Kısa Karbon Fiber/Nano Hidroksiapatit Takviyeli Hibrit Epoksi Kompozitlerin Mekanik, Tribolojik ve Biyolojik Özellikleri
Yıl 2024,
, 183 - 194, 31.05.2024
İman Fouad Munaf Aljewari
,
Erkan Koç
,
Yasin Akgül
Öz
Bu çalışmanın amacı, kısa karbon elyaf (SCF) nano hidroksiapatit (nHA) ile güçlendirilmiş hibrid epoksi kompozitlerinin mekanik, tribolojik ve biyolojik özelliklerini incelemektir. Sahip oldukları mekanik, tribolojik ve biyouyumlulukları ile E/SCF-nHA hibrid kompozitleri, ortopedik uygulamalarda gerekli sabitleme plakalarını üretmek için kullanılabilecek kompozit yapılar için önerilmektedir. Bu çalışmada, SCF ve nHA ile çeşitli oranlarda güçlendirilmiş tek katmanlı hibrit kompozitler, saf epoksi (E) ve epoksi karbon elyaf kompozitler, el yatırması yöntemiyle üretilmiştir. Mekanik özelliklerini incelemek için çekme testleri, 3 noktalı eğme testleri ve Izod darbe testleri yapılmıştır Ayrıca, hibrit kompozit numunelerin biyolojik özellikleri yapay vücut sıvısında (SBF) bekletilerek incelenmiştir. Test sonuçları, mekanik ve biyolojik özelliklerin iyileştirildiğini göstermiştir. Buna göre, %10 karbon fiber (CF) ve %3 nano hidroksiapatit (nHA) içeriğine sahip E-10CF-3nHA hibrit kompozit, yürütülen tüm testlerde en iyi sonuçları göstermiştir.
Proje Numarası
KBÜBAP-22-YL-070
Teşekkür
This research was supported by Karabuk University under grant number [KBUBAP-22-YL-070].
Kaynakça
- Krishnakumar, S., & Senthilvelan, T. (2021). Polymer composites in dentistry and orthopedic applications-a review. Materials Today: Proceedings, 46, 9707–9713. https://doi.org/10.1016/j.matpr.2020.08.463
- Avval, P. T., Samiezadeh, S., Klika, V., & Bougherara, H. (2015). Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model. Journal of the Mechanical Behavior of Biomedical Materials, 41, 56–67.
- Hansen, D. C. (2008). Metal Corrosion in the Human Body: The Ultimate Bio-Corrosion Scenario. The Electrochemical Society Interface, 17(2), 31–34. https://doi.org/10.1149/2.F04082IF
- Akgul, Y., Ahlatci, H., Turan, M. E., Simsir, H., Erden, M. A., Sun, Y., & Kilic, A. (2020). Mechanical, tribological, and biological properties of carbon fiber/hydroxyapatite reinforced hybrid composites. Polymer Composites, 41(6), 2426–2432. https://doi.org/10.1002/pc.25546
- Bagheri, Z. S., Giles, E., El Sawi, I., Amleh, A., Schemitsch, E. H., Zdero, R., & Bougherara, H. (2015). Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications. Materials Science and Engineering: C, 46, 435–442. https://doi.org/10.1016/j.msec.2014.10.042
- Akgul, Y., Alsbaale, Y. A. Y., Eticha, A. K., & Cug, H. (2022). Mechanical and Tribological Behaviors of Chopped Carbon/Glass Fiber Reinforced Hybrid Epoxy Composites. Mechanics Of Advanced Composite Structures, 9(2), 349–358.
- Ozsoy, N., Mimaroğlu, A., Ozsoy, M., & Ozsoy, M. I. (2015). Comparison of Mechanical Behaviour of Carbon and Glass Fiber Reinforced Epoxy Composites. Acta Physica Polonica A, 127(4), 1032–1034. https://doi.org/10.12693/APhysPolA.127.1032
- Mahalakshmi, B. N., & Prasad, V. V. (n.d.). Study on Mechanical Behaviour of Carbon Fiber Reinforced Epoxy Composites.
- Macuvele, D. L. P., Colla, G., Cesca, K., Ribeiro, L. F. B., da Costa, C. E., Nones, J., Breitenbach, E. R., Porto, L. M., Soares, C., Fiori, M. A., & Riella, H. G. (2019). UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. Materials Science and Engineering: C, 100, 411–423.
