. https://doi.org/10.1007/s13296-022-00693-0.
  • Avci-Karatas, C. (2019). Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS). Steel and Composite Structures, 33(4), 583–594. https://doi.org/10.12989/scs.2019.33.4.583.
  • Gholampour, A., Mansouri, I., Kisi, O., Ozbakkaloglu, T. (2020). Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Computing and Applications, 32, 295–308. https://doi.org/10.1007/s00521-018-3630-y.
  • Avci-Karatas, C. (2021). Modeling approach for estimation of ultimate load capacity of concrete-filled steel tube composite stub columns based on relevance vector machine. Nigde Omer Halisdemir University Journal of Engineering Sciences, 10(2), 615–626. https://doi.org/10.28948/ngumuh.759297.
  • Avci-Karatas, C. (2022a). Artificial neural network (ANN) based prediction of ultimate axial load capacity of concrete-filled steel tube columns (CFSTCs). International Journal of Steel Structures, 22(5):1341–1358 (2022). https://doi.org/10.1007/s13296-022-00645-8.
  • Avci-Karatas, C. (2022b). Application of machine learning in prediction of shear capacity of headed studs in steel-concrete composite structures. International Journal of Steel Structures, 22(2), 539–556. https://doi.org/10.1007/s13296-022-00589-z.
  • Le, T. T. (2020). Practical machine learning-based prediction model for axial capacity of square CFST columns. Mechanics of Advanced Materials and Structures, Taylor&Francis, https://doi.org/10.1080/15376494.2020.1839608.
  • Ngo, N. T., Le, H. A. Pham, T. P. T. (2021). Integration of support vector regression and grey wolf optimization for estimating the ultimate bearing capacity in concrete-filled steel tube columns. Neural Computing and Applications, 33, 8525–8542. https://doi.org/10.1007/s00521-020-05605-z.
  • Katwal, U., Tao, Z., Hassan, M. K., Wang, W. D. (2017). Simplified numerical modelling of axially loaded circular concrete-filled steel stub columns. Journal of Structural Engineering (ASCE), 143(12), 04017169 (1-12), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001897.
  • Al-eliwi, B., Ekmekyapar, T., A.m.s. Al-juboori, H. (2017). Comparison of AISC 360–16 and EC4 for the prediction of composite column capacity. The International Journal of Energy and Engineering Sciences (IJEES), 2(2), 3–22. https://dergipark.org.tr/tr/pub/ijees/issue/48359/612280.
  • Ekmekyapar, T., Al-Eliwi, B. J. M. (2016). Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Structures, 105, 220–230. https://doi.org/10.1016/j.tws.2016.04.004.
  • Gardener, N. J., Jacobson, R. (1967). Structural behavior of concrete filled steel tubes. Journal of American Concrete Institute (ACI), 64(7), 404–413.
  • Gardener, N. J. (1968). Use of spiral welded steel tubes in pipe columns. Journal of American Concrete Institute (ACI), 65(11), 937–942.
  • O'Shea, M. D., Bridge, R. Q. (1994). Tests on thin-walled concrete-filled steel tubes. Proceedings of the 12th International Specialty Conference on Cold-Formed Steel Structures, October 1994, St. Louis, Missouri, USA, 399–419.
  • O'Shea, M. D., Bridge, R. Q. (1998). Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Australian Civil Engineering Transaction, 40:15–27. Availability: https://search.informit.com.au/documentSummary;dn=207937680264543;res=IELENG.
  • Tan, K. F., Pu, X. C., Cai, S. H. (1999). Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes. Journal of Building Structures, P. R. China (in Chinese), 20(1), 10–15.
  • Huang, C. S., Yeh, Y. K., Liu, G. Y., Hu, H. T., Tsai, K. C., Weng, Y. T., Wang, S. H., Wu, M. H. (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering (ASCE), 128(9), 1222–1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
  • Gupta, P. K., Sarda, S. M., Kumar, M. S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193. https://doi.org/10.1016/j.jcsr.2006.04.004.
  • Yu, Z. W., Ding, F. X., Cai, C. S. (2007). Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 63, 165–174. https://doi.org/10.1016/j.jcsr.2006.03.009.
