Derleme
BibTex RIS Kaynak Göster

An Assessment of The Raw Materials, as Well as Turkiye's Potential in Lithium-ion Battery Production

Yıl 2024, , 204 - 217, 31.05.2024
https://doi.org/10.35193/bseufbd.1294057

Öz

Reducing the carbon footprint is one of the most important criteria for a sustainable (Green) world. Especially, since the Industrial Revolution, carbon emissions in the world have been increasing rapidly due to the consumption of fossil energy sources. The replacement of fossil fuels is based on renewable energy sources. However, despite the innovative studies on renewable systems, energy storage systems are needed for the management of the energy it produces. Although new ion technologies are being researched, lithium-ion battery technology has started to be used in almost all portable vehicles/devices, especially after it was commercialized for the first time in 1991. In addition, one of the most important parts of the carbon-free energy movement is energy storage devices. However, when the raw materials used are examined, it is predicted that there will be supply problems in lithium-ion batteries. It is foreseen that bottlenecks will occur, especially since the production of materials such as cobalt, lithium and graphite belong to the limited number of countries. Especially the recent Covid-19 and the Russia-Ukraine War have created problems in supply chains. At this point, Turkey comes to the fore with its geopolitical position, manpower and raw material opportunities. There are production of non-ferrous metals in Turkey. However, when Turkish Metal data and London Metal Exchange data are compared, it is seen that exports are made at the same price. This is an indication that the added value of the products sold is low. However, in order to increase the added value, the production of high-technology products will increase the economic volume of exports and help the country reach its potential.

