Araştırma Makalesi
BibTex RIS Kaynak Göster

İkame Kutularının Lineer Olmama Değerini Optimize Etme

Yıl 2024, , 236 - 243, 29.11.2024
https://doi.org/10.35193/bseufbd.1323521

Öz

Şifreleme algoritmalarında en önemli gereksinimlerden bir tanesi karıştırma olarak adlandırılmaktadır. Bu nedenle şifrelenecek verinin etkin bir şekilde karıştırılması gerekmektedir. İkame kutusu (s-box), bu gereksinimi sağlayan en önemli yapılardan bir tanesidir. Bu yapının en önemli özelliklerinden biri olan lineer olmama değeri ne kadar yüksek olursa karıştırmayı o kadar sağlıklı bir şekilde yerine getirecektir. İkame kutularının elde edilmesinde birçok teknik kullanılmaktadır. Bu tekniklerden en çok kullanılan, optimizasyon tekniğidir. Bu teknikte, başlangıçta genellikle kaos yardımıyla bir s-box elde edilir. Daha sonra bir optimizasyon tekniği kullanılarak elemanların konumları değiştirilir. Uygunluk değeri olarak lineer olmama kriteri kullanılır. Yeni konumlandırmalardan sonra lineer olmama değeri arttığında s-box yapısı güncellenmektedir. Bu çalışmada öncelikle s-box yapılarında lineer olmama değerinin nasıl optimize edildiği açıklanmıştır. Daha sonra sinüs kosinüs algoritması kullanılarak bir s-box optimize edilmiştir. Elde edilen s-box yapısının, 500 iterasyon sonunda lineer olmama değeri 108 olarak gözlemlenmiştir. Ayrıca bir s-box yapısının diğer performans kriterleri de açıklanmıştır.