- Slósarczyk, A., Klisch, M., B\lażewicz, M., Piekarczyk, J., Stobierski, L., & Rapacz-Kmita, A. (2000). Hot pressed hydroxyapatite–carbon fibre composites. Journal of the European Ceramic Society, 20(9), 1397–1402.
- Zhao, J.-L., Fu, T., Han, Y., & Xu, K.-W. (2004). Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Materials Letters, 58(1), 163–168. https://doi.org/10.1016/S0167-577X(03)00437-3
- Solomon, B., George, D., Shunmugesh, K., & Akhil, K. T. (2017). The Effect of Fibers Loading on the Mechanical Properties of Carbon Epoxy Composite. Polymers and Polymer Composites, 25(3), 237–240. https://doi.org/10.1177/096739111702500310
- Khun, N. W., Zhang, H., Lim, L. H., Yue, C. Y., Hu, X., & Yang, J. (2014). Tribological properties of short carbon fibers reinforced epoxy composites. Friction, 2(3), 226–239. https://doi.org/10.1007/s40544-014-0043-5
- Nie, H., Zhang, L., Wang, M., Liu, Y., Zhang, R., & Jiang, P. (2023). Constructing network-shaped hydroxyapatite interlayer for carbon fiber composites. Materials Letters, 335, 133838.
- Nie, H., Zhang, L., Liu, Y., Jiang, P., Sheng, H., Hou, X., & Li, H. (2022). Optimizing Mechanical and Biotribological Properties of Carbon Fiber/Epoxy Composites by Applying Interconnected Graphene Interface. Applied Surface Science, 604, 154432.
- Akgul, Y., Yalcin, M. E., & Eticha, A. K. (2023). Effect of Chopped Carbon Fibers Amount on the Mechanical and Tribological Properties of Polyester Matrix Composite. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(1), 189–198.
- Tiwari, S., & Bijwe, J. (2014). Surface Treatment of Carbon Fibers—A Review. Procedia Technology, 14, 505–512. https://doi.org/10.1016/j.protcy.2014.08.064
- Arsun, O., Akgul, Y., & Simsir, H. (2021). Investigation of the properties of Al7075-HTC composites produced by powder metallurgy. Journal of Composite Materials, 55(17), 2339–2348. https://doi.org/10.1177/0021998321990877
- Akgul, Y. (2022). Effect of Hydrothermal Carbons Content on Wear Properties of Polyethylene Matrix Composites. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 23(3), 207–215.
- Koç, E., Kannan, M. B., Ünal, M., & Candan, E. (2015). Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium–zinc binary alloys. Journal of Alloys and Compounds, C(648), 291–296. https://doi.org/10.1016/j.jallcom.2015.06.227
- Savas, L. A., Tayfun, U., & Dogan, M. (2016). The use of polyethylene copolymers as compatibilizers in carbon fiber reinforced high density polyethylene composites. Composites Part B: Engineering, 99, 188–195. https://doi.org/10.1016/j.compositesb.2016.06.043
- Jianfeng, H., Juanying, L., Liyun, C., & Liping, Z. (2009). Preparation and properties of carbon fiber/ hydroxyapatite-poly(methyl methacrylate) biocomposites. Journal of Applied Polymer Science, NA-NA. https://doi.org/10.1002/app.31668
- Espinach, F. X., Julian, F., Verdaguer, N., Torres, L., Pelach, M. A., Vilaseca, F., & Mutje, P. (2013). Analysis of tensile and flexural modulus in hemp strands/polypropylene composites. Composites Part B: Engineering, 47, 339–343.