  • Lee, S. H., Uy, B., Kim, S. H., Choi, Y. H., Choi, S. M. (2011). Behavior of highstrength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, 67, 1–13. https://doi.org/10.1016/j.jcsr.2010.07.003.
  • Guler, S., Copur, A., Aydogan, M. (2013). Axial capacity and ductility of circular UHPC-filled steel tube columns. Magazine of Concrete Research, 65(15), 898–905. https://doi.org/10.1680/macr.12.00211.
  • Guler, S., Copur, A., Aydogan, M. (2014). A comparative study on square and circular high strength concrete-filled steel tube columns. Advanced Steel Construction, 10(2), 234–247. https://doi.org/10.18057/IJASC.2014.10.2.7.
  • Han, L. H., Hou, C. C., Wang, Q. L. (2014). Behavior of circular CFST stub columns under sustained load and chloride corrosion. Journal of Constructional Steel Research, 103, 23–36. https://doi.org/10.1016/j.jcsr.2014.07.021.
  • Shams, M., Saadeghvaziri, M. A. (1999). Nonlinear response of concrete-filled steel tubular columns under axial loading. ACI Structural Journal, 96(6), 1009–1019. https://doi.org/10.14359/777.
  • Varma, A. H., Sause, R., Ricles, J. M., Li, Q. (2005). Development and validation of fiber model for high-strength square concrete-filled steel tube beam-columns. ACI Structural Journal, 102(1), 73–84. http://www.concrete.org/PUBS/JOURNALS/SJHOME.ASP.
  • Tao, Z., Wang, X. Q., Uy, B. (2013a). Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 25(9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676.
  • Susantha, K. A. S., Ge, H., Usami, T. (2001). Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes. Engineering Structures, 23(10), 1331–1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
  • Denavit, M. D., Hajjar, J. F. (2012). Nonlinear seismic analysis of circular concrete-filled steel tube members and frames. Journal of Structural Engineering, 138(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000544.
  • Lai, Z., Varma, A. H. (2016). Effective stress-strain relationships for analysis of noncompact and slender filled composite (CFT) members. Engineering Structures, 124(10), 457–472. https://doi.org/10.1016/j.engstruct.2016.06.028.
  • MATLAB. and Statistics Toolbox R2016a. (2016). Natick. The MathWorks Inc, Massachusetts, United States.

Beton-Dolgulu Çelik Tüplü Kompozit Kolonların Nihai Eksenel Yük Taşıma Kapasitesi Tahmininde MARS, RVM ve ANN-Tabanlı Modellenmesinin Karşılaştırılması

Yıl 2024, , 64 - 85, 31.05.2024
https://doi.org/10.35193/bseufbd.1247732

Öz

Beton-dolgulu çelik tüplü kompozit kolonlar (BDÇTKK), özellikle büyük eğilme rijitlikleri, süneklik ve enerji sönümleme kapasitesi bakımından yapı davranışını iyileştirici/geliştirici bir tercih haline gelmiştir. Çok değişkenli adaptif regresyon eğrileri (MARS), ilgililik vektör makinesi (RVM), ve yapay sinir ağları (ANN)-tabanlı modellere dayalı pratik tasarım metodolojisi yaklaşımları arasındaki karşılaştırmalar Avcı Karataş tarafından önceki çalışmalarında sunulmuştur. Bu araştırma makalesinde, literatürde geliştirilmiş üç boyutlu (3D) doğrusal olmayan sonlu elemanlar yöntemi (FEM) (3D-FEM) ve basitleştirilmiş sayısal/numerik modelleme (NM) sonuçları, dairesel ve kısa/stub BDÇTKK’ın nihai yük taşıma kapasitesinin tahmin edilmesine yönelik yazarın söz konusu bu çalışmalarında sunulan hesaplama yöntemleriyle karşılaştırılmıştır. Modellemede daha doğru bir tahmin sağlamak için dairesel BDÇTKK'ın geometrik ve mekanik özelliklerinden kapsamlı bir deneysel veri seti/kümesi sunulmuştur. Kompozit kolon yükseklik, kesit çapı, çelik tüp et kalınlığı, çelik akma ve kuşatılmamış beton basınç dayanımları, çelik ve beton