Kaynakça

  • J. Daemen and V. Rijmen, ‘‘AES proposal: Rijndael,’’ in Proc. 1st Adv. Encryption Conf., CA, USA, 1998, pp. 1–45.
  • Artuğer, F., & Özkaynak, F. (2021). An effective method to improve nonlinearity value of substitution boxes based on random selection. Information Sciences, 576, 577-588.
  • Liu, G., Yang, W., Liu, W., & Dai, Y. (2015). Designing S-boxes based on 3-D four-wing autonomous chaotic system. Nonlinear dynamics, 82(4), 1867-1877.
  • Liu, L., Zhang, Y., & Wang, X. (2018). A novel method for constructing the S-box based on spatiotemporal chaotic dynamics. Applied sciences, 8(12), 2650.
  • Özkaynak, F., Çelik, V., & Özer, A. B. (2017). A new S-box construction method based on the fractional-order chaotic Chen system. Signal, Image and Video Processing, 11(4), 659-664.
  • Khan, M., & Shah, T. (2015). An efficient construction of substitution box with fractional chaotic system. Signal, Image and Video Processing, 9(6), 1335-1338.
  • Özkaynak, F., & Yavuz, S. (2013). Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dynamics, 74(3), 551-557.
  • Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., & Kaçar, S. (2017). A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear dynamics, 87(2), 1081-1094.
  • Artuğer, F., & Özkaynak, F. (2020). A novel method for performance improvement of chaos-based substitution boxes. Symmetry, 12(4), 571.
  • Artuğer, F., & Özkaynak, F. (2022). A method for generation of substitution box based on random selection. Egyptian Informatics Journal, 23(1), 127-135.
  • Anees, A., & Chen, Y. P. P. (2020). Designing secure substitution boxes based on permutation of symmetric group. Neural Computing and Applications, 32(11), 7045-7056.
  • Javeed, A., Shah, T., & Ullah, A. (2020). Construction of non-linear component of block cipher by means of chaotic dynamical system and symmetric group. Wireless Personal Communications, 112(1), 467-480.
  • Siddiqui, N., Khalid, H., Murtaza, F., Ehatisham-Ul-Haq, M., & Azam, M. A. (2020). A novel algebraic technique for design of computational substitution-boxes using action of matrices on Galois field. IEEE Access, 8, 197630-197643.
  • Alexan, W., ElBeltagy, M., & Aboshousha, A. (2022). Rgb image encryption through cellular automata, s-box and the lorenz system. Symmetry, 14(3), 443.
  • Haque, A., Abdulhussein, T. A., Ahmad, M., Falah, M. W., & Abd El-Latif, A. A. (2022). A Strong Hybrid S-Box Scheme Based on Chaos, 2D Cellular Automata and Algebraic Structure. IEEE Access, 10, 116167-116181.
  • Farhan, A. K., Ali, R. S., Yassein, H. R., Al-Saidi, N. M. G., & Abdul-Majeed, G. H. (2020). A new approach to generate multi S-boxes based on RNA computing. Int. J. Innov. Comput. Inf. Control, 16(1), 331-348.
  • Mohamed, A. G., Korany, N. O., & El-Khamy, S. E. (2021). New DNA coded fuzzy based (DNAFZ) S-boxes: Application to robust image encryption using hyper chaotic maps. IEEE Access, 9, 14284-14305.
  • Basha, H. A. M. A., Mohra, A. S. S., Diab, T. O. M., & El Sobky, W. I. (2022). Efficient image encryption based on new substitution box using DNA coding and bent function. IEEE Access, 10, 66409-66429.
  • Farah, T., Rhouma, R., & Belghith, S. (2017). A novel method for designing S-box based on chaotic map and teaching–learning-based optimization. Nonlinear dynamics, 88(2), 1059-1074.
  • Ahmed, H. A., Zolkipli, M. F., & Ahmad, M. (2019). A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map. Neural Computing and Applications, 31(11), 7201-7210.
  • Zamli, K. Z. (2021). Optimizing S-box Generation based on the Adaptive Agent Heroes and Cowards Algorithm. Expert Systems with Applications, 115305.
  • Alhadawi, H. S., Majid, M. A., Lambić, D., & Ahmad, M. (2021). A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm. Multimedia Tools and Applications, 80(5), 7333-7350.
  • Wang, Y., Zhang, Z., Zhang, L. Y., Feng, J., Gao, J., & Lei, P. (2020). A genetic algorithm for constructing bijective substitution boxes with high nonlinearity. Information Sciences, 523, 152-166.
  • Artuğer, F., & Özkaynak, F. (2022). SBOX-CGA: substitution box generator based on chaos and genetic algorithm. Neural Computing and Applications, 34(22), 20203-20211.
  • Alhadawi, H. S., Lambić, D., Zolkipli, M. F., & Ahmad, M. (2020). Globalized firefly algorithm and chaos for designing substitution box. Journal of Information Security and Applications, 55, 102671.
  • Ahmad, M., & Al-Solami, E. (2020). Evolving dynamic S-boxes using fractional-order hopfield neural network based scheme. Entropy, 22(7), 717.
  • Wang, Y., Wong, K. W., Li, C., & Li, Y. (2012). A novel method to design S-box based on chaotic map and genetic algorithm. Physics Letters A, 376(6-7), 827-833.
  • Ahmad, M., Bhatia, D., & Hassan, Y. (2015). A novel ant colony optimization based scheme for substitution box design. Procedia Computer Science, 57, 572-580.
  • Chen, G. (2008). A novel heuristic method for obtaining S-boxes. Chaos, Solitons & Fractals, 36(4), 1028-1036.
  • Khan, L. S., Hazzazi, M. M., Khan, M., & Jamal, S. S. (2021). A novel image encryption based on rossler map diffusion and particle swarm optimization generated highly non-linear substitution boxes. Chinese Journal of Physics.
  • Hematpour, N., & Ahadpour, S. (2021). Execution examination of chaotic S-box dependent on improved PSO algorithm. Neural Computing and Applications, 33(10), 5111-5133.
  • Zamli, K. Z., Kader, A., Din, F., & Alhadawi, H. S. (2021). Selective chaotic maps Tiki-Taka algorithm for the S-box generation and optimization. Neural Computing and Applications, 1-18.
  • Tian, Y., & Lu, Z. (2017). Chaotic S-box: Intertwining logistic map and bacterial foraging optimization. Mathematical Problems in Engineering, 2017.
  • Alzaidi, A. A., Ahmad, M., Ahmed, H. S., & Solami, E. A. (2018). Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map. Complexity, 2018.
  • Ahmad, M., Khaja, I. A., Baz, A., Alhakami, H., & Alhakami, W. (2020). Particle swarm optimization based highly nonlinear substitution-boxes generation for security applications. IEEE Access, 8, 116132-116147.
  • Kang, M., & Wang, M. (2022). New Genetic Operators for Developing S-Boxes With Low Boomerang Uniformity. IEEE Access, 10, 10898-10906.
  • Zamli, K. Z., Din, F., & Alhadawi, H. S. (2023). Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization. Neural Computing and Applications, 1-23.
  • Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133.
  • Webster, A. F., & Tavares, S. E. (1985, August). On the design of S-boxes. In Conference on the theory and application of cryptographic techniques (pp. 523-534). Springer, Berlin, Heidelberg.
  • Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of CRYPTOLOGY, 4(1), 3-72.

