Araştırma Makalesi
BibTex RIS Kaynak Göster

Uyarılmış Spin-3/2 Nötrinoların Foton İndüklü Reaksiyonda Doğrudan Olmayan Üretimi

Yıl 2019, , 509 - 520, 26.12.2019
https://doi.org/10.35193/bseufbd.647817

Öz

Bu çalışmada e-gamma -> veW- sürecinde t-kanalında oluşan uyarılmış
nötrinonun doğrudan olmayan üretimi araştırılmıştır. Burada e-
gamma -> veW- süreci, e-e+ (CLIC)
çarpıştırıcısının bir alt süreci olarak ele alınmıştır. e-e+
sisteminin kütle merkezi enerjisi 3000 GeV ve yıllık ışınlık değeri 5000 fb-1
alınmıştır. Ancak Compton geri saçılan foton dağılımından dolayı e-
gamma çarpışmasının kütle merkezi enerjisi 2733 GeV
olmuştur. Tüm hesaplamalarda kompozitlik ölçeği, uyarılmış nötrino kütlesine
eşit kabul edilmiştir. Uyarılmış nötrinolar, Standart Model (SM) leptonları ve
ayar bozonları (
gamma, W ve Z)
arasındaki etkileşmeler için efektif akımlar kullanılmıştır. Buna göre sinyal
ve aynı son durumu veren ardalanlar için tesir kesiti değerleri elde
edilmiştir. Sinyal ve ardalan değerleri arasındaki farklılık SM lagranjiyenine
eklenen efektif etkileşme terimlerinden kaynaklanmıştır. Ancak deneysel
gözlenebilirliğin saptanması için istatistik yöntemler vardır. Burada
istatistik önem (SS) kullanılmıştır. SS
³3 kriterine göre uyrılmış spin-3/2 nötrinoların 3000
GeV kütle değerine kadar (bu değer de dâhil) J1 ve J2
akımı için %95 güvenirlilik seviyesinde gözlenebileceği sonucuna varılmıştır.
İstatistik yöntem kullanılırken son durumdaki W’nun hadronik bozunduğu
varsayılmıştır. Bu çalışmada, ayrıca, J2 akımı kullanılarak serbest
bağlaşım parametrelerinin iki-boyutlu kontur grafikleri elde edilmiştir. Buna
göre bu parametreler, uyarılmış nötrinoların daha küçük kütle değerlerinde,
beklendiği gibi, daha küçük bölgeye sınırlandırılmışlardır. Son olarak, bu
çalışma göstermiştir ki, gelecek nesil e
gamma çarpıştırıcıları uyarılmış nötrinoları araştırma
potansiyeline sahiptir.

