Araştırma Makalesi
BibTex RIS Kaynak Göster

Dinamik Titreşim Emici Sistem Tasarımı ve Enerji Hasadı Uygulaması

Yıl 2025, Cilt: 12 Sayı: 1, 81 - 92, 30.05.2025
https://doi.org/10.35193/bseufbd.1460611

Öz

Dinamik titreşim emiciler mekanik sistemlerde titreşimleri ortadan kaldırmak veya daha düşük bir seviyeye getirmek için kullanılan pasif titreşim kontrol cihazlarıdır. Titreşim mühendislik uygulamalarında genellikle istenmeyen durum olarak karşımıza çıkmaktadır. Bir yapının ya da makinenin performansı ve dayanıklılığı üzerine doğrudan etkisi olan mekanik titreşimlerin aktif ya da pasif yöntemler ile bastırılması gerekmektedir. Dinamik titreşim emici cihazlar, titreşen bir yapının üzerine eklenerek asıl yapı üzerindeki titreşimleri sönümleler. Eklenen cihazın doğal frekansı titreşen asıl yapının doğal frekansı yakınlarında olacak şekilde seçilmektedir. Asıl sistemin üzerindeki titreşimler bastırılarak eklenen yeni kütlenin üzerine aktarılmış olur. Burada ayrıca sistemin serbestlik derecesi de eklenen yapı sayesinde arttırılmaktadır. Bu çalışmada eklenen kütlenin maruz kaldığı mekanik titreşimlerin faydalı enerjiye dönüşmesi adına bir enerji hasadı uygulaması gerçekleştirilmiştir. Deneysel olarak kurulan bir dinamik titreşim emici düzeneğinde elektromanyetik enerji hasadı yöntemi sunulmaktadır. Sistemde eklenen kütlede oluşan mekanik titreşimler ile indüklenen bir bobin üzerinden sabit mıknatıs yapısı yardımı ile gerilim üretimi gerçekleştirilmiştir. Doğal frekansı 3.58 [Hz] olarak tespit edilen sisteme asıl sisteme kendi frekansına yakın olacak şekilde (3.60 [Hz]) ikincil bir sistem eklenerek deneysel çalışmalar gerçekleştirilmiştir. Deneysel çalışmalar sonucunda rezonans frekansında tahrik edilen sistemin üzerindeki titreşimin dinamik titreşim emici yardımı ile bastırıldığı ve bu işlem sırasında eklenen kütle üzerinde oluşan titreşimlerinde faydalı enerjiye dönüştürme adına enerji hasadı uygulamasının gerçekleştirildiği gösterilmiştir.