elastisite modülü parametreleri, deneysel veri setinin geometrik ve malzeme karakteristikleridir. Dairesel kısa BDÇTKK’ın, 3D-FEM, NM ile MARS, RVM ve ANN-tabanlı modellemeye dayalı tahmin edilen nihai eksenel basınç yükü kapasitesinin, deneysel olarak ölçülen değerlerle karşılaştırılabilir olduğu, bu özgün çalışma kapsamında detaylı olarak incelenmiştir. Tahmin edilen ile deneysel nihai eksenel yük oranlarının minimum ve maksimum değerleri, MARS-tabanlı modelde, ((P_u^MARS)⁄(P_u^E )), 0.87 ile 1.10 aralığında, RVM-tabanlı modelde, (P_u^RVM/P_u^E), 0.90 ile 1.06 arasında, ANN-tabanlı modelde, ((P_u^ANN)⁄(P_u^E )), 0.92 ile 1.04 arasında değiştiği bulunmuştur. MARS ve RVM-tabanlı modeller kadar güçlü istatistiksel modelleme araçlarından biri olan ANN-tabanlı modellemeden, bu makale kapsamında incelenen deneysel veri sonuçlarıyla en uyumlu ve yakın performans sonuçları elde edilmiştir.

Kaynakça

  • Avcı, Ç. (2001). Çok katlı bir yapının çelik ve kompozit çözümünün karşılaştırılması. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yapı Mühendisliği ABD, İstanbul.
  • Sakino, K., Nakahara, H., Morino, S., Nishiyama, I. (2004). Behavior of centrally loaded concrete-filled steel-tube short columns. Journal of Structural Engineering (ASCE), 130(2), 180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180).
  • Schneider, S. P. (1998). Axially loaded concrete-filled steel tubes. Journal of Structural Engineering (ASCE), 124(10), 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  • Giakoumelis, G., Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60(7), 1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  • Zeghiche, J., Chaoui, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61(1), 53–66. https://doi.org/10.1016/j.jcsr.2004.06.006.
  • de Oliveira, W. L. A., de Nardin, S., de Cresce El Debs, A. L. H., El Debs, M. K. (2009). Influence of concrete strength and length/diameter on the axial capacity of CFT columns. Journal of Constructional Steel Research, 65(12), 2103–2110. https://doi.org/10.1016/j.jcsr.2009.07.004.
  • Faxing, D., Lei, F., Zhiwu, Y., Gang, L. (2015). Mechanical performances of concrete-filled steel tubular stub columns with round ends under axial loading. Thin-Walled Structures, 97, 22–34. https://doi.org/10.1016/j.tws.2015.07.021.
  • Wang, F. C., Han, L. H. (2018). Analytical behavior of special-shaped CFST stub columns under axial compression. Thin-Walled Structures, 129, 404–417. https://doi.org/10.1016/j.tws.2018.04.013.
  • Ren, Q. X., Han, L. H., Lam, D., Hou, C. (2014). Experiments on special-shaped CFST stub columns under axial compression. Journal of Constructional Steel Research, 98, 123–133. https://doi.org/10.1016/j.jcsr.2014.03.002.
  • Tao, Z., Han, L. H., Wang, D. Y. (2007). Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Structures, 45(5), 517–527. https://doi.org/10.1016/j.tws.2007.04.003.
  • Yamamoto, T., Kawaguchi, J., Morino, S. (2000). Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns. Proceedings of the United Engineering Foundation Conference on Composite Construction in Steel and Concrete IV (AICE), June 2000, Banff, Canada, 879-891.
  • Yu, Q., Tao, Z., Wu, Y. X. (2008). Experimental behaviour of high performance concrete filled steel tubular columns. Thin-Walled Structures, 46(4), 362–370. https://doi.org/10.1016/j.tws.2007.10.001.
  • Liu, B., Zhang, L., Feng, M., Sun, H., Chai, Y. (2022). Experimental study of rubber-concrete-filled CST composite column under axial compression. International Journal of Steel Structures, 23, 247–262. https://doi.org/10.1007/s13296-022-00692-1.
