Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Grain Size on Mechanical Properties of Polycrystalline NiAl Nanowire: Study of Molecular Dynamics

Yıl 2025, Cilt: 12 Sayı: 1, 290 - 300, 30.05.2025
https://doi.org/10.35193/bseufbd.1557880

Öz

In this study, the effect of grain size on the mechanical properties of polycrystalline NiAl nanowire under uniaxial tensile stress was investigated by Molecular Dynamics (MD) simulation method. The Young's modulus, yield strength, and fracture stress values were determined from the stress-strain curves obtained as a result of tensile deformation. Atomic positions determined using the Common Neighbor Analysis (CNA) method were used to detect the structural changes that occurred. From the results obtained, it was determined that the grain size affects the movement mechanisms of the grains, grain boundaries and the relationship between grain size and yield strength in the polycrystalline nanowire alloy system modeled with the Embedded Atom Method (EAM) potential function. From this relationship, Hall-Petch effect and after a certain critical grain size inverse Hall-Petch effect were observed.

Kaynakça

  • Fan, H. J., Werner, P., & Zacharias, M. (2006). Semiconductor nanowires: from self-organization to patterned growth. Small, 2(6), 700–717.
  • Teo, B. K., Huang, S. P., Zhang, R. Q., & Li, W. K. (2009). Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: Particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes. Coord. Chem. Rev., 253(23), 2935–2958.
  • Zakharov, N., Werner, P., Gerth, G., Schubert, L., Sokolov, L., & Gösele, U. (2006). Growth phenomena of Si and Si/Ge nanowires on Si (111) by molecular beam epitaxy. J. Cryst. Growth, 290(1), 6–10.
  • Cao, A., Wei, Y., & Ma, E. (2008). Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Physical Review B, 77, 195429.
  • Hochbaum, A. I., & Yang, P. (2010). Semiconductor nanowires for energy conversion. Chem. Rev., 110(1), 527–546.
  • Rodrigues, V., Fuhrer, T., & Ugarte, D. (2000). Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett., 85, 4124.
  • Lu, W., & Lieber, C. M. (2006). Semiconductor nanowires. J. Phys. Appl. Phys., 39(21), R387.
  • Feng, X., He, R., Yang, P., & Roukes, M. (2007). Very high frequency silicon nanowire electromechanical resonators. Nano Lett., 7(7), 1953–1959.
  • Eom, K., Park, H. S., Yoon, D. S., & Kwon, T. (2011). Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys. Rep., 503(4–5), 115–163.
  • Zhang, C., De Sarkar, A., & Zhang, R. Q. (2011). Inducing novel electronic properties in< 112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study. J. Phys. Condens. Matter, 24(1), 015301.
  • Park, H., & Ji, C. (2006). On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia, 54, 2645–2654.
  • Abdullah, N. M. (2017). Tensile Strength of Polycrystalline NiAl Nanowires: A Molecular Dynamics Study. Master’s Thesis, Firat Universitiy, Graduate School of Natural and Applied Sciences, Elazig.
  • Diao, J., Gall, K., & Dunn, M. L. (2004). Yield strength asymmetry in metal nanowires. Nano Lett., 4, 1863.
  • Wu, B., Heidelberg, A., & Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater., 4, 525.
  • Wu, W., Brongersma, S. H., Hove, M. V., & Maex, K. (2004). Influence of sruface and grain-boundary scattering on the resisitvity. Appl. Phys. Lett., 84, 2838-2840.
  • Klinger, L., & Rabkin, E. (2006). Thermal stability and creep of polycrystalline nanowires. Acta Mater., 54, 305-311.
  • Smith, W. F. (1996). Principles of Materials Science and Engineering. McGraw-Hill Inc., New York, USA.
  • Savaşkan, T. (2004). Malzeme Bilgisi ve Muayenesi, Akademi Ltd. Şti. Yayınları, 15, Trabzon
  • Deng, X., Joseph, V.R., Mai W., Wang Z.L., & Jeff Wu C. F. (2009). Statistical approach toquantifying the elastic deformation of nanomaterials. Pnas, 29, 11845–11850.
  • Zhu, Y., Xu, F., Qin,Q., Fung, W. Y., & Lu, W. (2009). Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires. Nanoletters, 11, 3934-3939.
  • Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., & Gleiter, H. (2002). Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater., 1, 45.
  • Swygenhoven, H. V. (2002). Grain boundaries and dislocations, Science, 296, 66.
  • Fu, B., Chen, N., Xie, Y., & Ye, X. (2014). Size and orientation dependent melting properties and behavior of wurtzite CdSe nanowires. Comput. Mater. Sci., 84, 293–300.
  • Mandal, T. (2012). Strain induced phase transition in CdSe nanowires: Effect of size and temperature. Appl. Phys. Lett., 101(2), 021906.
  • Ye, X., Sun, D. Y., & Gong, X. G. (2008). Pressure-induced structural transformation of CdSe nanocrystals studied with molecular Dynamics. Phys. Rev. B, 77(9), 094108.
  • Conrad, H., & Narayan, J. (2000). On the grain size softening in nanocrystalline materials. Scr Mater., 42, 1025.
  • Cagin, T., Che, J., Qi, Y., Zhou, Y., Demiralp, E., Gao, G., & Goddard III, W. A. (1999). Computational Materials Chemistry at the Nanoscale. Journal of Nanoparticle Research, 1, 51–69.
  • Jia, H., Liu, X., Li, Z., Sun, S., & Li, M. (2018). The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study. Computational Materials Science, 143, 189-194.