Kaynakça

  • Zhang, X. & Wang, Y.(2017). How to reduce household carbon emissions: A review of experience and policy design considerations. Energy Policy 102:116–24.
  • Yao, X., Huang,R. & Song, M.. (2019) How to reduce carbon emissions of small and medium enterprises (SMEs) by knowledge sharing in China. Prod Plan Control 2019;30:881–92.
  • Ibrahim, N., Sugar, L., Hoornweg, D. & Kennedy, C. (2012) Greenhouse gas emissions from cities: Comparison of international inventory frameworks. Local Environ 2012;17:223–41.
  • Global Temperature | Vital Signs – Climate Change: Vital Signs of the Planet n.d. https://climate.nasa.gov/vital-signs/global-temperature/, (09.08.2023).
  • Wei, T., Wu, J. & Chen, S., (2021). Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Front Sustain Cities 2021;3:1–13.
  • Københavns Kommune. Climate Plan Roadmap(2016) 2017–2020 2016:64.
  • Mathiesen, B.V., Lund., R.S., Connolly, D. & Ridjan-Nielsen S.(2015) Copenhagen Energy Vision 2050: A sustainable vision for bringing a capital to 100% renewable energy.
  • Franta B. & Supran G. (2017) The fossil fuel industry’s invisible colonization of academia. Guard 2017:5–8.
  • Black, B.C. (2020). Burning Up: A Global History of Fossil Fuel Consumption by Simon Pirani. Technol Cult 2020;61:700–2.
  • Williams S.J.(2022). Sustainability and the New Economics. https://doi.org/10.1007/978-3-030-78795-0.
  • Rajender B. & Inamuddin, R.P. (2020). Rechargeable Batteries History, Progress, and Applications. 2020.
  • Li ,M., Lu J., Chen, Z.,& Amine, K.(2018) 30 Years of Lithium-Ion Batteries. Adv Mater 2018;30:1–24.
  • Golubkov, A.W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C. & Fauler, G., (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 2014;4:3633–42.
  • Berckmans, G., Messagie. M., Smekens, J., Omar, N., Vanhaverbeke, L., Mierlo J.V. (2017) Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017;10.
  • Nitta, N., Wu, F., Lee, J.T., Yushin, G.(2014). Li-ion battery materials: Present and future. Mater Today 2015;18:252–64.
  • Gonzalez, A.L., Guerra, A.M., Pinzon, J.D. (2021) Regulatory and market challenges for battery energy storage systems worldwide. 2021 IEEE PES Innov Smart Grid Technol Conf - Lat Am ISGT Lat Am 2021 2021.
  • Thompson, D.L., Hartley, J.M., Lambert, S.M., Shiref, M., Harper, G.D.J., Kendrick, E., (2020). The importance of design in lithium ion battery recycling-a critical review. Green Chem 2020;22:7585–603.
  • Kang, H. (2020) The Application analysis of electrochemical energy storage technology in new energy power generation side. IOP Conf Ser Earth Environ Sci 2020;558.
  • Houache, M.S.E, Yim, C.H., Karkar, Z. & Abu-Lebdeh, Y. (2022) On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022;8.
  • (2021). The New Industrial Strategy for Europe. Intereconomics 2021;56:132–132.
  • Saito, M., Arakaki, R., Yamada, A., Tsunematsu, T., Kudo, Y., Ishimaru, N. (2016). Molecular mechanisms of nickel allergy. Int J Mol Sci 2016;17:1–8.
  • Paustenbach, D.J., Tvermoes, B.E., Unice, K.M., Finley, B.L. & Kerger, B.D. (2013) A review of the health hazards posed by cobalt. Crit Rev Toxicol 2013;43:316–62.
  • Gulley, A.L. (2022) One hundred years of cobalt production in the Democratic Republic of the Congo. Resour Policy 2022;79:103007.
  • The EV boom is being fueled by exploited cobalt miners - The Verge https://www.theverge.com/2022/2/15/22933022/cobalt-mining-ev-electriv-vehicle-working-conditions-congo, (05.05.2023).
  • Periodic Table – Royal Society of Chemistry n.d. https://www.rsc.org/periodic-table/, (05.05.2023).
  • Bartlett, N,J. (2011). Critical materials strategy for clean energy technologies. Crit Mater Strateg Clean Energy Technol 2011:1–170.
  • Yildiz, N. (2016). Lityum. Maden Mühendisleri Odası.
  • Wang, M., Liang, Y., Yuan, M., Cui, X., Yang, Y. & Li, X.(2018). Dynamic analysis of copper consumption, in-use stocks and scrap generation in different sectors in the U.S. 1900–2016. Resour Conserv Recycl 2018;139:140–9.
  • Aluminium Market https://www.aluminiumleader.com/economics/world_market/, (05.05.2023).
  • U.S. Department of the Interior (2022) U.S Geological Survey. Mineral Industry Surveys: manganese 2022.
  • (2021). Cobalt in December 2021, Mineral Industry Surveys 2021:1–7.
  • Stanković, S., Kamberović, Ž., Friedrich, B., Stopić, S.R., Sokić, M. & Marković, B. (2022). Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey. Metals (Basel) 2022;12.
  • Johnson Matthey PLC (2020), Substituted metallic lithium manganese phosphate (Patent no: JP6789688B2). Japonya Patent Ofisi.
  • (2006) Lithium Manganese Phosphate Positive Material for Lithium Secondary Battery (Patent no:KR101334050B1). Güney Kore Patent Ofisi.
  • (2016) Lithium manganese phosphate / carbon nanocomposite as cathode active material for secondary lithium battery (Patent no: JP5976026B2). Japonya Patent Ofisi.