  • Liu, J., Gao, P., Lin, X., Wang, X., Zhou, X., Chen, Y. F. (2023). Experimental assessment on the size effects of circular concrete-filled steel tubular columns under axial compression. Engineering Structures, 275(A), 115247. https://doi.org/10.1016/j.engstruct.2022.115247.
  • Furlong, R. W. (1967). Strength of steel-encased concrete beam columns. Journal of the Structural Division (ASCE), 93(5), 113–124. https://doi.org/10.1061/JSDEAG.0001761.
  • Al-Khaleef, A. M., Terro, M. J., Alex, A. P., Wang, Y. (2002). Prediction of fire resistance of concrete filled tubular steel columns using neural networks. Fire Safety Journal, 37(4), 339– 352. https://doi.org/10.1016/S0379-7112(01)00065-0. Lyu, X., Xu, Y., Xu, Q., Yu, Y. (2019). Axial compression performance of square thin walled concrete-filled steel tube stub columns with reinforcement stiffener under constant high-temperature. Materials, 12(7), Article 7. https://doi.org/10.3390/ma12071098.
  • Pour, A. K., Shirkhani, A., Hamzehkolaei, N. S., Zhuge, Y., Farsangi, E.N. (2023). Performance evaluation of composite concrete-filled steel tube columns by steel fibers and different cross-section shapes: Experimental and numerical investigations. Journal of Constructional Steel Research, 200, 107656. https://doi.org/10.1016/j.jcsr.2022.107656.
  • Dundu, M. (2012). Compressive strength of circular concrete filled steel tube columns. Thin-Walled Structures, 56, 62–70. https://doi.org/10.1016/j.tws.2012.03.008.
  • Ghannam, S., Jawad, Y. A., Hunaiti, Y. (2004). Failure of lightweight aggregate concrete-filled steel tubular columns. Steel and Composite Structures, 4(1), 1–8. https://doi.org/10.12989/scs.2004.4.
  • Sakino, K., Hayashi, H. (1991). Behavior of concrete filled steel tubular stub columns under concentric loading. Proceedings of the 3rd International Conference on Steel Concrete Composite Structures, September 1991, Fukuoka, Japan, 25–30.
  • Minghong, L., Mengtao, X., Zhouhong, Z., Gang, W., Xihong, Z. (2023). Residual axial capacity of concrete-filled double-skin steel tube columns under close-in blast loading. Journal of Constructional Steel Research, 201, 107697. https://doi.org/10.1016/j.jcsr.2022.107697.
  • Tomii, M., Yoshimura, K., Morishita, Y. (1977). Experimental studies on concrete filled steel tubular stub columns under concentric loading. Proceedings of the International Colloquium on Stability of Structures Under Static and Dynamic Loads, May 1977, Washington DC, USA, 718–741.
  • Xiong, M. X., Xiong, D. X., Liew, J. Y. R. (2017). Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Engineering Structures, 136, 494–510. https://doi.org/10.1016/j.engstruct.2017.01.037.
  • Lam, D., Gardner, L. (2008). Structural design of stainless steel concrete filled columns. Journal of Constructional Steel Research, 64(11), 1275–1282. https://doi.org/10.1016/j.jcsr.2008.04.012.
  • [26] Chan, T. M., Huai, Y. M., Wang, W. (2015). Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns. Journal of Constructional Steel Research, 115, 434–444. https://doi.org/10.1016/j.jcsr.2015.08.029.
  • Zhao, X. L., Packer, J. A. (2009). Tests and design of concrete-filled elliptical hollow section stub columns. Thin-Walled Structures, 47(6), 617–628. https://doi.org/10.1016/j.tws.2008.11.004.
  • Han, L. H., Hou, C., Wang, Q. L. (2012). Square concrete filled steel tubular (CFST) members under loading and chloride corrosion: Experiments. Journal of Constructional Steel Research, 71, 11–25. https://doi.org/10.1016/j.jcsr.2011.11.012.
  • Yan, J. B., Dong, X., Wang, T. (2020). Axial compressive behaviours of square CFST stub columns at low temperatures. Journal of Constructional Steel Research, 164, 105812. https://doi.org/10.1016/j.jcsr.2019.105812.