  • Sutrakar, V.K., & Mahapatra, D.R. (2010). Superplasticity in intermetallic NiAl nanowires via atomistic simulations. Materials Letters,64(7), 879-881.
  • Ruestes, C. J., Bertolino, G., Ruda, M., Farkas, D., & Bringa, E. M. (2014). Grain size effects in the deformation of [0001] textured nanocrystalline Zr. Scr. Mater., 71, 9–12.
  • Cao, R. G., & Deng, C. (2015). The ultra-small strongest grain size in nanocrystalline Ni nanowires. Scr. Mater., 94, 9–12.
  • LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov/. (Erişim Tarihi:02.04.2021).
  • Daw, M. S., & Baskes, M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett., 50, 1285–1295.
  • Guellil, A. M., & Adams, J. B. (1992). The application of the analytic embedded atom method to bcc metals and alloys. J. Mater. Res., 7, 639–652.
  • Zhou, X. W., Johnson, R. A., & Wadley, H. N. G. (2004). Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B, 69, 144113.
  • Kazanc, S. (2013). The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838.
  • Kazanc, S., Ozgen, S., & Adiguzel, O. (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334, 375-381.
  • Jacobus, K., Sehitoglu, H., & Balzer, M. (1996). Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A), 3066-3073.
  • Bonny G., Castin N., & Terentyev D. (2013). Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng., 21, 085004.
  • Stukowski A. (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Hirel, P. (2015). Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun., 197, 212.
  • Zhang, Y., Li, J., Hu, Y., Ding, S., Du, F., & Xia, R. (2021). Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J. Appl. Phys., 130, 155106.
  • Schiøtz, J., Di Tolla, F. D., & Jacobsen, K. W. (1998). Softening of Nanocrystalline Metals at Very Small Grains. Nature, 391, 561.
  • Li, X., Hu, W., Xiao, S., & Huang, W.Q. (2008). Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E, 40, 3030–3036.
  • Zhu, Y., Lia, Z., & Huanga, M. (2013). Coupled effect of sample size and grain size in polycrystalline Al nanowires. Scripta Materialia, 68, 663–666.
  • Weissavach, W. (1996), Malzeme Bilgisi ve Muayenesi, Birsen Kitabevi, 4.Baskı, İstanbul, 27-29.
  • Hall, E. O. (1951). The Deformation and Ageing of Mild Steel: III Discussion and Results. Proceed. Phys. Soc. Lond. Sect. B, 64, 747–752.
  • Petch, N. J. (1953). The Cleavage Strength of Polycrystals. J. Iron Steel Inst., 174, 25–28.
  • Jang, J. S. C., & Koch, C. C. (1990). The hall-petch relationship in nanocrystalline iron produced by ball milling. Scr. Metall. Mater., 24, 1599–1604.
  • Knapp, J. A., & Follstaedt, D. M. (2004). Hall-Petch relationship in pulsed-laser deposited nickel films. J. Mater. Res., 19, 218–227.
  • Zhang, L., Lu, C., & Tieu, K. (2016). A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput. Mater. Sci., 118, 180.
  • Zhang, L., Shibuta, Y., Huang, X., Lu, C., & Liu, M. (2019). Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comput. Mater. Sci., 156, 421.
  • Jia, H., Liu, X., Li, Z., Sun, S., & Li, M. (2018). The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study. Computational Materials Science, 143, 189–194.
  • Schiøtz, J., &, Jacobsen, K. W. (2003), A maximum in the strength of nanocrystalline copper. Science, 301, 1357-1359.
  • Yip, S. (1998). The strongest size, Nature, 391, 532–533.
  • Shan, Z. W., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., & Mao, S. X. (2004). Grain boundary-mediated plasticity in nanocrystalline nickel. Science, 305, 654–657.
  • Wang, L. H., Han, X. D., Liu, P., Yue, Y. H., Zhang, Z., & Ma, E. (2010). In Situ Observation of Dislocation Behavior in Nanometer Grains. Phys. Rev. Lett., 105, 135501.
  • Wang, L. H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M. W., & Han, X. D. (2014). Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun., 5, 4402.
  • Chokshi, A., Rosen, A., Karch, J., & Gleiter, H. (1989). On the validity of the hall–Petch relationship in nanocrystalline materials. Scripta Metall., 23, 1679-1683.
  • Latapie, A., & Farkas, D. (2003). Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simulation in Materials Science and Engineering, 11(5), 745-753.
  • Farkas, D., Frøseth, A., & Swygenhoven, H. V. (2006). Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scripta Mater., 55, 695–698.
  • Monk, J., & Farkas, D. (2007). Strain-induced grain growth and rotation in nickel nanowires. Phys. Rev. B, 75, 045414.
  • Farkas, D., Mohanty, S., & Monk, J. (2008). Strain-driven grain boundary motion in nanocrystalline materials. Mater. Sci. Eng. A, 493, 33–40.
  • Gianola, D. S., Petegem, S. V., Legros, M., Brandstetter, S., Swygenhoven, H. V., & Hemker, K. J. (2006). Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater., 54(8), 2253–2263.
  • Wang, Y.B., Li, B. Q., Sui, M. L., & Mao, S. X. (2008). Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett., 92, 011903.
  • Gorkaya, T., Molodov, K. D., Molodov, D. A., & Gottstein, G. (2011). Concurrent grain boundary motion and grain rotation under an applied stress. Acta Mater., 59(14), 5674–5680.