  • Toda Kogyo Corp (2015). Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder (Patent no: JP5817963B2). Japonya Patent Ofisi.
  • Paulsen, M.J., SHIN, S.S.& Park H. (2017). Stoichiometric lithium cobalt oxide and method for preparation of the same (Patent no: US9564636B2 2). Amerika Birleşik Devletleri Patent Ofisi.
  • (2020). Composite silicon anode material, manufacturing method and use (Patent no: KR102142200B1). Güney Kore Patent Ofisi.
  • Rayner P.J. (2017). Method of making silicon anode material for rechargeable cells (Patent no: US9553304B2). Amerika Birleşik Devletleri Patent Ofisi.
  • Shandong Goldencell Electronics Technology Co Ltd(2016). The preparation method of the coated lithium titanate anode material of a kind of nanometer carbon (Patent no: CN103682278B). Çin Patent Ofisi
  • Yuca, N., Çetin B.,& Taşkın, O.S. (2021). Production method for li-rich cathode material (Patent no: WO2021015679A1). Dünya Patent Ofisi.
  • Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C. & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478(June), 228753.
  • Wang Y (2020). Method and apparatus for recycling lithium iron phosphate batteries (Patent no: US10741890B2). Amerika Birleşik Devletleri Patent Ofisi
  • Hubei Bituo New Material Technology Co.,Ltd. (2019). A kind of method of waste and old lithium ion battery recycling production NCM salt (Patent no: CN107768763B). Çin Halk Cumhuriyeti Patent Ofisi
  • (2015). Waste battery recycling method (Patent no: JP5745348B2). Japonya Patent Ofisi
  • Hashimoto Z (2011). Method of recycling a battery (Patent no: US7964299B2 2). Amerika Birleşik Devletleri Patent Ofisi
  • Central South University (2019). A method of regenerating positive active material from waste lithium iron phosphate battery (Patent no: CN106910889B 23). Çin Halk Cumhuriyeti Patent Ofisi
  • Contemporary Amperex Technology Co Ltd (2021). Method for recycling and preparing lithium iron phosphate cathode material (Patent no: CN109721043B 17). Çin Halk Cumhuriyeti Patent Ofisi
  • Guangdong University of Technology (2019). A kind of method and regeneration positive electrode of recycling waste lithium ion cell anode material (Patent no: CN109309266A 05). Çin Halk Cumhuriyeti Patent Ofisi
  • Contestabile, M., Panero, S. & Scrosati, B. (2001). Laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 92(1–2), 65–69.
  • Lombardo, G., Ebin, B., Steenari, B. M., Alemrajabi, M., Karlsson, I. & Petranikova, M. (2021). Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 164(August 2020), 105142.
  • Lombardo, G., Ebin, B., St Foreman, M. R. J., Steenari, B. M. & Petranikova, M. (2019). Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction. ACS Sustainable Chemistry and Engineering, 7(16), 13668–13679.
  • Vieceli, N., Ottink, T., Stopic, S., Dertmann, C., Swiontek, T., Vonderstein, C., Sojka, R., Reinhardt, N., Ekberg, C., Friedrich, B. & Petranikova, M. (2023). Solvent extraction of cobalt from spent lithium-ion batteries: Dynamic optimization of the number of extraction stages using factorial design of experiments and response surface methodology. Separation and Purification Technology, 307(November 2022).
  • Bridge, G. & Faigen, E. (2022). Towards the lithium-ion battery production network: Thinking beyond mineral supply chains. Energy Research and Social Science, 89(May), 102659.
  • Sun, X., Hao, H., Geng, Y., Liu, Z. & Zhao, F. (2023). Exploring the potential for improving material utilization efficiency to secure lithium supply for China’s battery supply chain. Fundamental Research. https://doi.org/10.1016/j.fmre.2022.12.008
  • Meng, F., McNeice, J., Zadeh, S. S. & Ghahreman, A. (2021). Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Mineral Processing and Extractive Metallurgy Review, 42(2), 123–141.
  • Sonoc, A. & Jeswiet, J. (2014). A review of lithium supply and demand and a preliminary investigation of a room temperature method to recycle lithium ion batteries to recover lithium and other materials. Procedia CIRP, 15, 289–293.
  • Ebensperger, A., Maxwell, P. & Moscoso, C. (2005). The lithium industry: Its recent evolution and future prospects. Resources Policy, 30(3), 218–231.
  • Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., Yu, D., Liu, Y., Titirici, M. M., Chueh, Y. L., Yu, H. & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6–32.
  • Tan, L. & Chi-Lung, Y. (2009). Abundance of chemical elements in the earth’s crust and its major tectonic units. International Geology Review, 12(7), 778–786.
  • World Steel in Figures 2022 - worldsteel.org. (n.d.)., from https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/#world-trade-in-ferrous-scrap-by-area-2021, (07.05.2023).
  • Gunn, G. (2013). Critical Metals Handbook. In Critical Metals Handbook.
  • Mayyas, A., Steward, D. & Mann, M. (2019). The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Materials and Technologies, 19, e00087.
