Araştırma Makalesi
BibTex RIS Kaynak Göster

Nano-CrOx Enkapsüle Edilmiş Polipirolün Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması

Yıl 2024, , 150 - 160, 31.05.2024
https://doi.org/10.35193/bseufbd.1303343

Öz

Süperkapasitör anot aktif malzemesi olarak nano boyutlu PPy/CrOx kompoziti çok döngülü dönüşümlü voltametri yöntemiyle grafit folyo (GF) yüzeyine pirol ve Cr(BF4)3 içeren asetonitril/HBF4/LiBF4 çözeltisinde PPy ve CrOx’in eş zamanlı sentezi ile biriktirildi. Kompozitin elektrokimyasal özellikleri Li2SO4 çözeltisinde CV ve EIS yöntemleri kullanılarak ve spektroskopik karakterizasyonu FESEM, EDX, TEM ve XPS teknikleri kullanılarak incelendi. Sulu ortamdan farklı olarak bu çalışmada gerçekleştirilen asetonitril ortamında Cr(II), Cr(III), Cr(VI) yükseltgenme basamaklarını içeren oksijen eksikliğine sahip CrOx’in sentezlenebildiği ortaya konmuştur. Bileşenlerin eş zamanlı sentezi sayesinde kısmen yükseltgenmiş PPy kümelerinin içine %6 oranında CrOx enkapsüle olmuştur. 4 mg cm-2 kütle yüklemesinde PPy/CrOx kompozit kaplı elektrodun 50 mV s-1’de Cm değeri 150 F g-1 olup, PPy’e göre daha yüksek spesifik kapasiteye sahiptir. Bu nedenle az miktarda nano CrOx’in, kompozit spesifik kapasitansına psödokapasitif katkı sağladığı söylenebilir. Asimetrik süperkapasitör hücresi, PPy/CrOx kompozit ve PVC/karbon kaplı GF elektrotlar kullanılarak polivinil alkol (PVA)/Li2SO4 jel elektroliti içinde hazırlandı. Hücre, 5 A g-1’de 20,1 Wh kg-1 enerji yoğunluğu ve 3,50 kW kg-1 güç yoğunluğu sergiledi.