Tane Boyutunun Polikristal NiAl Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması

Yıl 2025, Cilt: 12 Sayı: 1, 290 - 300, 30.05.2025
https://doi.org/10.35193/bseufbd.1557880

Öz

Bu çalışmada tek eksenli çekme gerilmesi altındaki polikristal NiAl nano telinin mekanik özelliklerine tane boyutunun etkisi Moleküler Dinamik (MD) benzetim yöntemi ile incelendi. Çekme deformasyonu sonucu elde edilen zor-zorlanma eğrilerinden Young modülü, akma dayanımı, kopma gerilmesi değerleri belirlendi. Meydana gelen yapısal değişimleri tespit etmek için ortak komşu analiz yöntemi (Common Neighbor Analysis-CNA) kullanılarak belirlenen atomik konumlardan yararlanıldı. Elde edilen sonuçlardan Gömülmüş Atom Metodu (GAM) potansiyel fonksiyonu ile modellenen polikristal nano tel alaşım sistemde tane boyutunun tanelerin hareket mekanizmalarını, tane sınırlarını ve tane boyutu ile akma dayanımı arasındaki ilişkiyi etkilediği tespit edildi. Bu ilişkiden Hall-Petch etkisi ve belirli bir kritik tane büyüklüğünden sonra ters Hall-Petch etkisi gözlemlendi.