  • Hagelstein, K. (2009). Globally sustainable manganese metal production and use. Journal of Environmental Management, 90(12), 3736–3740.
  • Li, Q., Hu, S., Wang, H., Wang, F., Zhong, X. & Wang, X. (2009). Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochimica Acta, 54(24), 5884–5888.
  • (2017). Non-ferrous metals industry : Building the future. (2017). https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/09/non-ferrous-metals.pdf, (09.08.2023).
  • Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. (2016). Copper demand, supply, and associated energy use to 2050. Global Environmental Change, 39, 305–315.
  • Pahlevan, S. M., Hosseini, S. M. S. & Goli, A. (2021). Sustainable supply chain network design using products’ life cycle in the aluminum industry. Environmental Science and Pollution Research.
  • Varghese, B., Reddy, M. V., Yanwu, Z., Lit, C. S., Hoong, T. C., Rao, G. V. S., Chowdari, B. V. R., Shen Wee, A. T., Lim, C. T. & Sow, C. H. (2008). Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 20(10), 3360–3367.
  • Feng, N., Hu, D., Wang, P., Sun, X., Li, X. & He, D. (2013). Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Physical Chemistry Chemical Physics, 15(24), 9924–9930.
  • Akgök, D. (2018). Dünyada ve Türkiyede Nikel. Maden Tetkik ve Arama Genel Müdürlüğü, 1–19.
  • Kartal, G., Güven, A., Kahvecioğlu, Ö. & Timur, S. (n.d.). Metallerin Çevresel Etkileri -II.
  • Henckens, M. L. C. M. & Worrell, E. (2020). Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. Journal of Cleaner Production, 264, 121460.
  • National Minerals Information Center, U. (2020). Silicon data sheet. 703, 148–149.
  • El Khalloufi, M., Drevelle, O. & Soucy, G. (2021). Titanium: An overview of resources and production methods. Minerals, 11(12).
  • Gönül, Ö., Duman, A. C. & Güler, Ö. (2021). Electric vehicles and charging infrastructure in Turkey: An overview. Renewable and Sustainable Energy Reviews, 143(January).
  • Şahin, M. (2021). Tam Elektrikli ve Hibrit Otomobillerde Vergi ve Vergi Dışı Kamusal Teşvikler. Vergi Sorunları Dergisi, 388, 0–2.
  • T.C. Sanayi ve Teknoloji Bakanlığı. (2021). Yatırım Teşvik Uygulamaları.
  • Ustabaş, A,, Simav, O.. (2018). Transformation in Automotive Industry and Turkey. Çanakkale Onsekiz Mart Üniversitesi Uluslararası Sos Bilim Derg 2018;3:211–31.
  • Yilmaz, S. & Dincer, F. (2017). Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews, 77(May 2016), 344–352.
  • Altun, A. F. & Kilic, M. (2020). Design and performance evaluation based on economics and environmental impact of a PV-wind-diesel and battery standalone power system for various climates in Turkey. Renewable Energy, 157, 424–443.
  • Helvaci, C., Mordogan, H., Çolak, M. & Gündogan, I. (2004). Presence and distribution of lithium in borate deposits and some recent lake waters of west-central turkey. International Geology Review, 46(2), 177–190.
  • Cetiner, Z. S., Dogan, Ö., Özdilek, G. & Erdogan, P. Ö. (2015). Toward utilising geothermal waters for cleaner and sustainable production: Potential of Li recovery from geothermal brines in Turkey. International Journal of Global Warming, 7(4), 439–453.
  • Akgök, Y. Z. & Şahiner, M. (2017). Dünyada Ve Türki̇ye’de Li̇tyum. Fizibilite Etütleri Daire Başkanlığı, 1–22.
  • Karakaş A.V.& Yılmaz M. (2022) Türkiye’de Bulunan Bor Rezervlerinin Stratejik Açidan Değerlendirilmesine Yönelik Akademik Algi. Ankara Üniversitesi Sos Bilim Derg 2022;13:10–25.
  • Tuncel, S., Ari, N., Yoleri, B. & Şahiner, M. (2017). Dünyada ve Türkiye’de Demir. MTA.
  • Eroğlu, G. & Şahiner, M. (2019). Dünyada ve Türkiye’de Manganez. 1–18.
  • İMİB. (2019). Kobalt yataklarinin durumu, i̇şletmeci̇li̇ği̇ ve geleceği̇.
  • Kalyon PV Teknoloji (n.d.) https://kalyonpv.com/teknolojimiz.html#2, (09.08.2023).
  • Karabacak Madencilik – (n.d.). https://www.karabacakmaden.com.tr/, (07.05.2023).
  • Yücel, M. B. (2018). Dünyada ve Türki̇ye’de Ti̇tanyum. Maden Tetkik ve Arama Genel Müdürlüğü Fizibilite Etütleri Daire Başkanlığı, Ankara.
  • Jara, A. D., Betemariam, A., Woldetinsae, G. & Kim, J. Y. (2019). Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology, 29(5), 671–689.
  • Rao, R. B. & Patnaik, N. (2004). Preparation of high pure graphite by alkali digestion method. Scandinavian Journal of Metallurgy, 33(5), 257–260.
  • Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Speziali, N. L., Jorio, A. & Pimenta, M. A. (2008). Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon, 46(2), 272–275.
  • Lu, X. J. & Forssberg, E. (2002). Preparation of high-purity and low-sulphur graphite from Woxna fine graphite concentrate by alkali roasting. Minerals Engineering, 15(10), 755–757.
  • Özdemir, A. (2023). Türkiye'de Lityum İyon Pil Üreti̇mi̇ Yatirimlari. Adıyaman Üniversitesi Mühendislik Bilim Derg 2023;10:79–86.