- Wong, K., Nirmal, U., & Lim, B. (2010). Impact behavior of short and continuous fiber-reinforced polyester composites. Journal of Reinforced Plastics and Composites, 29(23), 3463–3474. https://doi.org/10.1177/0731684410375639
- Ambigai, R., & Prabhu, S. (2018). Analysis on mechanical and thermal properties of glass-carbon/epoxy based hybrid composites. IOP Conference Series: Materials Science and Engineering, 402, 012136. https://doi.org/10.1088/1757-899X/402/1/012136
- Olszewski, A., Nowak, P., Kosmela, P., & Piszczyk, Ł. (2021). Characterization of Highly Filled Glass Fiber/Carbon Fiber Polyurethane Composites with the Addition of Bio-Polyol Obtained through Biomass Liquefaction. Materials, 14(6), Article 6. https://doi.org/10.3390/ma14061391
- Cantwell, W. J., & Morton, J. (1991). The impact resistance of composite materials—A review. Composites, 22(5), 347–362. https://doi.org/10.1016/0010-4361(91)90549-V
- Liu, T., Huang, A., Geng, L.-H., Lian, X.-H., Chen, B.-Y., Hsiao, B. S., Kuang, T.-R., & Peng, X.-F. (2018). Ultra-strong, tough and high wear resistance high-density polyethylene for structural engineering application: A facile strategy towards using the combination of extensional dynamic oscillatory shear flow and ultra-high-molecular-weight polyethylene. Composites Science and Technology, 167, 301–312.
- Yadav, S., Haque, Z., & Kumar, S. (n.d.). Mechanical and Sliding Wear Behaviour of E-GLASS Fiber Reinforced with EPOXY Composites. 03(05).
- Chukov, D. I., Stepashkin, A. A., Maksimkin, A. V., Tcherdyntsev, V. V., Kaloshkin, S. D., Kuskov, K. V., & Bugakov, V. I. (2015). Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Composites Part B: Engineering, 76, 79–88. https://doi.org/10.1016/j.compositesb.2015.02.019
- Xian, G., & Zhang, Z. (2005). Sliding wear of polyetherimide matrix composites. Wear, 258(5–6), 776–782. https://doi.org/10.1016/j.wear.2004.09.054
- Chan, K. W., Liao, C. Z., Wong, H. M., Kwok Yeung, K. W., & Tjong, S. C. (2016). Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Advances, 6(23), 19417–19429. https://doi.org/10.1039/C5RA22134J
- Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
- Kong, L., Gao, Y., Lu, G., Gong, Y., Zhao, N., & Zhang, X. (2006). A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal, 42(12), 3171–3179. https://doi.org/10.1016/j.eurpolymj.2006.08.009
Mechanical, Tribological, and Biological Properties of Short Carbon Fiber/ Nano Hydroxyapatite Reinforced Hybrid Epoxy Composites
Yıl 2024,
, 183 - 194, 31.05.2024
İman Fouad Munaf Aljewari
,
Erkan Koç
,
Yasin Akgül
Öz
This investigation intends to examine the mechanical, tribological, and biological properties of hybrid epoxy composites reinforced with nanohydroxyapatite (nHA) and short carbon fiber (SCF). Due to its advantageous mechanical, tribological, and biocompatibility features, the proposed E/SCFs-nHA hybrid composites are meant to be recommended for composite structures that can be used to develop fixation plates used in orthopedic applications. In this study, single-layer hybrid composites reinforced with SCFs and nHA in varying ratios, as well as pure epoxy (E) and epoxy-carbon fiber composites, were all fabricated by hand lay-up method. Tensile tests, 3-point bending tests, and Izod impact tests were performed to investigate their mechanical characteristics. Moreover, the hybrid composite samples were tested for their biological properties in simulation body fluid (SBF). Mechanical and biological properties were found to be enhanced according to the results. Consequently, the hybrid composite (E-10CF-3nHA) of 10% carbon fiber (CF) and 3% nanohydroxyapatite (nHA) performed the best in all tests.
Destekleyen Kurum
Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi
Proje Numarası
KBÜBAP-22-YL-070
Teşekkür
This work is supported by the Scientific Research Projects (grant no: KBUBAP-22-YL-070) of Karabük University in Turkey.
Kaynakça
- Krishnakumar, S., & Senthilvelan, T. (2021). Polymer composites in dentistry and orthopedic applications-a review. Materials Today: Proceedings, 46, 9707–9713. https://doi.org/10.1016/j.matpr.2020.08.463
- Avval, P. T., Samiezadeh, S., Klika, V., & Bougherara, H. (2015). Investigating stress shielding spanned by biomimetic polymer-composite vs. metallic hip stem: A computational study using mechano-biochemical model. Journal of the Mechanical Behavior of Biomedical Materials, 41, 56–67.