Optimizing Nonlinearity Value of Substitution Boxes

Yıl 2024, , 236 - 243, 29.11.2024
https://doi.org/10.35193/bseufbd.1323521

Öz

One of the most important requirements in encryption algorithms is called confusion. For this reason, the data to be encrypted must be effectively mixed. Substitution box (s-box) is one of the most important structures that meet this requirement. The higher the nonlinearity value, which is one of the most important features of this structure, the healthier the mixing will be. Many techniques are used to obtain substitution boxes. It is the most used optimization technique among these techniques. In this technique, an s-box is obtained initially, usually with the help of chaos. The positions of the elements are then changed using an optimization technique. The nonlinearity criterion is used as the fitness value. When the nonlinearity value increases after new positioning, the s-box structure is updated. In this study, first, explains how the nonlinearity value is optimized in s-box structures. Then an s-box is optimized using the sine cosine algorithm. The nonlinearity value of the obtained s-box structure was observed to be 108 at the end of 500 iterations. Other performance criteria of an s-box structure are also described.

Kaynakça

  • J. Daemen and V. Rijmen, ‘‘AES proposal: Rijndael,’’ in Proc. 1st Adv. Encryption Conf., CA, USA, 1998, pp. 1–45.
  • Artuğer, F., & Özkaynak, F. (2021). An effective method to improve nonlinearity value of substitution boxes based on random selection. Information Sciences, 576, 577-588.
  • Liu, G., Yang, W., Liu, W., & Dai, Y. (2015). Designing S-boxes based on 3-D four-wing autonomous chaotic system. Nonlinear dynamics, 82(4), 1867-1877.
  • Liu, L., Zhang, Y., & Wang, X. (2018). A novel method for constructing the S-box based on spatiotemporal chaotic dynamics. Applied sciences, 8(12), 2650.
  • Özkaynak, F., Çelik, V., & Özer, A. B. (2017). A new S-box construction method based on the fractional-order chaotic Chen system. Signal, Image and Video Processing, 11(4), 659-664.
  • Khan, M., & Shah, T. (2015). An efficient construction of substitution box with fractional chaotic system. Signal, Image and Video Processing, 9(6), 1335-1338.
  • Özkaynak, F., & Yavuz, S. (2013). Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dynamics, 74(3), 551-557.
  • Çavuşoğlu, Ü., Zengin, A., Pehlivan, I., & Kaçar, S. (2017). A novel approach for strong S-Box generation algorithm design based on chaotic scaled Zhongtang system. Nonlinear dynamics, 87(2), 1081-1094.
  • Artuğer, F., & Özkaynak, F. (2020). A novel method for performance improvement of chaos-based substitution boxes. Symmetry, 12(4), 571.
  • Artuğer, F., & Özkaynak, F. (2022). A method for generation of substitution box based on random selection. Egyptian Informatics Journal, 23(1), 127-135.
  • Anees, A., & Chen, Y. P. P. (2020). Designing secure substitution boxes based on permutation of symmetric group. Neural Computing and Applications, 32(11), 7045-7056.
  • Javeed, A., Shah, T., & Ullah, A. (2020). Construction of non-linear component of block cipher by means of chaotic dynamical system and symmetric group. Wireless Personal Communications, 112(1), 467-480.
  • Siddiqui, N., Khalid, H., Murtaza, F., Ehatisham-Ul-Haq, M., & Azam, M. A. (2020). A novel algebraic technique for design of computational substitution-boxes using action of matrices on Galois field. IEEE Access, 8, 197630-197643.
  • Alexan, W., ElBeltagy, M., & Aboshousha, A. (2022). Rgb image encryption through cellular automata, s-box and the lorenz system. Symmetry, 14(3), 443.
  • Haque, A., Abdulhussein, T. A., Ahmad, M., Falah, M. W., & Abd El-Latif, A. A. (2022). A Strong Hybrid S-Box Scheme Based on Chaos, 2D Cellular Automata and Algebraic Structure. IEEE Access, 10, 116167-116181.
  • Farhan, A. K., Ali, R. S., Yassein, H. R., Al-Saidi, N. M. G., & Abdul-Majeed, G. H. (2020). A new approach to generate multi S-boxes based on RNA computing. Int. J. Innov. Comput. Inf. Control, 16(1), 331-348.
  • Mohamed, A. G., Korany, N. O., & El-Khamy, S. E. (2021). New DNA coded fuzzy based (DNAFZ) S-boxes: Application to robust image encryption using hyper chaotic maps. IEEE Access, 9, 14284-14305.