Lityum İyon Batarya Üretiminde Kullanılan Hammaddelerin İncelemesi ve Türkiye’nin Batarya Üretim Potansiyelinin İrdelenmesi

Yıl 2024, , 204 - 217, 31.05.2024
https://doi.org/10.35193/bseufbd.1294057

Öz

Sürdürülebilir (Yeşil) bir dünya için gereken en önemli kıstaslardan biri de karbon ayak izinin azaltılmasıdır. Özellikle Sanayi Devriminden itibaren Dünyada karbon salınımı fosil enerji kaynakları ile enerji elde edilmesinden ötürü hızla artmaktadır. Fosil yakıtların ikamesi yenilenebilir enerji kaynaklarına dayanmaktadır. Ancak yenilenebilir sistemler üzerine yenilikçi çalışmalar yapılmasına karşın, ürettiği enerjinin yönetimi konusunda enerji depolama sistemlerine ihtiyaç duyulmaktadır. Her ne kadar yeni iyon teknolojileri araştırılsa da lityum iyon batarya teknolojisi özellikle 1991 yılında ilk defa ticarileşmesinden sonraki 15 yıl içerisinde neredeyse tüm taşınabilir araç/cihazlarda kullanılmaktadır ve kullanımına devam edilmektedir. Ayrıca karbonsuz enerji hareketinin en önemli parçalarından biride enerji depolama gereçleridir. Fakat kullanılan hammaddeler incelendiğinde lityum iyon bataryaların üretiminde tedarik problemlerinin yaşanacağı ön görülmektedir. Özellikle kobalt, lityum ve grafit gibi malzemelerin üretimlerinin belli başlı ülkelere ait olması sebebiyle darboğazların gerçekleşeceği tahmin edilmektedir. Özellikle yakın geçmişte gerçekleşen Covid-19 ve Rusya-Ukrayna Savaşı, tedarik zincirlerinde problem yaratmıştır. Bu noktada özellikle Türkiye jeopolitik konumu, insan gücü ve hammadde imkanları ile ön plana çıkmaktadır. Türkiye’de demir dışı metallerin üretimi mevcuttur. Fakat Türk Metal verileri ile Londra Metal Borsasının verileri kıyaslandığında aynı fiyattan ihracat yapıldığı görülmektedir. Buda satılan ürünlerin katma değerinin düşük olduğunun göstergesidir. Ancak katma değeri arttırabilmek adına yüksek teknoloji ürünlerinin üretilmesi yapılan ihracatın ekonomik hacmini de artırıp ülkenin potansiyeline ulaşmasına yardımcı olacaktır.