Kaynakça

  • Gorduk, O., et al., (2020). One‐step electrochemical preparation of ternary phthalocyanine/acid‐activated multiwalled carbon nanotube/polypyrrole‐based electrodes and their supercapacitor applications. International Journal of Energy Research, 44(11): 9093-9111.
  • Kalyon, H.Y., et al., (2022). Novel composite materials consisting of polypyrrole and metal organic frameworks for supercapacitor applications. Journal of Energy Storage, 48: 103699.
  • Yeşilbağ, Y.Ö., (2020). Süperkapasitör elektrot için MnCo2S4 nanotellerin iki aşamalı sentezi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(3).
  • Tuzluca, F.N., (2020). Süperkapasitör Elektrot Malzemesi Olarak 3D-Ni Köpük Üzerinde Büyüyen Çiçek-Benzeri ZnCo2O4 Nanotel Dizilerinin Araştırılması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(3).
  • Zhang, M., et al., (2020). Improving electrochemical performance of hollow Cr2O3/CrN nanoshells as electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 856.
  • Arvas, M.B., et al., (2023). Construction of Phthalocyanine-Titanium Dioxide/Graphene/Polyaniline Composite Electrodes by Electrochemical Method for Supercapacitor Applications. ECS Journal of Solid State Science and Technology, 12(3): 031008.
  • Inamdar, H.K., et al., (2019). Polypyrrole/Cr2O3 hybrid nanocomposites (NCs) prepared for their structural, morphological, optical and conductivity studies. Composites Communications, 14: 21-28.
  • Asen, P., S. Shahrokhian, and A.I. zad, (2018). Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application. Journal of Electroanalytical Chemistry, 823: 505-516.
  • Chen, B., et al., (2017). A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Advances, 7(40): 25019-25024.
  • Ullah, S., et al., (2015). A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochimica Acta, 171: 142-149.
  • Xu, X., et al., (2015). Cr2O3: a novel supercapacitor electrode material with high capacitive performance. Materials Letters, 142: 172-175.
  • Kharade, P.M., et al., (2017). Layered PPy/Cr2O3 as a supercapacitor electrode with improved electrochemical performance. Journal of Materials Science: Materials in Electronics, 28(23): 17908-17916.
  • Shafi, I., E. Liang, and B. Li, (2021). Ultrafine chromium oxide (Cr2O3) nanoparticles as a pseudocapacitive electrode material for supercapacitors. Journal of Alloys and Compounds, 851: 156046.
  • Korkmaz, A.R., E. ÇEpnİ, and H. ÖZtÜRk DoĞAn, (2020). Cr2O3 Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi.
  • SuongáOu, F., (2008). Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chemical Communications, (20): 2373-2375.
  • Joseph, A., et al., (2022). Amorphous Cr2O3 Sheets: A Novel Supercapacitor Electrode Material. ChemistrySelect, 7(40).
  • Wu, L., et al., (2023). MnO2 Intercalation-Guided impedance tuning of Carbon/Polypyrrole double conductive layers for electromagnetic wave absorption. Chemical Engineering Journal, 460: 141749.
  • El-Khodary, S.A., et al., (2019). Preparation of polypyrrole-decorated MnO2/reduced graphene oxide in the presence of multi-walled carbon nanotubes composite for high performance asymmetric supercapacitors. Physica B: Condensed Matter, 556: 66-74.
  • Chen, Y., et al., (2018). Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon. Materials (Basel), 11(2).
  • Liu, D., et al., (2020). Determination of chromium valence state in the CaO–SiO2–FeO–MgO–CrOx system by X-ray photoelectron spectroscopy. High Temperature Materials and Processes, 39(1): 351-356.
  • Karaca, E., et al., (2023). Schottky contact of nano-BiOx thin film synthesized galvanostatically on stainless steel in acetonitrile. Optik, 285: 170945.
  • Lv, H., et al., (2020). A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Letters, 12(1).
  • Wang, L., et al., (2019). Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 397: 138-167.
  • Çekiç, M.G., E. Karaca, and N.Ö. Pekmez, (2023). A facile one-step electrosynthesis of polypyrrole/nano-SbOx composite for supercapacitors. Synthetic Metals, 293.
  • Liang, L., G. Chen, and C.-Y. Guo, (2017). Polypyrrole nanostructures and their thermoelectric performance. Materials Chemistry Frontiers, 1(2): 380-386.
  • Gemeay, A.H., et al., (2019). Chemical Preparation of Manganese Dioxide/Polypyrrole Composites and Their Use as Cathode Active Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 142(12): 4190-4195.
  • Momma, T., et al., (1994). Electrochemical Properties of a Polypyrrole Polystyrenesulfonate Composite Film and Its Application to Rechargeable Lithium Battery Cathodes. Journal of the Electrochemical Society, 141(9): 2326-2331.
  • Karaca, E., et al., (2022). Nano MnOx encapsulated pyrrole-carbazole copolymer and polyvinyl chloride/carbon-coated flexible electrodes for solid-state supercapacitor cell. Journal of Energy Storage, 55.
  • Kansal, S., et al., (2023). High performing supercapacitors using Cr2O3 nanostructures with stable channels- theoretical and experimental insights. Materials Science and Engineering: B, 293.
  • Maheshwaran, G., et al., (2022). Synergistic effect of Cr2O3 and Co3O4 nanocomposite electrode for high performance supercapacitor applications. Current Applied Physics, 36: 63-70.
  • Sharma, M., et al., (2021). Single step fabrication of nanostructured Cr2O3-MoO2 composite flexible electrode for top-notch asymmetric supercapacitor. Applied Surface Science, 555.