- Hansen, D. C. (2008). Metal Corrosion in the Human Body: The Ultimate Bio-Corrosion Scenario. The Electrochemical Society Interface, 17(2), 31–34. https://doi.org/10.1149/2.F04082IF
- Akgul, Y., Ahlatci, H., Turan, M. E., Simsir, H., Erden, M. A., Sun, Y., & Kilic, A. (2020). Mechanical, tribological, and biological properties of carbon fiber/hydroxyapatite reinforced hybrid composites. Polymer Composites, 41(6), 2426–2432. https://doi.org/10.1002/pc.25546
- Bagheri, Z. S., Giles, E., El Sawi, I., Amleh, A., Schemitsch, E. H., Zdero, R., & Bougherara, H. (2015). Osteogenesis and cytotoxicity of a new Carbon Fiber/Flax/Epoxy composite material for bone fracture plate applications. Materials Science and Engineering: C, 46, 435–442. https://doi.org/10.1016/j.msec.2014.10.042
- Akgul, Y., Alsbaale, Y. A. Y., Eticha, A. K., & Cug, H. (2022). Mechanical and Tribological Behaviors of Chopped Carbon/Glass Fiber Reinforced Hybrid Epoxy Composites. Mechanics Of Advanced Composite Structures, 9(2), 349–358.
- Ozsoy, N., Mimaroğlu, A., Ozsoy, M., & Ozsoy, M. I. (2015). Comparison of Mechanical Behaviour of Carbon and Glass Fiber Reinforced Epoxy Composites. Acta Physica Polonica A, 127(4), 1032–1034. https://doi.org/10.12693/APhysPolA.127.1032
- Mahalakshmi, B. N., & Prasad, V. V. (n.d.). Study on Mechanical Behaviour of Carbon Fiber Reinforced Epoxy Composites.
- Macuvele, D. L. P., Colla, G., Cesca, K., Ribeiro, L. F. B., da Costa, C. E., Nones, J., Breitenbach, E. R., Porto, L. M., Soares, C., Fiori, M. A., & Riella, H. G. (2019). UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. Materials Science and Engineering: C, 100, 411–423.
- Slósarczyk, A., Klisch, M., B\lażewicz, M., Piekarczyk, J., Stobierski, L., & Rapacz-Kmita, A. (2000). Hot pressed hydroxyapatite–carbon fibre composites. Journal of the European Ceramic Society, 20(9), 1397–1402.
- Zhao, J.-L., Fu, T., Han, Y., & Xu, K.-W. (2004). Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Materials Letters, 58(1), 163–168. https://doi.org/10.1016/S0167-577X(03)00437-3
- Solomon, B., George, D., Shunmugesh, K., & Akhil, K. T. (2017). The Effect of Fibers Loading on the Mechanical Properties of Carbon Epoxy Composite. Polymers and Polymer Composites, 25(3), 237–240. https://doi.org/10.1177/096739111702500310
- Khun, N. W., Zhang, H., Lim, L. H., Yue, C. Y., Hu, X., & Yang, J. (2014). Tribological properties of short carbon fibers reinforced epoxy composites. Friction, 2(3), 226–239. https://doi.org/10.1007/s40544-014-0043-5
- Nie, H., Zhang, L., Wang, M., Liu, Y., Zhang, R., & Jiang, P. (2023). Constructing network-shaped hydroxyapatite interlayer for carbon fiber composites. Materials Letters, 335, 133838.
- Nie, H., Zhang, L., Liu, Y., Jiang, P., Sheng, H., Hou, X., & Li, H. (2022). Optimizing Mechanical and Biotribological Properties of Carbon Fiber/Epoxy Composites by Applying Interconnected Graphene Interface. Applied Surface Science, 604, 154432.
- Akgul, Y., Yalcin, M. E., & Eticha, A. K. (2023). Effect of Chopped Carbon Fibers Amount on the Mechanical and Tribological Properties of Polyester Matrix Composite. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(1), 189–198.
- Tiwari, S., & Bijwe, J. (2014). Surface Treatment of Carbon Fibers—A Review. Procedia Technology, 14, 505–512. https://doi.org/10.1016/j.protcy.2014.08.064
- Arsun, O., Akgul, Y., & Simsir, H. (2021). Investigation of the properties of Al7075-HTC composites produced by powder metallurgy. Journal of Composite Materials, 55(17), 2339–2348. https://doi.org/10.1177/0021998321990877
- Akgul, Y. (2022). Effect of Hydrothermal Carbons Content on Wear Properties of Polyethylene Matrix Composites. Eskişehir Technical University Journal of Science and Technology A-Applied Sciences and Engineering, 23(3), 207–215.