Kaynakça

  • Zhang, X. & Wang, Y.(2017). How to reduce household carbon emissions: A review of experience and policy design considerations. Energy Policy 102:116–24.
  • Yao, X., Huang,R. & Song, M.. (2019) How to reduce carbon emissions of small and medium enterprises (SMEs) by knowledge sharing in China. Prod Plan Control 2019;30:881–92.
  • Ibrahim, N., Sugar, L., Hoornweg, D. & Kennedy, C. (2012) Greenhouse gas emissions from cities: Comparison of international inventory frameworks. Local Environ 2012;17:223–41.
  • Global Temperature | Vital Signs – Climate Change: Vital Signs of the Planet n.d. https://climate.nasa.gov/vital-signs/global-temperature/, (09.08.2023).
  • Wei, T., Wu, J. & Chen, S., (2021). Keeping Track of Greenhouse Gas Emission Reduction Progress and Targets in 167 Cities Worldwide. Front Sustain Cities 2021;3:1–13.
  • Københavns Kommune. Climate Plan Roadmap(2016) 2017–2020 2016:64.
  • Mathiesen, B.V., Lund., R.S., Connolly, D. & Ridjan-Nielsen S.(2015) Copenhagen Energy Vision 2050: A sustainable vision for bringing a capital to 100% renewable energy.
  • Franta B. & Supran G. (2017) The fossil fuel industry’s invisible colonization of academia. Guard 2017:5–8.
  • Black, B.C. (2020). Burning Up: A Global History of Fossil Fuel Consumption by Simon Pirani. Technol Cult 2020;61:700–2.
  • Williams S.J.(2022). Sustainability and the New Economics. https://doi.org/10.1007/978-3-030-78795-0.
  • Rajender B. & Inamuddin, R.P. (2020). Rechargeable Batteries History, Progress, and Applications. 2020.
  • Li ,M., Lu J., Chen, Z.,& Amine, K.(2018) 30 Years of Lithium-Ion Batteries. Adv Mater 2018;30:1–24.
  • Golubkov, A.W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C. & Fauler, G., (2014) Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. RSC Adv 2014;4:3633–42.
  • Berckmans, G., Messagie. M., Smekens, J., Omar, N., Vanhaverbeke, L., Mierlo J.V. (2017) Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies 2017;10.
  • Nitta, N., Wu, F., Lee, J.T., Yushin, G.(2014). Li-ion battery materials: Present and future. Mater Today 2015;18:252–64.
  • Gonzalez, A.L., Guerra, A.M., Pinzon, J.D. (2021) Regulatory and market challenges for battery energy storage systems worldwide. 2021 IEEE PES Innov Smart Grid Technol Conf - Lat Am ISGT Lat Am 2021 2021.
  • Thompson, D.L., Hartley, J.M., Lambert, S.M., Shiref, M., Harper, G.D.J., Kendrick, E., (2020). The importance of design in lithium ion battery recycling-a critical review. Green Chem 2020;22:7585–603.
  • Kang, H. (2020) The Application analysis of electrochemical energy storage technology in new energy power generation side. IOP Conf Ser Earth Environ Sci 2020;558.
  • Houache, M.S.E, Yim, C.H., Karkar, Z. & Abu-Lebdeh, Y. (2022) On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022;8.
  • (2021). The New Industrial Strategy for Europe. Intereconomics 2021;56:132–132.
  • Saito, M., Arakaki, R., Yamada, A., Tsunematsu, T., Kudo, Y., Ishimaru, N. (2016). Molecular mechanisms of nickel allergy. Int J Mol Sci 2016;17:1–8.
  • Paustenbach, D.J., Tvermoes, B.E., Unice, K.M., Finley, B.L. & Kerger, B.D. (2013) A review of the health hazards posed by cobalt. Crit Rev Toxicol 2013;43:316–62.
  • Gulley, A.L. (2022) One hundred years of cobalt production in the Democratic Republic of the Congo. Resour Policy 2022;79:103007.
  • The EV boom is being fueled by exploited cobalt miners - The Verge https://www.theverge.com/2022/2/15/22933022/cobalt-mining-ev-electriv-vehicle-working-conditions-congo, (05.05.2023).
  • Periodic Table – Royal Society of Chemistry n.d. https://www.rsc.org/periodic-table/, (05.05.2023).
  • Bartlett, N,J. (2011). Critical materials strategy for clean energy technologies. Crit Mater Strateg Clean Energy Technol 2011:1–170.
  • Yildiz, N. (2016). Lityum. Maden Mühendisleri Odası.
  • Wang, M., Liang, Y., Yuan, M., Cui, X., Yang, Y. & Li, X.(2018). Dynamic analysis of copper consumption, in-use stocks and scrap generation in different sectors in the U.S. 1900–2016. Resour Conserv Recycl 2018;139:140–9.
  • Aluminium Market https://www.aluminiumleader.com/economics/world_market/, (05.05.2023).
  • U.S. Department of the Interior (2022) U.S Geological Survey. Mineral Industry Surveys: manganese 2022.
  • (2021). Cobalt in December 2021, Mineral Industry Surveys 2021:1–7.
  • Stanković, S., Kamberović, Ž., Friedrich, B., Stopić, S.R., Sokić, M. & Marković, B. (2022). Options for Hydrometallurgical Treatment of Ni-Co Lateritic Ores for Sustainable Supply of Nickel and Cobalt for European Battery Industry from South-Eastern Europe and Turkey. Metals (Basel) 2022;12.
  • Johnson Matthey PLC (2020), Substituted metallic lithium manganese phosphate (Patent no: JP6789688B2). Japonya Patent Ofisi.
  • (2006) Lithium Manganese Phosphate Positive Material for Lithium Secondary Battery (Patent no:KR101334050B1). Güney Kore Patent Ofisi.
  • (2016) Lithium manganese phosphate / carbon nanocomposite as cathode active material for secondary lithium battery (Patent no: JP5976026B2). Japonya Patent Ofisi.
  • Toda Kogyo Corp (2015). Method for producing lithium manganese iron phosphate particle powder, lithium manganese iron phosphate particle powder, and nonaqueous electrolyte secondary battery using the particle powder (Patent no: JP5817963B2). Japonya Patent Ofisi.