Kaynakça

  • Fan, H. J., Werner, P., & Zacharias, M. (2006). Semiconductor nanowires: from self-organization to patterned growth. Small, 2(6), 700–717.
  • Teo, B. K., Huang, S. P., Zhang, R. Q., & Li, W. K. (2009). Theoretical calculations of structures and properties of one-dimensional silicon-based nanomaterials: Particularities and peculiarities of silicon and silicon-containing nanowires and nanotubes. Coord. Chem. Rev., 253(23), 2935–2958.
  • Zakharov, N., Werner, P., Gerth, G., Schubert, L., Sokolov, L., & Gösele, U. (2006). Growth phenomena of Si and Si/Ge nanowires on Si (111) by molecular beam epitaxy. J. Cryst. Growth, 290(1), 6–10.
  • Cao, A., Wei, Y., & Ma, E. (2008). Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Physical Review B, 77, 195429.
  • Hochbaum, A. I., & Yang, P. (2010). Semiconductor nanowires for energy conversion. Chem. Rev., 110(1), 527–546.
  • Rodrigues, V., Fuhrer, T., & Ugarte, D. (2000). Signature of atomic structure in the quantum conductance of gold nanowires. Phys. Rev. Lett., 85, 4124.
  • Lu, W., & Lieber, C. M. (2006). Semiconductor nanowires. J. Phys. Appl. Phys., 39(21), R387.
  • Feng, X., He, R., Yang, P., & Roukes, M. (2007). Very high frequency silicon nanowire electromechanical resonators. Nano Lett., 7(7), 1953–1959.
  • Eom, K., Park, H. S., Yoon, D. S., & Kwon, T. (2011). Nanomechanical resonators and their applications in biological/chemical detection: Nanomechanics principles. Phys. Rep., 503(4–5), 115–163.
  • Zhang, C., De Sarkar, A., & Zhang, R. Q. (2011). Inducing novel electronic properties in< 112> Ge nanowires by means of variations in their size, shape and strain: a first-principles computational study. J. Phys. Condens. Matter, 24(1), 015301.
  • Park, H., & Ji, C. (2006). On the thermomechanical deformation of silver shape memory nanowires. Acta Materialia, 54, 2645–2654.
  • Abdullah, N. M. (2017). Tensile Strength of Polycrystalline NiAl Nanowires: A Molecular Dynamics Study. Master’s Thesis, Firat Universitiy, Graduate School of Natural and Applied Sciences, Elazig.
  • Diao, J., Gall, K., & Dunn, M. L. (2004). Yield strength asymmetry in metal nanowires. Nano Lett., 4, 1863.
  • Wu, B., Heidelberg, A., & Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater., 4, 525.
  • Wu, W., Brongersma, S. H., Hove, M. V., & Maex, K. (2004). Influence of sruface and grain-boundary scattering on the resisitvity. Appl. Phys. Lett., 84, 2838-2840.
  • Klinger, L., & Rabkin, E. (2006). Thermal stability and creep of polycrystalline nanowires. Acta Mater., 54, 305-311.
  • Smith, W. F. (1996). Principles of Materials Science and Engineering. McGraw-Hill Inc., New York, USA.
  • Savaşkan, T. (2004). Malzeme Bilgisi ve Muayenesi, Akademi Ltd. Şti. Yayınları, 15, Trabzon
  • Deng, X., Joseph, V.R., Mai W., Wang Z.L., & Jeff Wu C. F. (2009). Statistical approach toquantifying the elastic deformation of nanomaterials. Pnas, 29, 11845–11850.
  • Zhu, Y., Xu, F., Qin,Q., Fung, W. Y., & Lu, W. (2009). Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires. Nanoletters, 11, 3934-3939.
  • Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., & Gleiter, H. (2002). Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater., 1, 45.
  • Swygenhoven, H. V. (2002). Grain boundaries and dislocations, Science, 296, 66.