- Koç, E., Kannan, M. B., Ünal, M., & Candan, E. (2015). Influence of zinc on the microstructure, mechanical properties and in vitro corrosion behavior of magnesium–zinc binary alloys. Journal of Alloys and Compounds, C(648), 291–296. https://doi.org/10.1016/j.jallcom.2015.06.227
- Savas, L. A., Tayfun, U., & Dogan, M. (2016). The use of polyethylene copolymers as compatibilizers in carbon fiber reinforced high density polyethylene composites. Composites Part B: Engineering, 99, 188–195. https://doi.org/10.1016/j.compositesb.2016.06.043
- Jianfeng, H., Juanying, L., Liyun, C., & Liping, Z. (2009). Preparation and properties of carbon fiber/ hydroxyapatite-poly(methyl methacrylate) biocomposites. Journal of Applied Polymer Science, NA-NA. https://doi.org/10.1002/app.31668
- Espinach, F. X., Julian, F., Verdaguer, N., Torres, L., Pelach, M. A., Vilaseca, F., & Mutje, P. (2013). Analysis of tensile and flexural modulus in hemp strands/polypropylene composites. Composites Part B: Engineering, 47, 339–343.
- Wong, K., Nirmal, U., & Lim, B. (2010). Impact behavior of short and continuous fiber-reinforced polyester composites. Journal of Reinforced Plastics and Composites, 29(23), 3463–3474. https://doi.org/10.1177/0731684410375639
- Ambigai, R., & Prabhu, S. (2018). Analysis on mechanical and thermal properties of glass-carbon/epoxy based hybrid composites. IOP Conference Series: Materials Science and Engineering, 402, 012136. https://doi.org/10.1088/1757-899X/402/1/012136
- Olszewski, A., Nowak, P., Kosmela, P., & Piszczyk, Ł. (2021). Characterization of Highly Filled Glass Fiber/Carbon Fiber Polyurethane Composites with the Addition of Bio-Polyol Obtained through Biomass Liquefaction. Materials, 14(6), Article 6. https://doi.org/10.3390/ma14061391
- Cantwell, W. J., & Morton, J. (1991). The impact resistance of composite materials—A review. Composites, 22(5), 347–362. https://doi.org/10.1016/0010-4361(91)90549-V
- Liu, T., Huang, A., Geng, L.-H., Lian, X.-H., Chen, B.-Y., Hsiao, B. S., Kuang, T.-R., & Peng, X.-F. (2018). Ultra-strong, tough and high wear resistance high-density polyethylene for structural engineering application: A facile strategy towards using the combination of extensional dynamic oscillatory shear flow and ultra-high-molecular-weight polyethylene. Composites Science and Technology, 167, 301–312.
- Yadav, S., Haque, Z., & Kumar, S. (n.d.). Mechanical and Sliding Wear Behaviour of E-GLASS Fiber Reinforced with EPOXY Composites. 03(05).
- Chukov, D. I., Stepashkin, A. A., Maksimkin, A. V., Tcherdyntsev, V. V., Kaloshkin, S. D., Kuskov, K. V., & Bugakov, V. I. (2015). Investigation of structure, mechanical and tribological properties of short carbon fiber reinforced UHMWPE-matrix composites. Composites Part B: Engineering, 76, 79–88. https://doi.org/10.1016/j.compositesb.2015.02.019
- Xian, G., & Zhang, Z. (2005). Sliding wear of polyetherimide matrix composites. Wear, 258(5–6), 776–782. https://doi.org/10.1016/j.wear.2004.09.054
- Chan, K. W., Liao, C. Z., Wong, H. M., Kwok Yeung, K. W., & Tjong, S. C. (2016). Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Advances, 6(23), 19417–19429. https://doi.org/10.1039/C5RA22134J
- Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017
- Kong, L., Gao, Y., Lu, G., Gong, Y., Zhao, N., & Zhang, X. (2006). A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal, 42(12), 3171–3179. https://doi.org/10.1016/j.eurpolymj.2006.08.009