  • Shafi, I., E. Liang, and B. Li, (2021). Ultrafine chromium oxide (Cr2O3) nanoparticles as a pseudocapacitive electrode material for supercapacitors. Journal of Alloys and Compounds, 851.
  • Maheshwaran, G., et al., (2021). Exploration of Cr2O3-NiO nanocomposite as a superior electrode material for supercapacitor applications. Materials Letters, 300.
  • Zhang, G., et al., (2022). Facial Synthesis of Fe3O4/PPy Core–Shell Composite Electrode Material for Boosted Supercapacity. Energy & Fuels, 36(9): 5018-5026.
  • Xue, J., et al., (2020). High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Materials Chemistry and Physics, 256: 123591.
  • Naseeb, I., et al., (2022). Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results in Chemistry, 4: 100446.
  • El Nady, J., et al., (2022). One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Scientific Reports, 12(1): 1-10.
  • Wang, W., et al., (2012). Graphene/SnO 2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. Rsc Advances, 2(27): 10268-10274.
  • Shen, Z.-M., et al., (2022). Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. Journal of Energy Storage, 51: 104475.
  • Hamidouche, F., et al., (2022). Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. Journal of Molecular Structure, 1251: 131964.
  • Xu, M., et al., (2022). High-capacity Bi2O3 anode for 2.4 V neutral aqueous sodium-ion battery-supercapacitor hybrid device through phase conversion mechanism. Journal of Energy Chemistry, 65: 605-615.
  • Mane, S.A., et al., (2022). Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. Journal of Alloys and Compounds, 926.
  • Yang, S.J., et al., (2021). Electrochemical performance of Bi2O3 supercapacitors improved by surface vacancy defects. Ceramics International, 47(6): 8290-8299.
  • Chang, X., et al., (2022). Formation of monoclinic α-Bi2O3 nanosheet-assembled hollow spheres as a high-performance electrode for supercapacitor. Ionics, 28(10): 4769-4777.
  • Xu, J., et al., (2022). Oxygen-vacancy abundant alpha bismuth oxide with enhanced cycle stability for high-energy hybrid supercapacitor electrodes. J Colloid Interface Sci, 609: 878-889.
  • Liu, Y.X., et al., (2022). Enhanced supercapacitor performance of Bi2O3 by Mn doping. Journal of Alloys and Compounds, 914.
  • Shaikh, Z.A., et al., (2020). Facile synthesis of Bi2O3@MnO2 nanocomposite material: A promising electrode for high performance supercapacitors. Solid State Sciences, 102.
  • Singh, S., et al., (2019). Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor. Energies, 12(17).
  • Ng, C.H., et al., (2018). Effects of Temperature on Electrochemical Properties of Bismuth Oxide/Manganese Oxide Pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6): 2146-2154.
  • Nagaraju, M., et al., (2023). Facile one-step synthesized hierarchical Bi2O3/Bi12Mn12O44 composite as a long-term stable and high-performance electrode for hybrid supercapacitors. Journal of Alloys and Compounds, 947.
  • Yu, Z.L., et al., (2022). Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes. Journal of Energy Storage, 55.
  • Zhang, W.J., et al., (2021). High performance Bi2O2CO3/rGO electrode material for asymmetric solid-state supercapacitor application. Journal of Alloys and Compounds, 855: 157394.
  • Shanmugapriya, V., et al., (2022). Enhanced electrochemical performance of mixed metal oxide (Bi2O3/ZnO) loaded multiwalled carbon nanotube for high-performance asymmetric supercapacitors. Journal of Energy Storage, 55.
  • Ghule, B.G., et al., (2022). Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 651.
  • Üner, O., et al., (2021). Facile preparation of commercial Bi2O3 nanoparticle decorated activated carbon for pseudocapacitive supercapacitor applications. Journal of Materials Science: Materials in Electronics, 32(12): 15981-15994.
  • Shinde, N.M., et al., (2019). Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochimica Acta, 296: 308-316.
  • Sudhakaran, M.S.P., R. Raju, and J.H. Youk, (2023). Polypyrrole-derived N-doped CNT nanocomposites decorated with CoNi alloy nanoparticles for high-performance supercapacitor electrodes. Applied Surface Science, 619.
  • Shaikh, Z.A., et al., (2023). Sponge-Supported Low-Temperature Chemical Synthesis of the Hybrid Bi2O3@Ppy Electrode Material for Energy-Storage Devices. Energy & Fuels, 37(5): 4048-4057.
  • BoopathiRaja, R., et al., (2023). Shape-controlled synthesis of polypyrrole incorporated urchin-flower like Ni2P2O7 cathode material for asymmetric supercapacitor applications. Inorganic Chemistry Communications, 151: 110634.
  • Ghanbari, R. and S.R. Ghorbani, (2023). High-performance nickel molybdate/reduce graphene oxide/polypyrrole ternary nanocomposite as flexible all-solid-state asymmetric supercapacitor. Journal of Energy Storage, 60: 106670.
  • Gong, S.H., et al., (2022). NiCoO(2) and polypyrrole decorated three-dimensional carbon nanofiber network with coaxial cable-like structure for high-performance supercapacitors. J Colloid Interface Sci, 628(Pt A): 343-355.
  • Karaca, E., K. Pekmez, and N.O. Pekmez, (2018). Electrosynthesis of polypyrrole-vanadium oxide composites on graphite electrode in acetonitrile in the presence of carboxymethyl cellulose for electrochemical supercapacitors. Electrochimica Acta, 273: 379-391.
  • Karaca, E., et al., (2019). Galvanostatic synthesis of nanostructured Ag‐Ag2O dispersed PPy composite on graphite electrode for supercapacitor applications. International Journal of Energy Research, 44(1): 158-170.