Kaynakça

  • Frahm, H. (1911). U.S. Patent No. 989,958. Washington, DC: U.S. Patent and Trademark Office.
  • Den Hartog, J. P. (1985). Mechanical vibrations. Dover Publication, New York, 87-102.
  • Huang, Y. M., & Chen, C. C. (2000). Optimal design of dynamic absorbers on vibration and noise control of the fuselage. Computers & Structures, 76(6), 691-702.
  • Wu, T. X. (2008). On the railway track dynamics with rail vibration absorber for noise reduction. Journal of Sound and Vibration, 309(3-5), 739-755.
  • Sun, Z., Sun, J., Wang, C., & Dai, Y. (1996). Dynamic vibration absorbers used for increasing the noise transmission loss of aircraft panels. Applied Acoustics, 48(4), 311-321.
  • Demir, C. (2004). Alti tekerlekli taşitin deneysel ve teorik olarak frekans analizi, dinamik absorber uygulamasi. Journal of Aeronautics and Space Technologies, 1(4), 27-40.
  • Koç, M. A. (2020). Implementation of a Vibration Absorbers to Euler-Bernoulli Beam and Dynamic Analysis of Moving Car. Academic Platform-Journal of Engineering and Science, 8(3), 523-532.
  • Zuo, L., Scully, B., Shestani, J., & Zhou, Y. (2010). Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Materials and Structures, 19(4), 045003.
  • Elvin, N. G., & Elvin, A. A. (2011). An experimentally validated electromagnetic energy harvester. Journal of sound and vibration, 330(10), 2314-2324.
  • Kim, H. S., Kim, J. H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International journal of precision engineering and manufacturing, 12, 1129-1141.
  • Sezer, N., & Koç, M. (2021). A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano energy, 80, 105567.
  • Covaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors, 20(12), 3512.
  • Beeby, S. P., & O’Donnell, T. (2009). Electromagnetic energy harvesting. Energy Harvesting Technologies, Springer, Boston, MA, 129-161.
  • Sazonov, E., Li, H., Curry, D., & Pillay, P. (2009). Self-powered sensors for monitoring of highway bridges. IEEE Sensors Journal, 9(11), 1422-1429.
  • Bouendeu, E., Greiner, A., Smith, P. J., & Korvink, J. G. (2010). A low-cost electromagnetic generator for vibration energy harvesting. IEEE Sensors Journal, 11(1), 107-113.
  • Tonan, M., Pasetto, A., & Doria, A. (2024). Vibration Energy Harvesting from Plates by Means of Piezoelectric Dynamic Vibration Absorbers. Applied Sciences, 14(1), 402.
  • Huang, X. (2024). Exploiting multi-stiffness combination inspired absorbers for simultaneous energy harvesting and vibration mitigation. Applied Energy, 364, 123124.
  • Yang, T., Zhou, S., Litak, G., & Jing, X. (2023). Recent advances in correlation and integration between vibration control, energy harvesting and monitoring. Nonlinear Dynamics, 111(22), 20525-20562.
  • Rezaei, M., Talebitooti, R., & Liao, W. H. (2022). Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber. Archive of Applied Mechanics, 1-20.
  • Maamer, B., Boughamoura, A., El-Bab, A. M. F., Francis, L. A., & Tounsi, F. (2019). A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Conversion and Management, 199, 111973.
  • Sarker, M. R., Saad, M. H. M., Olazagoitia, J. L., & Vinolas, J. (2021). Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications. Electronics, 10(9), 1108.
  • Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74, 1-18.
  • Ali, S. F., & Adhikari, S. (2013). Energy harvesting dynamic vibration absorbers. Journal of Applied Mechanics, 80(4), 041004.
  • Heidari, H., & Afifi, A. (2017). Design and fabrication of an energy-harvesting device using vibration absorber. The European Physical Journal Plus, 132(5), 233.
  • Dipak, S., Rajarathinam, M., & Ali, S. F. (2013, August). Energy harvesting dynamic vibration absorber under random vibration. In 2013 IEEE International Conference on Control Applications (CCA) (pp. 1241-1246). IEEE.
  • Wang, Q., Zhou, J., Wang, K., Gao, J., Lin, Q., Chang, Y., Xu, D., & Wen, G. (2023). Dual-function quasi-zero-stiffness dynamic vibration absorber: Low-frequency vibration mitigation and energy harvesting. Applied Mathematical Modelling, 116, 636-654.

Dynamic Vibration Absorber System Design and Energy Harvesting Application

Yıl 2025, Cilt: 12 Sayı: 1, 81 - 92, 30.05.2025
https://doi.org/10.35193/bseufbd.1460611

Öz

Dynamic vibration absorbers are passive vibration control devices used in mechanical systems to eliminate or reduce vibrations to a lower level. In vibration engineering applications, vibrations are generally considered undesirable. Vibrations, which directly affect the performance and durability of a structure or machine, need to be suppressed using active or passive methods. Dynamic vibration absorber devices are added to a vibrating structure to dampen the vibrations on the main structure. The natural frequency of the added device is chosen to be close to the natural frequency of the vibrating main structure. The vibrations on the main system are suppressed and transferred onto the newly added mass. Additionally, the degree of freedom of the system is increased due to the added structure. In this study, an energy harvesting application was carried out to convert the mechanical vibrations experienced by the added mass into useful energy. An electromagnetic energy harvesting method is presented in an experimental dynamic vibration absorber setup. Voltage generation was achieved via a coil induced by mechanical vibrations in the added mass with the help of a permanent magnet structure. An experimental study was conducted by adding a secondary system to the original system, which had a natural frequency of 3.58 [Hz]. The secondary system was designed with a frequency close to the original system's frequency, at 3.60 [Hz]. Experimental studies showed that the vibrations on the system driven at the resonance frequency were suppressed with the help of the dynamic vibration absorber, and during this process, an energy harvesting application was carried out to convert the vibrations on the added mass into useful energy.