  • Paulsen, M.J., SHIN, S.S.& Park H. (2017). Stoichiometric lithium cobalt oxide and method for preparation of the same (Patent no: US9564636B2 2). Amerika Birleşik Devletleri Patent Ofisi.
  • (2020). Composite silicon anode material, manufacturing method and use (Patent no: KR102142200B1). Güney Kore Patent Ofisi.
  • Rayner P.J. (2017). Method of making silicon anode material for rechargeable cells (Patent no: US9553304B2). Amerika Birleşik Devletleri Patent Ofisi.
  • Shandong Goldencell Electronics Technology Co Ltd(2016). The preparation method of the coated lithium titanate anode material of a kind of nanometer carbon (Patent no: CN103682278B). Çin Patent Ofisi
  • Yuca, N., Çetin B.,& Taşkın, O.S. (2021). Production method for li-rich cathode material (Patent no: WO2021015679A1). Dünya Patent Ofisi.
  • Hua, Y., Zhou, S., Huang, Y., Liu, X., Ling, H., Zhou, X., Zhang, C. & Yang, S. (2020). Sustainable value chain of retired lithium-ion batteries for electric vehicles. Journal of Power Sources, 478(June), 228753.
  • Wang Y (2020). Method and apparatus for recycling lithium iron phosphate batteries (Patent no: US10741890B2). Amerika Birleşik Devletleri Patent Ofisi
  • Hubei Bituo New Material Technology Co.,Ltd. (2019). A kind of method of waste and old lithium ion battery recycling production NCM salt (Patent no: CN107768763B). Çin Halk Cumhuriyeti Patent Ofisi
  • (2015). Waste battery recycling method (Patent no: JP5745348B2). Japonya Patent Ofisi
  • Hashimoto Z (2011). Method of recycling a battery (Patent no: US7964299B2 2). Amerika Birleşik Devletleri Patent Ofisi
  • Central South University (2019). A method of regenerating positive active material from waste lithium iron phosphate battery (Patent no: CN106910889B 23). Çin Halk Cumhuriyeti Patent Ofisi
  • Contemporary Amperex Technology Co Ltd (2021). Method for recycling and preparing lithium iron phosphate cathode material (Patent no: CN109721043B 17). Çin Halk Cumhuriyeti Patent Ofisi
  • Guangdong University of Technology (2019). A kind of method and regeneration positive electrode of recycling waste lithium ion cell anode material (Patent no: CN109309266A 05). Çin Halk Cumhuriyeti Patent Ofisi
  • Contestabile, M., Panero, S. & Scrosati, B. (2001). Laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 92(1–2), 65–69.
  • Lombardo, G., Ebin, B., Steenari, B. M., Alemrajabi, M., Karlsson, I. & Petranikova, M. (2021). Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector. Resources, Conservation and Recycling, 164(August 2020), 105142.
  • Lombardo, G., Ebin, B., St Foreman, M. R. J., Steenari, B. M. & Petranikova, M. (2019). Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction. ACS Sustainable Chemistry and Engineering, 7(16), 13668–13679.
  • Vieceli, N., Ottink, T., Stopic, S., Dertmann, C., Swiontek, T., Vonderstein, C., Sojka, R., Reinhardt, N., Ekberg, C., Friedrich, B. & Petranikova, M. (2023). Solvent extraction of cobalt from spent lithium-ion batteries: Dynamic optimization of the number of extraction stages using factorial design of experiments and response surface methodology. Separation and Purification Technology, 307(November 2022).
  • Bridge, G. & Faigen, E. (2022). Towards the lithium-ion battery production network: Thinking beyond mineral supply chains. Energy Research and Social Science, 89(May), 102659.
  • Sun, X., Hao, H., Geng, Y., Liu, Z. & Zhao, F. (2023). Exploring the potential for improving material utilization efficiency to secure lithium supply for China’s battery supply chain. Fundamental Research. https://doi.org/10.1016/j.fmre.2022.12.008
  • Meng, F., McNeice, J., Zadeh, S. S. & Ghahreman, A. (2021). Review of Lithium Production and Recovery from Minerals, Brines, and Lithium-Ion Batteries. Mineral Processing and Extractive Metallurgy Review, 42(2), 123–141.
  • Sonoc, A. & Jeswiet, J. (2014). A review of lithium supply and demand and a preliminary investigation of a room temperature method to recycle lithium ion batteries to recover lithium and other materials. Procedia CIRP, 15, 289–293.
  • Ebensperger, A., Maxwell, P. & Moscoso, C. (2005). The lithium industry: Its recent evolution and future prospects. Resources Policy, 30(3), 218–231.
  • Liang, Y., Zhao, C. Z., Yuan, H., Chen, Y., Zhang, W., Huang, J. Q., Yu, D., Liu, Y., Titirici, M. M., Chueh, Y. L., Yu, H. & Zhang, Q. (2019). A review of rechargeable batteries for portable electronic devices. InfoMat, 1(1), 6–32.
  • Tan, L. & Chi-Lung, Y. (2009). Abundance of chemical elements in the earth’s crust and its major tectonic units. International Geology Review, 12(7), 778–786.
  • World Steel in Figures 2022 - worldsteel.org. (n.d.)., from https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/#world-trade-in-ferrous-scrap-by-area-2021, (07.05.2023).
  • Gunn, G. (2013). Critical Metals Handbook. In Critical Metals Handbook.
  • Mayyas, A., Steward, D. & Mann, M. (2019). The case for recycling: Overview and challenges in the material supply chain for automotive li-ion batteries. Sustainable Materials and Technologies, 19, e00087.
  • Hagelstein, K. (2009). Globally sustainable manganese metal production and use. Journal of Environmental Management, 90(12), 3736–3740.