Electrochemical Synthesis and Supercapacitor Application of Nano-CrOx Encapsulated Polypyrrole

Yıl 2024, , 150 - 160, 31.05.2024
https://doi.org/10.35193/bseufbd.1303343

Öz

Nano-sized PPy/CrOx composite was deposited on a graphite foil (GF) surface using multi-cyclic voltammetry via simultaneous synthesis of PPy and CrOx from an acetonitrile/HBF4/LiBF4/solution containing pyrrole and Cr(BF4)3. The electrochemical properties of the composite were examined using CV and EIS techniques in a Li2SO4 solution, and it was characterized by FESEM, EDX, TEM, and XPS methods. This study revealed that oxygen-deficient CrOx containing Cr(II), Cr(III), and Cr(VI) oxidation states could be synthesized in acetonitrile, unlike in aqueous medium. CrOx with a 6% ratio was encapsulated within the partially oxidized PPy clusters thanks to the simultaneous synthesis of components. The specific capacitance of the PPy/CrOx composite-coated electrode with a mass loading of 4 mg cm-2 was 150 F g-1 at 50 mV s-1, which was higher than that of PPy. Thus, it could be revealed that a small amount of nano CrOx provided a considerable pseudocapacitive contribution to the composite. An asymmetric supercapacitor cell was constructed with PPy/CrOx composite- and PVC/carbon- coated GF electrodes in a polyvinyl alcohol (PVA)/Li2SO4 gel electrolyte. The cell exhibited an energy density of 20.1 Wh kg-1 and a power density of 3.50 kW kg-1 at 5 A g-1.