  • Du, Y., Chen, Z., Xiong, M. X. (2016). Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel. Construction and Building Materials, 125, 856–872. https://doi.org/10.1016/j.conbuildmat.2016.08.057.
  • Han, L. H., Zhao, X. L., Tao, Z. (2001). Tests and mechanics model for concrete-filled SHS stub columns, columns and beam–columns. Steel and Composite Structures, 1(1), 51–74. https://doi.org/10.12989/scs.2001.1.1.051.
  • Tao, Z., Wang, Z. B., Yu, Q. (2013b.) Finite element modelling of concrete-filled steel stub columns under axial compression. Journal of Constructional Steel Research, 89(10), 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001.
  • Dai, X. H., Lam, D., Jamaluddin, N., Ye, J. (2014). Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Structures, 77, 26–35. https://doi.org/10.1016/j.tws.2013.11.015.
  • Yang, H., Liu, F., Chan, T., Wang, W. (2017). Behaviours of concrete-filled cold-formed elliptical hollow section beam-columns with varying aspect ratios. Thin-Walled Structures, 120, 9–28. https://doi.org/10.1016/j.tws.2017.08.018.
  • Lai, Z., Jiang, H., Cai, Y. (2022). A new design equation to estimate the axial compressive strength of circular concrete-filled steel tubular stub columns. Structures, 46, 1043–1054. https://doi.org/10.1016/j.istruc.2022.10.101.
  • Han, L. H., Yao, G. H., Tao, Z. (2007) Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Structures, 45(1), 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
  • Ahmed, M., Gohari, S., Sennah, K., Chen, W., Liang, Q. Q. (2023). Computational simulation of nonlinear inelastic behavior of circular concrete-filled stainless-steel tubular short columns incorporating confinement effects. Engineering Structures, 274, 115183. https://doi.org/10.1016/j.engstruct.2022.115183.
  • O’Shea, M. D., Bridge, R. Q. (2000). Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering (ASCE). 126(11), 1295–1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
  • Johansson, M., Gylltoft, K. (2002). Mechanical behavior of circular steel–concrete composite stub columns. Journal of Structural Engineering (ASCE), 128(8), 1073–1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073).
  • Han, L. H., Yao, G. H. (2004). Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Structures, 42(9), 1357–1377. https://doi.org/10.1016/j.tws.2004.03.016.
  • Han, L. H., Yao, G. H., Zhao, X. L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61(9), 1241–1269. https://doi.org/10.1016/j.jcsr.2005.01.004.
  • Uy, B. (2001). Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research, 57(2):113–134. https://doi.org/10.1016/S0143-974X(00)00014-6.
  • Liu, D. L., Gho, W. M. (2005). Axial load behaviour of high-strength rectangular concrete filled steel tubular stub columns. Thin-Walled Structures, 43(8), 1131–1142. https://doi.org/10.1016/j.tws.2005.03.007.
  • Aslani F, Uy B, Tao Z, Mashiri F (2015) Behaviour and design composite columns incorporating compact high-strength steel plates. Journal of Constructional Steel Research, 107:94–110. https://doi.org/10.1016/j.jcsr.2015.01.005.
  • AISC 360‒16. (2016). ANSI/AISC 360‒16 Specification for Structural Steel Buildings (pp. 676). Chicago, Illinois, USA. https://www.aisc.org/Specification-for-Structural-Steel-Buildings-ANSIAISC-360-16-1.
  • ACI (American Concrete Institute). (2019). Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. Farmington Hills, MI, USA.
  • Eurocode 4. (EC4): EN 1994-1-1. (2004). Design of composite steel and concrete structure –Part 1-1: General rules and rules for buildings (pp. 117). CEN, Brussels: European Committee for Standardization. [Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC]. https://eurocodes.jrc.ec.europa.eu/showpage.php?id=134.
  • AS 4100. (2020). Australian standard AS 4100-Steel structures, Sydney, New South Wales (NSW) 2001, Sydney, Australia.
  • Alatshan, F., Osman, S. A., Altlomate, A., Alkair, M., Hamid, R., Mashiri, F. (2023). Design model of rectangular concrete-filled steel tubular stub columns under axial compression. Buildings, 13(1), 128. https://doi.org/10.3390/buildings13010128.