  • Li, Q., Hu, S., Wang, H., Wang, F., Zhong, X. & Wang, X. (2009). Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochimica Acta, 54(24), 5884–5888.
  • (2017). Non-ferrous metals industry : Building the future. (2017). https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/09/non-ferrous-metals.pdf, (09.08.2023).
  • Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. (2016). Copper demand, supply, and associated energy use to 2050. Global Environmental Change, 39, 305–315.
  • Pahlevan, S. M., Hosseini, S. M. S. & Goli, A. (2021). Sustainable supply chain network design using products’ life cycle in the aluminum industry. Environmental Science and Pollution Research.
  • Varghese, B., Reddy, M. V., Yanwu, Z., Lit, C. S., Hoong, T. C., Rao, G. V. S., Chowdari, B. V. R., Shen Wee, A. T., Lim, C. T. & Sow, C. H. (2008). Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 20(10), 3360–3367.
  • Feng, N., Hu, D., Wang, P., Sun, X., Li, X. & He, D. (2013). Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Physical Chemistry Chemical Physics, 15(24), 9924–9930.
  • Akgök, D. (2018). Dünyada ve Türkiyede Nikel. Maden Tetkik ve Arama Genel Müdürlüğü, 1–19.
  • Kartal, G., Güven, A., Kahvecioğlu, Ö. & Timur, S. (n.d.). Metallerin Çevresel Etkileri -II.
  • Henckens, M. L. C. M. & Worrell, E. (2020). Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. Journal of Cleaner Production, 264, 121460.
  • National Minerals Information Center, U. (2020). Silicon data sheet. 703, 148–149.
  • El Khalloufi, M., Drevelle, O. & Soucy, G. (2021). Titanium: An overview of resources and production methods. Minerals, 11(12).
  • Gönül, Ö., Duman, A. C. & Güler, Ö. (2021). Electric vehicles and charging infrastructure in Turkey: An overview. Renewable and Sustainable Energy Reviews, 143(January).
  • Şahin, M. (2021). Tam Elektrikli ve Hibrit Otomobillerde Vergi ve Vergi Dışı Kamusal Teşvikler. Vergi Sorunları Dergisi, 388, 0–2.
  • T.C. Sanayi ve Teknoloji Bakanlığı. (2021). Yatırım Teşvik Uygulamaları.
  • Ustabaş, A,, Simav, O.. (2018). Transformation in Automotive Industry and Turkey. Çanakkale Onsekiz Mart Üniversitesi Uluslararası Sos Bilim Derg 2018;3:211–31.
  • Yilmaz, S. & Dincer, F. (2017). Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews, 77(May 2016), 344–352.
  • Altun, A. F. & Kilic, M. (2020). Design and performance evaluation based on economics and environmental impact of a PV-wind-diesel and battery standalone power system for various climates in Turkey. Renewable Energy, 157, 424–443.
  • Helvaci, C., Mordogan, H., Çolak, M. & Gündogan, I. (2004). Presence and distribution of lithium in borate deposits and some recent lake waters of west-central turkey. International Geology Review, 46(2), 177–190.
  • Cetiner, Z. S., Dogan, Ö., Özdilek, G. & Erdogan, P. Ö. (2015). Toward utilising geothermal waters for cleaner and sustainable production: Potential of Li recovery from geothermal brines in Turkey. International Journal of Global Warming, 7(4), 439–453.
  • Akgök, Y. Z. & Şahiner, M. (2017). Dünyada Ve Türki̇ye’de Li̇tyum. Fizibilite Etütleri Daire Başkanlığı, 1–22.
  • Karakaş A.V.& Yılmaz M. (2022) Türkiye’de Bulunan Bor Rezervlerinin Stratejik Açidan Değerlendirilmesine Yönelik Akademik Algi. Ankara Üniversitesi Sos Bilim Derg 2022;13:10–25.
  • Tuncel, S., Ari, N., Yoleri, B. & Şahiner, M. (2017). Dünyada ve Türkiye’de Demir. MTA.
  • Eroğlu, G. & Şahiner, M. (2019). Dünyada ve Türkiye’de Manganez. 1–18.
  • İMİB. (2019). Kobalt yataklarinin durumu, i̇şletmeci̇li̇ği̇ ve geleceği̇.
  • Kalyon PV Teknoloji (n.d.) https://kalyonpv.com/teknolojimiz.html#2, (09.08.2023).
  • Karabacak Madencilik – (n.d.). https://www.karabacakmaden.com.tr/, (07.05.2023).
  • Yücel, M. B. (2018). Dünyada ve Türki̇ye’de Ti̇tanyum. Maden Tetkik ve Arama Genel Müdürlüğü Fizibilite Etütleri Daire Başkanlığı, Ankara.
  • Jara, A. D., Betemariam, A., Woldetinsae, G. & Kim, J. Y. (2019). Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology, 29(5), 671–689.
  • Rao, R. B. & Patnaik, N. (2004). Preparation of high pure graphite by alkali digestion method. Scandinavian Journal of Metallurgy, 33(5), 257–260.
  • Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Speziali, N. L., Jorio, A. & Pimenta, M. A. (2008). Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon, 46(2), 272–275.
  • Lu, X. J. & Forssberg, E. (2002). Preparation of high-purity and low-sulphur graphite from Woxna fine graphite concentrate by alkali roasting. Minerals Engineering, 15(10), 755–757.
  • Özdemir, A. (2023). Türkiye'de Lityum İyon Pil Üreti̇mi̇ Yatirimlari. Adıyaman Üniversitesi Mühendislik Bilim Derg 2023;10:79–86.
Toplam 96 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Feryat Gülcan 0000-0002-1224-5473

Engin Alkan 0000-0002-5933-3147

Osman Çotuker 0000-0001-7486-1258

Neslihan Yuca Doğdu 0000-0002-4566-296X

Yayımlanma Tarihi 31 Mayıs 2024
Gönderilme Tarihi 8 Mayıs 2023
Kabul Tarihi 4 Eylül 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Gülcan, M. F., Alkan, E., Çotuker, O., Yuca Doğdu, N. (2024). Lityum İyon Batarya Üretiminde Kullanılan Hammaddelerin İncelemesi ve Türkiye’nin Batarya Üretim Potansiyelinin İrdelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 204-217. https://doi.org/10.35193/bseufbd.1294057