Kaynakça

  • Gorduk, O., et al., (2020). One‐step electrochemical preparation of ternary phthalocyanine/acid‐activated multiwalled carbon nanotube/polypyrrole‐based electrodes and their supercapacitor applications. International Journal of Energy Research, 44(11): 9093-9111.
  • Kalyon, H.Y., et al., (2022). Novel composite materials consisting of polypyrrole and metal organic frameworks for supercapacitor applications. Journal of Energy Storage, 48: 103699.
  • Yeşilbağ, Y.Ö., (2020). Süperkapasitör elektrot için MnCo2S4 nanotellerin iki aşamalı sentezi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(3).
  • Tuzluca, F.N., (2020). Süperkapasitör Elektrot Malzemesi Olarak 3D-Ni Köpük Üzerinde Büyüyen Çiçek-Benzeri ZnCo2O4 Nanotel Dizilerinin Araştırılması. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(3).
  • Zhang, M., et al., (2020). Improving electrochemical performance of hollow Cr2O3/CrN nanoshells as electrode materials for supercapacitors. Journal of Electroanalytical Chemistry, 856.
  • Arvas, M.B., et al., (2023). Construction of Phthalocyanine-Titanium Dioxide/Graphene/Polyaniline Composite Electrodes by Electrochemical Method for Supercapacitor Applications. ECS Journal of Solid State Science and Technology, 12(3): 031008.
  • Inamdar, H.K., et al., (2019). Polypyrrole/Cr2O3 hybrid nanocomposites (NCs) prepared for their structural, morphological, optical and conductivity studies. Composites Communications, 14: 21-28.
  • Asen, P., S. Shahrokhian, and A.I. zad, (2018). Ternary nanostructures of Cr2O3/graphene oxide/conducting polymers for supercapacitor application. Journal of Electroanalytical Chemistry, 823: 505-516.
  • Chen, B., et al., (2017). A Cr2O3/MWCNTs composite as a superior electrode material for supercapacitor. RSC Advances, 7(40): 25019-25024.
  • Ullah, S., et al., (2015). A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochimica Acta, 171: 142-149.
  • Xu, X., et al., (2015). Cr2O3: a novel supercapacitor electrode material with high capacitive performance. Materials Letters, 142: 172-175.
  • Kharade, P.M., et al., (2017). Layered PPy/Cr2O3 as a supercapacitor electrode with improved electrochemical performance. Journal of Materials Science: Materials in Electronics, 28(23): 17908-17916.
  • Shafi, I., E. Liang, and B. Li, (2021). Ultrafine chromium oxide (Cr2O3) nanoparticles as a pseudocapacitive electrode material for supercapacitors. Journal of Alloys and Compounds, 851: 156046.
  • Korkmaz, A.R., E. ÇEpnİ, and H. ÖZtÜRk DoĞAn, (2020). Cr2O3 Nanoyapılarının Elektrokimyasal Sentezi ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi.
  • SuongáOu, F., (2008). Synthesis of hybrid nanowire arrays and their application as high power supercapacitor electrodes. Chemical Communications, (20): 2373-2375.
  • Joseph, A., et al., (2022). Amorphous Cr2O3 Sheets: A Novel Supercapacitor Electrode Material. ChemistrySelect, 7(40).
  • Wu, L., et al., (2023). MnO2 Intercalation-Guided impedance tuning of Carbon/Polypyrrole double conductive layers for electromagnetic wave absorption. Chemical Engineering Journal, 460: 141749.
  • El-Khodary, S.A., et al., (2019). Preparation of polypyrrole-decorated MnO2/reduced graphene oxide in the presence of multi-walled carbon nanotubes composite for high performance asymmetric supercapacitors. Physica B: Condensed Matter, 556: 66-74.
  • Chen, Y., et al., (2018). Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon. Materials (Basel), 11(2).
  • Liu, D., et al., (2020). Determination of chromium valence state in the CaO–SiO2–FeO–MgO–CrOx system by X-ray photoelectron spectroscopy. High Temperature Materials and Processes, 39(1): 351-356.
  • Karaca, E., et al., (2023). Schottky contact of nano-BiOx thin film synthesized galvanostatically on stainless steel in acetonitrile. Optik, 285: 170945.
  • Lv, H., et al., (2020). A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Letters, 12(1).