  • Ellobody, E., Young, B., Lam, D. (2006). Behavior of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62(7), 706–715. https://doi.org/10.1016/j.jcsr.2005.11.002.
  • Duong, T. H., Le, T. T., Le, M. V. (2023). Practical machine learning application for predicting axial capacity of composite concrete-filled steel tube columns considering effect of cross-sectional shapes. International Journal of Steel Structures, 23, 263–278. https://doi.org/10.1007/s13296-022-00693-0.
  • Avci-Karatas, C. (2019). Prediction of ultimate load capacity of concrete-filled steel tube columns using multivariate adaptive regression splines (MARS). Steel and Composite Structures, 33(4), 583–594. https://doi.org/10.12989/scs.2019.33.4.583.
  • Gholampour, A., Mansouri, I., Kisi, O., Ozbakkaloglu, T. (2020). Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models. Neural Computing and Applications, 32, 295–308. https://doi.org/10.1007/s00521-018-3630-y.
  • Avci-Karatas, C. (2021). Modeling approach for estimation of ultimate load capacity of concrete-filled steel tube composite stub columns based on relevance vector machine. Nigde Omer Halisdemir University Journal of Engineering Sciences, 10(2), 615–626. https://doi.org/10.28948/ngumuh.759297.
  • Avci-Karatas, C. (2022a). Artificial neural network (ANN) based prediction of ultimate axial load capacity of concrete-filled steel tube columns (CFSTCs). International Journal of Steel Structures, 22(5):1341–1358 (2022). https://doi.org/10.1007/s13296-022-00645-8.
  • Avci-Karatas, C. (2022b). Application of machine learning in prediction of shear capacity of headed studs in steel-concrete composite structures. International Journal of Steel Structures, 22(2), 539–556. https://doi.org/10.1007/s13296-022-00589-z.
  • Le, T. T. (2020). Practical machine learning-based prediction model for axial capacity of square CFST columns. Mechanics of Advanced Materials and Structures, Taylor&Francis, https://doi.org/10.1080/15376494.2020.1839608.
  • Ngo, N. T., Le, H. A. Pham, T. P. T. (2021). Integration of support vector regression and grey wolf optimization for estimating the ultimate bearing capacity in concrete-filled steel tube columns. Neural Computing and Applications, 33, 8525–8542. https://doi.org/10.1007/s00521-020-05605-z.
  • Katwal, U., Tao, Z., Hassan, M. K., Wang, W. D. (2017). Simplified numerical modelling of axially loaded circular concrete-filled steel stub columns. Journal of Structural Engineering (ASCE), 143(12), 04017169 (1-12), https://doi.org/10.1061/(ASCE)ST.1943-541X.0001897.
  • Al-eliwi, B., Ekmekyapar, T., A.m.s. Al-juboori, H. (2017). Comparison of AISC 360–16 and EC4 for the prediction of composite column capacity. The International Journal of Energy and Engineering Sciences (IJEES), 2(2), 3–22. https://dergipark.org.tr/tr/pub/ijees/issue/48359/612280.
  • Ekmekyapar, T., Al-Eliwi, B. J. M. (2016). Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Structures, 105, 220–230. https://doi.org/10.1016/j.tws.2016.04.004.
  • Gardener, N. J., Jacobson, R. (1967). Structural behavior of concrete filled steel tubes. Journal of American Concrete Institute (ACI), 64(7), 404–413.
  • Gardener, N. J. (1968). Use of spiral welded steel tubes in pipe columns. Journal of American Concrete Institute (ACI), 65(11), 937–942.
  • O'Shea, M. D., Bridge, R. Q. (1994). Tests on thin-walled concrete-filled steel tubes. Proceedings of the 12th International Specialty Conference on Cold-Formed Steel Structures, October 1994, St. Louis, Missouri, USA, 399–419.
  • O'Shea, M. D., Bridge, R. Q. (1998). Tests on circular thin-walled steel tubes filled with medium and high strength concrete. Australian Civil Engineering Transaction, 40:15–27. Availability: https://search.informit.com.au/documentSummary;dn=207937680264543;res=IELENG.