  • Fu, B., Chen, N., Xie, Y., & Ye, X. (2014). Size and orientation dependent melting properties and behavior of wurtzite CdSe nanowires. Comput. Mater. Sci., 84, 293–300.
  • Mandal, T. (2012). Strain induced phase transition in CdSe nanowires: Effect of size and temperature. Appl. Phys. Lett., 101(2), 021906.
  • Ye, X., Sun, D. Y., & Gong, X. G. (2008). Pressure-induced structural transformation of CdSe nanocrystals studied with molecular Dynamics. Phys. Rev. B, 77(9), 094108.
  • Conrad, H., & Narayan, J. (2000). On the grain size softening in nanocrystalline materials. Scr Mater., 42, 1025.
  • Cagin, T., Che, J., Qi, Y., Zhou, Y., Demiralp, E., Gao, G., & Goddard III, W. A. (1999). Computational Materials Chemistry at the Nanoscale. Journal of Nanoparticle Research, 1, 51–69.
  • Jia, H., Liu, X., Li, Z., Sun, S., & Li, M. (2018). The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study. Computational Materials Science, 143, 189-194.
  • Sutrakar, V.K., & Mahapatra, D.R. (2010). Superplasticity in intermetallic NiAl nanowires via atomistic simulations. Materials Letters,64(7), 879-881.
  • Ruestes, C. J., Bertolino, G., Ruda, M., Farkas, D., & Bringa, E. M. (2014). Grain size effects in the deformation of [0001] textured nanocrystalline Zr. Scr. Mater., 71, 9–12.
  • Cao, R. G., & Deng, C. (2015). The ultra-small strongest grain size in nanocrystalline Ni nanowires. Scr. Mater., 94, 9–12.
  • LAMMPS Molecular Dynamics Simulator, http://lammps.sandia.gov/. (Erişim Tarihi:02.04.2021).
  • Daw, M. S., & Baskes, M. I. (1983). Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett., 50, 1285–1295.
  • Guellil, A. M., & Adams, J. B. (1992). The application of the analytic embedded atom method to bcc metals and alloys. J. Mater. Res., 7, 639–652.
  • Zhou, X. W., Johnson, R. A., & Wadley, H. N. G. (2004). Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B, 69, 144113.
  • Kazanc, S. (2013). The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838.
  • Kazanc, S., Ozgen, S., & Adiguzel, O. (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334, 375-381.
  • Jacobus, K., Sehitoglu, H., & Balzer, M. (1996). Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A, 27(A), 3066-3073.
  • Bonny G., Castin N., & Terentyev D. (2013). Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model. Simul. Mater. Sci. Eng., 21, 085004.
  • Stukowski A. (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Hirel, P. (2015). Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun., 197, 212.
  • Zhang, Y., Li, J., Hu, Y., Ding, S., Du, F., & Xia, R. (2021). Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J. Appl. Phys., 130, 155106.
  • Schiøtz, J., Di Tolla, F. D., & Jacobsen, K. W. (1998). Softening of Nanocrystalline Metals at Very Small Grains. Nature, 391, 561.
  • Li, X., Hu, W., Xiao, S., & Huang, W.Q. (2008). Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E, 40, 3030–3036.
  • Zhu, Y., Lia, Z., & Huanga, M. (2013). Coupled effect of sample size and grain size in polycrystalline Al nanowires. Scripta Materialia, 68, 663–666.
  • Weissavach, W. (1996), Malzeme Bilgisi ve Muayenesi, Birsen Kitabevi, 4.Baskı, İstanbul, 27-29.
  • Hall, E. O. (1951). The Deformation and Ageing of Mild Steel: III Discussion and Results. Proceed. Phys. Soc. Lond. Sect. B, 64, 747–752.