  • Basha, H. A. M. A., Mohra, A. S. S., Diab, T. O. M., & El Sobky, W. I. (2022). Efficient image encryption based on new substitution box using DNA coding and bent function. IEEE Access, 10, 66409-66429.
  • Farah, T., Rhouma, R., & Belghith, S. (2017). A novel method for designing S-box based on chaotic map and teaching–learning-based optimization. Nonlinear dynamics, 88(2), 1059-1074.
  • Ahmed, H. A., Zolkipli, M. F., & Ahmad, M. (2019). A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map. Neural Computing and Applications, 31(11), 7201-7210.
  • Zamli, K. Z. (2021). Optimizing S-box Generation based on the Adaptive Agent Heroes and Cowards Algorithm. Expert Systems with Applications, 115305.
  • Alhadawi, H. S., Majid, M. A., Lambić, D., & Ahmad, M. (2021). A novel method of S-box design based on discrete chaotic maps and cuckoo search algorithm. Multimedia Tools and Applications, 80(5), 7333-7350.
  • Wang, Y., Zhang, Z., Zhang, L. Y., Feng, J., Gao, J., & Lei, P. (2020). A genetic algorithm for constructing bijective substitution boxes with high nonlinearity. Information Sciences, 523, 152-166.
  • Artuğer, F., & Özkaynak, F. (2022). SBOX-CGA: substitution box generator based on chaos and genetic algorithm. Neural Computing and Applications, 34(22), 20203-20211.
  • Alhadawi, H. S., Lambić, D., Zolkipli, M. F., & Ahmad, M. (2020). Globalized firefly algorithm and chaos for designing substitution box. Journal of Information Security and Applications, 55, 102671.
  • Ahmad, M., & Al-Solami, E. (2020). Evolving dynamic S-boxes using fractional-order hopfield neural network based scheme. Entropy, 22(7), 717.
  • Wang, Y., Wong, K. W., Li, C., & Li, Y. (2012). A novel method to design S-box based on chaotic map and genetic algorithm. Physics Letters A, 376(6-7), 827-833.
  • Ahmad, M., Bhatia, D., & Hassan, Y. (2015). A novel ant colony optimization based scheme for substitution box design. Procedia Computer Science, 57, 572-580.
  • Chen, G. (2008). A novel heuristic method for obtaining S-boxes. Chaos, Solitons & Fractals, 36(4), 1028-1036.
  • Khan, L. S., Hazzazi, M. M., Khan, M., & Jamal, S. S. (2021). A novel image encryption based on rossler map diffusion and particle swarm optimization generated highly non-linear substitution boxes. Chinese Journal of Physics.
  • Hematpour, N., & Ahadpour, S. (2021). Execution examination of chaotic S-box dependent on improved PSO algorithm. Neural Computing and Applications, 33(10), 5111-5133.
  • Zamli, K. Z., Kader, A., Din, F., & Alhadawi, H. S. (2021). Selective chaotic maps Tiki-Taka algorithm for the S-box generation and optimization. Neural Computing and Applications, 1-18.
  • Tian, Y., & Lu, Z. (2017). Chaotic S-box: Intertwining logistic map and bacterial foraging optimization. Mathematical Problems in Engineering, 2017.
  • Alzaidi, A. A., Ahmad, M., Ahmed, H. S., & Solami, E. A. (2018). Sine-cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map. Complexity, 2018.
  • Ahmad, M., Khaja, I. A., Baz, A., Alhakami, H., & Alhakami, W. (2020). Particle swarm optimization based highly nonlinear substitution-boxes generation for security applications. IEEE Access, 8, 116132-116147.
  • Kang, M., & Wang, M. (2022). New Genetic Operators for Developing S-Boxes With Low Boomerang Uniformity. IEEE Access, 10, 10898-10906.
  • Zamli, K. Z., Din, F., & Alhadawi, H. S. (2023). Exploring a Q-learning-based chaotic naked mole rat algorithm for S-box construction and optimization. Neural Computing and Applications, 1-23.
  • Mirjalili, S. (2016). SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems, 96, 120-133.
  • Webster, A. F., & Tavares, S. E. (1985, August). On the design of S-boxes. In Conference on the theory and application of cryptographic techniques (pp. 523-534). Springer, Berlin, Heidelberg.
  • Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of CRYPTOLOGY, 4(1), 3-72.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Güvenliği ve Kriptoloji
Bölüm Makaleler
Yazarlar

Fırat Artuğer 0000-0002-4096-0458

Yayımlanma Tarihi 29 Kasım 2024
Gönderilme Tarihi 6 Temmuz 2023
Kabul Tarihi 16 Ekim 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Artuğer, F. (2024). İkame Kutularının Lineer Olmama Değerini Optimize Etme. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(2), 236-243. https://doi.org/10.35193/bseufbd.1323521