  • Tan, K. F., Pu, X. C., Cai, S. H. (1999). Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes. Journal of Building Structures, P. R. China (in Chinese), 20(1), 10–15.
  • Huang, C. S., Yeh, Y. K., Liu, G. Y., Hu, H. T., Tsai, K. C., Weng, Y. T., Wang, S. H., Wu, M. H. (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering (ASCE), 128(9), 1222–1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
  • Gupta, P. K., Sarda, S. M., Kumar, M. S. (2007). Experimental and computational study of concrete filled steel tubular columns under axial loads. Journal of Constructional Steel Research, 63(2), 182–193. https://doi.org/10.1016/j.jcsr.2006.04.004.
  • Yu, Z. W., Ding, F. X., Cai, C. S. (2007). Experimental behavior of circular concrete-filled steel tube stub columns. Journal of Constructional Steel Research, 63, 165–174. https://doi.org/10.1016/j.jcsr.2006.03.009.
  • Lee, S. H., Uy, B., Kim, S. H., Choi, Y. H., Choi, S. M. (2011). Behavior of highstrength circular concrete-filled steel tubular (CFST) column under eccentric loading. Journal of Constructional Steel Research, 67, 1–13. https://doi.org/10.1016/j.jcsr.2010.07.003.
  • Guler, S., Copur, A., Aydogan, M. (2013). Axial capacity and ductility of circular UHPC-filled steel tube columns. Magazine of Concrete Research, 65(15), 898–905. https://doi.org/10.1680/macr.12.00211.
  • Guler, S., Copur, A., Aydogan, M. (2014). A comparative study on square and circular high strength concrete-filled steel tube columns. Advanced Steel Construction, 10(2), 234–247. https://doi.org/10.18057/IJASC.2014.10.2.7.
  • Han, L. H., Hou, C. C., Wang, Q. L. (2014). Behavior of circular CFST stub columns under sustained load and chloride corrosion. Journal of Constructional Steel Research, 103, 23–36. https://doi.org/10.1016/j.jcsr.2014.07.021.
  • Shams, M., Saadeghvaziri, M. A. (1999). Nonlinear response of concrete-filled steel tubular columns under axial loading. ACI Structural Journal, 96(6), 1009–1019. https://doi.org/10.14359/777.
  • Varma, A. H., Sause, R., Ricles, J. M., Li, Q. (2005). Development and validation of fiber model for high-strength square concrete-filled steel tube beam-columns. ACI Structural Journal, 102(1), 73–84. http://www.concrete.org/PUBS/JOURNALS/SJHOME.ASP.
  • Tao, Z., Wang, X. Q., Uy, B. (2013a). Stress-strain curves of structural and reinforcing steels after exposure to elevated temperatures. Journal of Materials in Civil Engineering, 25(9). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000676.
  • Susantha, K. A. S., Ge, H., Usami, T. (2001). Uniaxial stress-strain relationship of concrete confined by various shaped steel tubes. Engineering Structures, 23(10), 1331–1347. https://doi.org/10.1016/S0141-0296(01)00020-7.
  • Denavit, M. D., Hajjar, J. F. (2012). Nonlinear seismic analysis of circular concrete-filled steel tube members and frames. Journal of Structural Engineering, 138(9). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000544.
  • Lai, Z., Varma, A. H. (2016). Effective stress-strain relationships for analysis of noncompact and slender filled composite (CFT) members. Engineering Structures, 124(10), 457–472. https://doi.org/10.1016/j.engstruct.2016.06.028.
  • MATLAB. and Statistics Toolbox R2016a. (2016). Natick. The MathWorks Inc, Massachusetts, United States.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çigdem Avcı-karataş 0000-0002-6383-1376

Yayımlanma Tarihi 31 Mayıs 2024
Gönderilme Tarihi 4 Şubat 2023
Kabul Tarihi 4 Temmuz 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Avcı-karataş, Ç. (2024). Beton-Dolgulu Çelik Tüplü Kompozit Kolonların Nihai Eksenel Yük Taşıma Kapasitesi Tahmininde MARS, RVM ve ANN-Tabanlı Modellenmesinin Karşılaştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 64-85. https://doi.org/10.35193/bseufbd.1247732