  • Wang, L., et al., (2019). Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordination Chemistry Reviews, 397: 138-167.
  • Çekiç, M.G., E. Karaca, and N.Ö. Pekmez, (2023). A facile one-step electrosynthesis of polypyrrole/nano-SbOx composite for supercapacitors. Synthetic Metals, 293.
  • Liang, L., G. Chen, and C.-Y. Guo, (2017). Polypyrrole nanostructures and their thermoelectric performance. Materials Chemistry Frontiers, 1(2): 380-386.
  • Gemeay, A.H., et al., (2019). Chemical Preparation of Manganese Dioxide/Polypyrrole Composites and Their Use as Cathode Active Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 142(12): 4190-4195.
  • Momma, T., et al., (1994). Electrochemical Properties of a Polypyrrole Polystyrenesulfonate Composite Film and Its Application to Rechargeable Lithium Battery Cathodes. Journal of the Electrochemical Society, 141(9): 2326-2331.
  • Karaca, E., et al., (2022). Nano MnOx encapsulated pyrrole-carbazole copolymer and polyvinyl chloride/carbon-coated flexible electrodes for solid-state supercapacitor cell. Journal of Energy Storage, 55.
  • Kansal, S., et al., (2023). High performing supercapacitors using Cr2O3 nanostructures with stable channels- theoretical and experimental insights. Materials Science and Engineering: B, 293.
  • Maheshwaran, G., et al., (2022). Synergistic effect of Cr2O3 and Co3O4 nanocomposite electrode for high performance supercapacitor applications. Current Applied Physics, 36: 63-70.
  • Sharma, M., et al., (2021). Single step fabrication of nanostructured Cr2O3-MoO2 composite flexible electrode for top-notch asymmetric supercapacitor. Applied Surface Science, 555.
  • Shafi, I., E. Liang, and B. Li, (2021). Ultrafine chromium oxide (Cr2O3) nanoparticles as a pseudocapacitive electrode material for supercapacitors. Journal of Alloys and Compounds, 851.
  • Maheshwaran, G., et al., (2021). Exploration of Cr2O3-NiO nanocomposite as a superior electrode material for supercapacitor applications. Materials Letters, 300.
  • Zhang, G., et al., (2022). Facial Synthesis of Fe3O4/PPy Core–Shell Composite Electrode Material for Boosted Supercapacity. Energy & Fuels, 36(9): 5018-5026.
  • Xue, J., et al., (2020). High-performance ordered porous Polypyrrole/ZnO films with improved specific capacitance for supercapacitors. Materials Chemistry and Physics, 256: 123591.
  • Naseeb, I., et al., (2022). Interfacial polymerization synthesis of polypyrrole and sodium metavanadate (PPy/NaVO3) composite as an excellent performance electrode for supercapacitors. Results in Chemistry, 4: 100446.
  • El Nady, J., et al., (2022). One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Scientific Reports, 12(1): 1-10.
  • Wang, W., et al., (2012). Graphene/SnO 2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. Rsc Advances, 2(27): 10268-10274.
  • Shen, Z.-M., et al., (2022). Facile co-deposition of NiO-CoO-PPy composite for asymmetric supercapacitors. Journal of Energy Storage, 51: 104475.
  • Hamidouche, F., et al., (2022). Effect of polymerization conditions on the physicochemical and electrochemical properties of SnO2/polypyrrole composites for supercapacitor applications. Journal of Molecular Structure, 1251: 131964.
  • Xu, M., et al., (2022). High-capacity Bi2O3 anode for 2.4 V neutral aqueous sodium-ion battery-supercapacitor hybrid device through phase conversion mechanism. Journal of Energy Chemistry, 65: 605-615.
  • Mane, S.A., et al., (2022). Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. Journal of Alloys and Compounds, 926.
  • Yang, S.J., et al., (2021). Electrochemical performance of Bi2O3 supercapacitors improved by surface vacancy defects. Ceramics International, 47(6): 8290-8299.
  • Chang, X., et al., (2022). Formation of monoclinic α-Bi2O3 nanosheet-assembled hollow spheres as a high-performance electrode for supercapacitor. Ionics, 28(10): 4769-4777.
  • Xu, J., et al., (2022). Oxygen-vacancy abundant alpha bismuth oxide with enhanced cycle stability for high-energy hybrid supercapacitor electrodes. J Colloid Interface Sci, 609: 878-889.
