Araştırma Makalesi
BibTex RIS Kaynak Göster

Improvement of Surface Properties via an Electroless Ni-B Coating for Commercial Purity Titanium

Yıl 2019, , 99 - 105, 30.09.2019
https://doi.org/10.35193/bseufbd.566236

Öz

In the present study, the surface of commercial
pure titanium (CP-Ti) was coated with electroless Ni–B. The surface morphology,
microstructure and phase identification were analyzed by Scanning Electron
Microscope (SEM) and X-Ray Diffraction (XRD). The obtained Ni-B coating
demonstrated significantly lower wear rate and stable friction coefficient
compared to bare CP-Ti. The superior wear resistance of Ni-B coating on the
CP-Ti is dealt with the combination of its high hardness and self-lubricating
property
.

Destekleyen Kurum

Bilecik Seyh Edebali University

Proje Numarası

2017-02.BŞEÜ.03-01

Teşekkür

This work was supported by the research foundation of Bilecik Seyh Edebali University [grant number 2017-02.BŞEÜ.03-01].

Kaynakça

  • [1] Kazemzadeh-Narbat M., Lai B. F.L., Ding C., Kizhakkedathu J.N., Hancock R. E.W., Wang R. (2013). Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials, 34, 5969-5977.
  • [2] Caroline R. (2016). Innovative surface treatments of titanium alloys for biomedical applications. Materials Science Forum, 879, 1570-1575.
  • [3] Annamalai V.E., Kavitha S., Ramji S. A. (2014). Enhancing the properties of Ti6Al4V as a biomedical material: a review. The Open Materials Science Journal, 8, 1-17.
  • [4] Revathi A., Magesh S., Balla V.K., Das M., Manivasagam G. (2016). Current advances in enhancement of wear and corrosion resistance of titanium alloys –a review. Materials Technology: Advanced Performance Materials, 1-9.
  • [5] Marques I.S.V., Alfaro M.F., Saito M. T., Saito M.T., Takoudis C., Landers R., Mesquita M.F., Junior F. H. N., Mathew M.T., Sukotjo C., Baraok V. A. R. (2016). Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces. Biointerphases, 11, 1-14.
  • [6] Zhecheva A., Sha W., Malinov S., Long A. (2005). Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coatings Technology, 200, 2192-2207.
  • [7] Stratton P., Graf M. (2009). Thermochemical surface treatment of titanium. International Heat Treatment and Surface Engineering, 3, 26-29.
  • [8] Kikuchi S., Takebe J. (2010). Characterization of the surface deposition on anodized-hydrothermally treated commercially pure titanium after immersion in simulated body fluid. Journal of Prosthodontic Research, 54, 70-77.
  • [9] Richard C., Kowandy C., Landoulsi J., Geetha M., Ramasawmy H. (2010). Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure Titanium and Ti-13Nb-13Zr substrates. International Journal of Refractory Metals & Hard Materials, 28, 115-123.
  • [10] Ipekci M., Siyahjani F., Cimenoglu H. (2013). Thermochemical nitriding of commercial purity titanium. Defect and Diffusion Forum, 334-335, 117-121.
  • [11] Vora H. D., Rajamure R.S., Dahotre S. N., Ho Y.H., Banerjee R., Dahotre N.B. (2015). Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti-6Al-4V biomaterial in physiological solution. Journal of The Mechanical Behavior of Biomedical Materials, 37, 153-164.
  • [12] Teker D., Muhaffel F., Menekse M., Karaguler N. G., Baydogan M., Cimenoglu H. (2015). Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Materials Science and Engineering C, 48, 579–585.
  • [13] Farnoush H., Muhaffel F., Cimenoglu H.(2015). Fabrication and characterization of nano-HA-45S5 Bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates. Applied Surface Science, 324, 765-774.
  • [14] Totolin V., Pejaković V., Csanyi T., Hekele O., Huber M., Ripoll M. R. (2016). Surface engineering of Ti6Al4V surfaces for enhanced tribocorrosion performance in artificial seawater. Materials and Design, 104, 10-18.
  • [15] Aniołek K., Kupka M., Barylski A. (2016). Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear, 356-357, 23-29.
  • [16] Jeong H.G., Lee Y., Lee D.G. (2017). Effects of pre-heat conditions on diffusion hardening of pure titanium by vacuum rapid nitriding. Surface & Coatings Technology, 326, 395-401.
  • [17] Dabalà M., Brunelli K., Frattini R., Magrini M.(2004). Surface hardening of Ti-6Al-4V alloy by diffusion treatment of electroless Ni-B coatings. Surface Engineering, 20, 103-107.
  • [18] Mindivan F., Mindivan H., Darcan C. (2017). Electroless Ni-B coating of pure titanium surface for enhanced tribocorrosion performance in artificial saliva and antibacterial activity. Tribology in Industry, 39, 270-276.
  • [19] Yildiz R.A., Göksenli A., Yüksel B., Muhaffel F., Aydeniz A. (2013). Effect of annealing temperature on the corrosion resistance of electroless produced Ni-B-W coatings. Advanced Materials Research, 651, 263-268.
  • [20] Madah F., Amadeh A.A., Dehghanian C. (2016). Investigation on the phase transformation of electroless Ni-B coating after dry sliding against alumina ball. Journal of Alloys and Compounds, 658, 272-279.
  • [21] Mindivan, F., Mindivan, H. (2017). The study of electroless Ni-P/Ni-B duplex coating on HVOF-sprayed martensitic stainless steel coating. Acta Physica Polonica A, 131, 64-67.
  • [22] Watanabe T., Tanabe Y. (1983). The lattice images of amorphous-like Ni–B alloy films prepared by electroless plating method, Transactions of the Japan Institute of Metals, 24, 396-404.
  • [23] Vitry V., Kanta A.F., Delaunois F. (2011). Mechanical and wear characterization of electroless nickel-boron coatings. Surface & Coatings Technology, 206, 1879-1885.