  • Petch, N. J. (1953). The Cleavage Strength of Polycrystals. J. Iron Steel Inst., 174, 25–28.
  • Jang, J. S. C., & Koch, C. C. (1990). The hall-petch relationship in nanocrystalline iron produced by ball milling. Scr. Metall. Mater., 24, 1599–1604.
  • Knapp, J. A., & Follstaedt, D. M. (2004). Hall-Petch relationship in pulsed-laser deposited nickel films. J. Mater. Res., 19, 218–227.
  • Zhang, L., Lu, C., & Tieu, K. (2016). A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput. Mater. Sci., 118, 180.
  • Zhang, L., Shibuta, Y., Huang, X., Lu, C., & Liu, M. (2019). Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comput. Mater. Sci., 156, 421.
  • Jia, H., Liu, X., Li, Z., Sun, S., & Li, M. (2018). The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study. Computational Materials Science, 143, 189–194.
  • Schiøtz, J., &, Jacobsen, K. W. (2003), A maximum in the strength of nanocrystalline copper. Science, 301, 1357-1359.
  • Yip, S. (1998). The strongest size, Nature, 391, 532–533.
  • Shan, Z. W., Stach, E. A., Wiezorek, J. M. K., Knapp, J. A., Follstaedt, D. M., & Mao, S. X. (2004). Grain boundary-mediated plasticity in nanocrystalline nickel. Science, 305, 654–657.
  • Wang, L. H., Han, X. D., Liu, P., Yue, Y. H., Zhang, Z., & Ma, E. (2010). In Situ Observation of Dislocation Behavior in Nanometer Grains. Phys. Rev. Lett., 105, 135501.
  • Wang, L. H., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Chen, M. W., & Han, X. D. (2014). Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun., 5, 4402.
  • Chokshi, A., Rosen, A., Karch, J., & Gleiter, H. (1989). On the validity of the hall–Petch relationship in nanocrystalline materials. Scripta Metall., 23, 1679-1683.
  • Latapie, A., & Farkas, D. (2003). Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe. Modelling Simulation in Materials Science and Engineering, 11(5), 745-753.
  • Farkas, D., Frøseth, A., & Swygenhoven, H. V. (2006). Grain boundary migration during room temperature deformation of nanocrystalline Ni. Scripta Mater., 55, 695–698.
  • Monk, J., & Farkas, D. (2007). Strain-induced grain growth and rotation in nickel nanowires. Phys. Rev. B, 75, 045414.
  • Farkas, D., Mohanty, S., & Monk, J. (2008). Strain-driven grain boundary motion in nanocrystalline materials. Mater. Sci. Eng. A, 493, 33–40.
  • Gianola, D. S., Petegem, S. V., Legros, M., Brandstetter, S., Swygenhoven, H. V., & Hemker, K. J. (2006). Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater., 54(8), 2253–2263.
  • Wang, Y.B., Li, B. Q., Sui, M. L., & Mao, S. X. (2008). Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett., 92, 011903.
  • Gorkaya, T., Molodov, K. D., Molodov, D. A., & Gottstein, G. (2011). Concurrent grain boundary motion and grain rotation under an applied stress. Acta Mater., 59(14), 5674–5680.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Fiziği
Bölüm Makaleler
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Yayımlanma Tarihi 30 Mayıs 2025
Gönderilme Tarihi 30 Eylül 2024
Kabul Tarihi 27 Ekim 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Kazanç, S. (2025). Tane Boyutunun Polikristal NiAl Nano Telinin Mekanik Özelliklerine Etkisi: Moleküler Dinamik Çalışması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(1), 290-300. https://doi.org/10.35193/bseufbd.1557880