  • Liu, Y.X., et al., (2022). Enhanced supercapacitor performance of Bi2O3 by Mn doping. Journal of Alloys and Compounds, 914.
  • Shaikh, Z.A., et al., (2020). Facile synthesis of Bi2O3@MnO2 nanocomposite material: A promising electrode for high performance supercapacitors. Solid State Sciences, 102.
  • Singh, S., et al., (2019). Synthesis of Bi2O3-MnO2 Nanocomposite Electrode for Wide-Potential Window High Performance Supercapacitor. Energies, 12(17).
  • Ng, C.H., et al., (2018). Effects of Temperature on Electrochemical Properties of Bismuth Oxide/Manganese Oxide Pseudocapacitor. Industrial & Engineering Chemistry Research, 57(6): 2146-2154.
  • Nagaraju, M., et al., (2023). Facile one-step synthesized hierarchical Bi2O3/Bi12Mn12O44 composite as a long-term stable and high-performance electrode for hybrid supercapacitors. Journal of Alloys and Compounds, 947.
  • Yu, Z.L., et al., (2022). Bi2O3 nanosheet-coated NiCo2O4 nanoneedle arrays for high-performance supercapacitor electrodes. Journal of Energy Storage, 55.
  • Zhang, W.J., et al., (2021). High performance Bi2O2CO3/rGO electrode material for asymmetric solid-state supercapacitor application. Journal of Alloys and Compounds, 855: 157394.
  • Shanmugapriya, V., et al., (2022). Enhanced electrochemical performance of mixed metal oxide (Bi2O3/ZnO) loaded multiwalled carbon nanotube for high-performance asymmetric supercapacitors. Journal of Energy Storage, 55.
  • Ghule, B.G., et al., (2022). Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 651.
  • Üner, O., et al., (2021). Facile preparation of commercial Bi2O3 nanoparticle decorated activated carbon for pseudocapacitive supercapacitor applications. Journal of Materials Science: Materials in Electronics, 32(12): 15981-15994.
  • Shinde, N.M., et al., (2019). Ultra-rapid chemical synthesis of mesoporous Bi2O3 micro-sponge-balls for supercapattery applications. Electrochimica Acta, 296: 308-316.
  • Sudhakaran, M.S.P., R. Raju, and J.H. Youk, (2023). Polypyrrole-derived N-doped CNT nanocomposites decorated with CoNi alloy nanoparticles for high-performance supercapacitor electrodes. Applied Surface Science, 619.
  • Shaikh, Z.A., et al., (2023). Sponge-Supported Low-Temperature Chemical Synthesis of the Hybrid Bi2O3@Ppy Electrode Material for Energy-Storage Devices. Energy & Fuels, 37(5): 4048-4057.
  • BoopathiRaja, R., et al., (2023). Shape-controlled synthesis of polypyrrole incorporated urchin-flower like Ni2P2O7 cathode material for asymmetric supercapacitor applications. Inorganic Chemistry Communications, 151: 110634.
  • Ghanbari, R. and S.R. Ghorbani, (2023). High-performance nickel molybdate/reduce graphene oxide/polypyrrole ternary nanocomposite as flexible all-solid-state asymmetric supercapacitor. Journal of Energy Storage, 60: 106670.
  • Gong, S.H., et al., (2022). NiCoO(2) and polypyrrole decorated three-dimensional carbon nanofiber network with coaxial cable-like structure for high-performance supercapacitors. J Colloid Interface Sci, 628(Pt A): 343-355.
  • Karaca, E., K. Pekmez, and N.O. Pekmez, (2018). Electrosynthesis of polypyrrole-vanadium oxide composites on graphite electrode in acetonitrile in the presence of carboxymethyl cellulose for electrochemical supercapacitors. Electrochimica Acta, 273: 379-391.
  • Karaca, E., et al., (2019). Galvanostatic synthesis of nanostructured Ag‐Ag2O dispersed PPy composite on graphite electrode for supercapacitor applications. International Journal of Energy Research, 44(1): 158-170.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erhan Karaca 0000-0002-9100-8870

Yayımlanma Tarihi 31 Mayıs 2024
Gönderilme Tarihi 27 Mayıs 2023
Kabul Tarihi 7 Ağustos 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Karaca, E. (2024). Nano-CrOx Enkapsüle Edilmiş Polipirolün Elektrokimyasal Sentezi ve Süperkapasitör Uygulaması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 150-160. https://doi.org/10.35193/bseufbd.1303343