Ticari Saflıkta Titanyumun Akımsız Ni-B Kaplaması ile Yüzey Özelliklerinin Geliştirilmesi

Yıl 2019, , 99 - 105, 30.09.2019
https://doi.org/10.35193/bseufbd.566236

Öz

Bu çalışmada,
ticari saf titanyumun (CP-Ti) yüzeyi akımsız Ni-B ile kaplandı. Yüzey morfolojisi,
mikroyapı ve faz analizi, Taramalı Elektron Mikroskobu (SEM) ve X-Işınları
Difraksiyonu (XRD) ile analiz edildi. Elde edilen Ni-B kaplama, işlem görmemiş
CP-Ti'ye kıyasla önemli ölçüde daha düşük aşınma hızı ve kararlı sürtünme
katsayısı sergilemiştir. CP-Ti yüzeyine oluşturulan Ni-B kaplamanın üstün
aşınma direnci sergilemesi, oluşturulan kaplamanın yüksek sertlik ve kendinden
yağlama özelliğinden kaynaklanmaktadır.

Proje Numarası

2017-02.BŞEÜ.03-01

Kaynakça

  • [1] Kazemzadeh-Narbat M., Lai B. F.L., Ding C., Kizhakkedathu J.N., Hancock R. E.W., Wang R. (2013). Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials, 34, 5969-5977.
  • [2] Caroline R. (2016). Innovative surface treatments of titanium alloys for biomedical applications. Materials Science Forum, 879, 1570-1575.
  • [3] Annamalai V.E., Kavitha S., Ramji S. A. (2014). Enhancing the properties of Ti6Al4V as a biomedical material: a review. The Open Materials Science Journal, 8, 1-17.
  • [4] Revathi A., Magesh S., Balla V.K., Das M., Manivasagam G. (2016). Current advances in enhancement of wear and corrosion resistance of titanium alloys –a review. Materials Technology: Advanced Performance Materials, 1-9.
  • [5] Marques I.S.V., Alfaro M.F., Saito M. T., Saito M.T., Takoudis C., Landers R., Mesquita M.F., Junior F. H. N., Mathew M.T., Sukotjo C., Baraok V. A. R. (2016). Biomimetic coatings enhance tribocorrosion behavior and cell responses of commercially pure titanium surfaces. Biointerphases, 11, 1-14.
  • [6] Zhecheva A., Sha W., Malinov S., Long A. (2005). Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coatings Technology, 200, 2192-2207.
  • [7] Stratton P., Graf M. (2009). Thermochemical surface treatment of titanium. International Heat Treatment and Surface Engineering, 3, 26-29.
  • [8] Kikuchi S., Takebe J. (2010). Characterization of the surface deposition on anodized-hydrothermally treated commercially pure titanium after immersion in simulated body fluid. Journal of Prosthodontic Research, 54, 70-77.
  • [9] Richard C., Kowandy C., Landoulsi J., Geetha M., Ramasawmy H. (2010). Corrosion and wear behavior of thermally sprayed nano ceramic coatings on commercially pure Titanium and Ti-13Nb-13Zr substrates. International Journal of Refractory Metals & Hard Materials, 28, 115-123.
  • [10] Ipekci M., Siyahjani F., Cimenoglu H. (2013). Thermochemical nitriding of commercial purity titanium. Defect and Diffusion Forum, 334-335, 117-121.
  • [11] Vora H. D., Rajamure R.S., Dahotre S. N., Ho Y.H., Banerjee R., Dahotre N.B. (2015). Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti-6Al-4V biomaterial in physiological solution. Journal of The Mechanical Behavior of Biomedical Materials, 37, 153-164.