Kaynakça

  • Frahm, H. (1911). U.S. Patent No. 989,958. Washington, DC: U.S. Patent and Trademark Office.
  • Den Hartog, J. P. (1985). Mechanical vibrations. Dover Publication, New York, 87-102.
  • Huang, Y. M., & Chen, C. C. (2000). Optimal design of dynamic absorbers on vibration and noise control of the fuselage. Computers & Structures, 76(6), 691-702.
  • Wu, T. X. (2008). On the railway track dynamics with rail vibration absorber for noise reduction. Journal of Sound and Vibration, 309(3-5), 739-755.
  • Sun, Z., Sun, J., Wang, C., & Dai, Y. (1996). Dynamic vibration absorbers used for increasing the noise transmission loss of aircraft panels. Applied Acoustics, 48(4), 311-321.
  • Demir, C. (2004). Alti tekerlekli taşitin deneysel ve teorik olarak frekans analizi, dinamik absorber uygulamasi. Journal of Aeronautics and Space Technologies, 1(4), 27-40.
  • Koç, M. A. (2020). Implementation of a Vibration Absorbers to Euler-Bernoulli Beam and Dynamic Analysis of Moving Car. Academic Platform-Journal of Engineering and Science, 8(3), 523-532.
  • Zuo, L., Scully, B., Shestani, J., & Zhou, Y. (2010). Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Materials and Structures, 19(4), 045003.
  • Elvin, N. G., & Elvin, A. A. (2011). An experimentally validated electromagnetic energy harvester. Journal of sound and vibration, 330(10), 2314-2324.
  • Kim, H. S., Kim, J. H., & Kim, J. (2011). A review of piezoelectric energy harvesting based on vibration. International journal of precision engineering and manufacturing, 12, 1129-1141.
  • Sezer, N., & Koç, M. (2021). A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano energy, 80, 105567.
  • Covaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors, 20(12), 3512.
  • Beeby, S. P., & O’Donnell, T. (2009). Electromagnetic energy harvesting. Energy Harvesting Technologies, Springer, Boston, MA, 129-161.
  • Sazonov, E., Li, H., Curry, D., & Pillay, P. (2009). Self-powered sensors for monitoring of highway bridges. IEEE Sensors Journal, 9(11), 1422-1429.
  • Bouendeu, E., Greiner, A., Smith, P. J., & Korvink, J. G. (2010). A low-cost electromagnetic generator for vibration energy harvesting. IEEE Sensors Journal, 11(1), 107-113.
  • Tonan, M., Pasetto, A., & Doria, A. (2024). Vibration Energy Harvesting from Plates by Means of Piezoelectric Dynamic Vibration Absorbers. Applied Sciences, 14(1), 402.
  • Huang, X. (2024). Exploiting multi-stiffness combination inspired absorbers for simultaneous energy harvesting and vibration mitigation. Applied Energy, 364, 123124.
  • Yang, T., Zhou, S., Litak, G., & Jing, X. (2023). Recent advances in correlation and integration between vibration control, energy harvesting and monitoring. Nonlinear Dynamics, 111(22), 20525-20562.
  • Rezaei, M., Talebitooti, R., & Liao, W. H. (2022). Concurrent energy harvesting and vibration suppression utilizing PZT-based dynamic vibration absorber. Archive of Applied Mechanics, 1-20.
  • Maamer, B., Boughamoura, A., El-Bab, A. M. F., Francis, L. A., & Tounsi, F. (2019). A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes. Energy Conversion and Management, 199, 111973.
  • Sarker, M. R., Saad, M. H. M., Olazagoitia, J. L., & Vinolas, J. (2021). Review of power converter impact of electromagnetic energy harvesting circuits and devices for autonomous sensor applications. Electronics, 10(9), 1108.
  • Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74, 1-18.
  • Ali, S. F., & Adhikari, S. (2013). Energy harvesting dynamic vibration absorbers. Journal of Applied Mechanics, 80(4), 041004.
  • Heidari, H., & Afifi, A. (2017). Design and fabrication of an energy-harvesting device using vibration absorber. The European Physical Journal Plus, 132(5), 233.
  • Dipak, S., Rajarathinam, M., & Ali, S. F. (2013, August). Energy harvesting dynamic vibration absorber under random vibration. In 2013 IEEE International Conference on Control Applications (CCA) (pp. 1241-1246). IEEE.
  • Wang, Q., Zhou, J., Wang, K., Gao, J., Lin, Q., Chang, Y., Xu, D., & Wen, G. (2023). Dual-function quasi-zero-stiffness dynamic vibration absorber: Low-frequency vibration mitigation and energy harvesting. Applied Mathematical Modelling, 116, 636-654.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Dinamikler, Titreşim ve Titreşim Kontrolü
Bölüm Makaleler
Yazarlar

Sinan Başaran 0000-0002-3783-2260

Yayımlanma Tarihi 30 Mayıs 2025
Gönderilme Tarihi 28 Mart 2024
Kabul Tarihi 24 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Başaran, S. (2025). Dinamik Titreşim Emici Sistem Tasarımı ve Enerji Hasadı Uygulaması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 81-92. https://doi.org/10.35193/bseufbd.1460611