  • [12] Teker D., Muhaffel F., Menekse M., Karaguler N. G., Baydogan M., Cimenoglu H. (2015). Characteristics of multi-layer coating formed on commercially pure titanium for biomedical applications. Materials Science and Engineering C, 48, 579–585.
  • [13] Farnoush H., Muhaffel F., Cimenoglu H.(2015). Fabrication and characterization of nano-HA-45S5 Bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates. Applied Surface Science, 324, 765-774.
  • [14] Totolin V., Pejaković V., Csanyi T., Hekele O., Huber M., Ripoll M. R. (2016). Surface engineering of Ti6Al4V surfaces for enhanced tribocorrosion performance in artificial seawater. Materials and Design, 104, 10-18.
  • [15] Aniołek K., Kupka M., Barylski A. (2016). Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear, 356-357, 23-29.
  • [16] Jeong H.G., Lee Y., Lee D.G. (2017). Effects of pre-heat conditions on diffusion hardening of pure titanium by vacuum rapid nitriding. Surface & Coatings Technology, 326, 395-401.
  • [17] Dabalà M., Brunelli K., Frattini R., Magrini M.(2004). Surface hardening of Ti-6Al-4V alloy by diffusion treatment of electroless Ni-B coatings. Surface Engineering, 20, 103-107.
  • [18] Mindivan F., Mindivan H., Darcan C. (2017). Electroless Ni-B coating of pure titanium surface for enhanced tribocorrosion performance in artificial saliva and antibacterial activity. Tribology in Industry, 39, 270-276.
  • [19] Yildiz R.A., Göksenli A., Yüksel B., Muhaffel F., Aydeniz A. (2013). Effect of annealing temperature on the corrosion resistance of electroless produced Ni-B-W coatings. Advanced Materials Research, 651, 263-268.
  • [20] Madah F., Amadeh A.A., Dehghanian C. (2016). Investigation on the phase transformation of electroless Ni-B coating after dry sliding against alumina ball. Journal of Alloys and Compounds, 658, 272-279.
  • [21] Mindivan, F., Mindivan, H. (2017). The study of electroless Ni-P/Ni-B duplex coating on HVOF-sprayed martensitic stainless steel coating. Acta Physica Polonica A, 131, 64-67.
  • [22] Watanabe T., Tanabe Y. (1983). The lattice images of amorphous-like Ni–B alloy films prepared by electroless plating method, Transactions of the Japan Institute of Metals, 24, 396-404.
  • [23] Vitry V., Kanta A.F., Delaunois F. (2011). Mechanical and wear characterization of electroless nickel-boron coatings. Surface & Coatings Technology, 206, 1879-1885.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ferda Mindivan 0000-0002-6046-2456

Harun Mindivan 0000-0003-3948-253X

Proje Numarası 2017-02.BŞEÜ.03-01
Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 16 Mayıs 2019
Kabul Tarihi 9 Eylül 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Mindivan, F., & Mindivan, H. (2019). Improvement of Surface Properties via an Electroless Ni-B Coating for Commercial Purity Titanium. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 99-105. https://doi.org/10.35193/bseufbd.566236