Kaynakça

  • [1] Terazawa, H., Chikashige, Y., & Akama, K. (1977). Unified Model of the Nambu-Jona-Lasinio Type for All Elementary-Particle Forces. Physical Review D, 15 (2), 480–487.
  • [2] Ne’eman, Y. (1979). Primitive Particle Model. Physics Letters B, 82 (1), 69–70.
  • [3] Terezawa, H., Yasu`e, M., Akama, K., & Hayashi, M. (1982). Observable Effects of the Possible Sub-structure of Leptons and Quarks. Physics Letters B, 112 (4-5), 387–392.
  • [4] Renard, F. M. (1983). Excited Quarks and New Hadronic States. Il Nuovo Cimento A, 77 (1), 1–20.
  • [5] Eichten, E. J., Lane, K. D., & Peskin, M. E. (1983). New Tests for Quark and Lepton Substructure. Physical Review Letters, 50 (11), 811–814.
  • [6] de R´ujula, A., Maiani, L., & Petronzio, R. (1984). Search for Excited Quarks. Physics Letters B, 140 (3-4), 253–258.
  • [7] Kühn, J., & Zerwas, P.M. (1984). Excited Quarks and Leptons. Physics Letters B, 147 (1–3), 189–196.
  • [8] Çakır, O., & Ozansoy, A. (2009). Single Production of Excited Spin-3/2 Neutrinos at Linear Colliders. Physical Review D, 79 (5).
  • [9] Hagiwara, K., Komamiya, S., & Zeppenfeld, D. (1985). Excited Lepton Production at LEP and HERA. Zeitschrift für Physik C Particles and Fields, 29 (1), 115–122.
  • [10] Belyaev, A., Boos, E., & Pukhov, A. (1992). Study of Excited Neutrino Production in e+e-, 𝛾e and 𝛾𝛾 Collisions at TeV Energies. Physics Letters B, 296 (3-4), 452–457.
  • [11] Ginzburg, I. F., & Ivanov, D. Y. (1992). Excited Leptons and Quarks at 𝛾𝛾/𝛾e Colliders. Physics Letters B, 276 (1-2), 214–218.
  • [12] Boudjema, F., Djouadi, A., & Kneur, J. L. (1993). Excited Fermions at e+e- and ep Colliders. Zeitschrift f¨ur Physik C Particles and Fields, 57 (3), 425–449.
  • [13] ´Eboli, O. J. P., Gregores, E.M., Montero, J. C., Novaes, S. F., & Spehler, D. (1996). Excited Leptonic States in Polarized e−𝛾 and e+e− Collisions. Physical Review D, 53 (3), 1253–1263.
  • [14] ´Eboli, O. J., Lietti, S. M., & Mathews, P. (2002). Excited Leptons at The CERN Large Hadron Collider. Physical Review D, 65 (7).
  • [15] Boos, E., Vologdin, A., Toback, D. & Gaspard, J. (2002). Prospects of Searching for Excited Leptons During Run II of the Fermilab Tevatron. Physical Review D, 66 (1).
  • [16] Kirca, Z., Cakir, O., & Aydin, Z. Z. (2003). Production of Excited Electrons at TESLA and CLIC Based e Gamma Colliders. Acta Physica Polonica B, 34 (8).
  • [17] Cakir, O., Leroy, C., Mehdiyev, R., & Belyaev, A. (2004). Production and Decay of Excited Electrons at the LHC. The European Physical Journal C, 32 (supplement 2), 1–17.
  • [18] Cakir, O., Yılmaz, A., & Sultansoy, S. (2004). Single Production of Excited Electrons at Future e+e−, ep and pp Colliders. Physical Review D, 70 (7).
  • [19] Cakir, O., Türk Cakir, İ., &Kırca, Z. (2004). Single Production of Excited Neutrinos at Future e+e−, ep and pp Colliders. Physical Review D, 70 (7).
  • [20] Belyaev, A., Leroy, C., & Mehdiyev, R. (2005). Production of Excited Neutrinos at the LHC. The European Physical Journal C, 41 (supplement 2), 1–10.
  • [21] Acosta, D., Adelman, J., Affolder T. et al. (2005). Search for Excited and Exotic Electrons in the e𝛾 Decay Channel in 𝑝𝑝 Collisions at √𝑠 = 1.96 TeV. Physical Review Letters, 94 (ID 101802).
  • [22] Abazo, W. M., Bloom, K., & Snow, G. R. (2008). Search for Excited Electrons in 𝑝𝑝 Collisions at √𝑠 = 1.96 TeV. Physical Review D, 77 (9).
  • [23] Inan, S. C. (2010). Exclusive Excited Leptons Search in Two Lepton Final States at the CERN LHC. Physical Review D, 81 (11).
  • [24] Ozansoy A. & Billur, A. A. (2012). Search for Excited Electrons Through 𝛾𝛾 Scattering. Physical Review D, 86 (5).
  • [25] Köksal, M. (2014). Analysis of Excited Neutrinos at the CLIC. International Journal of Modern Physics A, 29 (24).
  • [26] Caliskan, A., Kara, S. O., & Ozansoy, A. (2017). Excited Muon Searches at the FCC-Based Muon-Hadron Colliders. Advances in High Energy Physics, 2017 (1540243).
  • [27] Caliskan, A., (2017). Excited Neutrino Search Potential of the FCC-Based Electron-Hadron Colliders. Advances in High Energy Physics, 2017 (4726050). [28] Caliskan, A., & Kara, S. O. (2018). Single Production of the Excited Electrons in the Future FCC-Based Lepton–Hadron Colliders. International Journal of Modern Physics A, 33 (24).
  • [29] Caliskan, A., (2019). Search for Excited Muons at the Future SPPC-based Muon–Proton Colliders. Acta Physica Polonica B, 50, 1409-1422.
  • [30] Choudhury, S. R., Ellis, R. G., & Joshi, G. C. (1985). Limits on Excited Spin-3/2 Leptons. Physical Review D, 31 (9), 2390-2392.
  • [31] Spehler, D., ´Eboli, O. J., Marques, G. C., Novaes, S. F. & Natale, A. A. (1987). Looking for Spin-3/2 Leptons in Hadronic Collisions. Physical Review D, 36 (5), 1358–1362.
  • [32] Almeida, F., Martins Simoes, J., & Ramalho, A. (1993). Lepton Production at HERA. Nuclear Physics B, 397 (3), 502-514.
  • [33] Almeida Jr., F. M. L., Lopes, J. H. Martins Simoes, J. A. & Ramalho, A. J. (1996). Production and Decay of Single Heavy Spin-3/2 Leptons in High Energy Electron-Positron Collisions. Physical Review D, 53 (7), 3555–3558.
  • [34] Cakir, O., & Ozansoy, A. (2008). Search for Excited Spin-3/2 and Spin-1/2 Leptons at Linear Colliders. Physical Review D, 77 (3).
  • [35] Ozansoy, A., Arı, V., & Cetinkaya, V. (2016). Search for Excited Spin-3/2 Neutrinos at LHeC,” Advances in High Energy Physics, 2016, (ID 1739027).
  • [36] Achard, P., Adriani, O., Aguilar-Benitez, M. et al. (2003). Search for Excited Leptons at LEP. Physics Letters B, 568 (1-2), 23–34.
  • [37] Aaron, F. D. et al. (2008). A Search for Excited Neutrinos in e−p Collisions at HERA. Physics Letters B, 663 (5), 382-389.
  • [38] Aad, G., Abbott, B., Abdallah, J. et al. (2015). Search for New Phenomena in Events with Three or More Charged Leptons in pp Collisions at √𝑠 = 8TeV with the ATLAS Detector. Journal of High Energy Physics, 2015 (138).
  • [39] Accomando, E. et al. (2004). Physics at the CLIC Multi-TeV Linear Collider. arXiv: hep-ph/0412251 (hep-ph), CERN-2004-005.
  • [40] Dannheim, D., Lebrun, P., Linssen, L., Schulte, D., Simon, F., Stapnes, S., Toge, N., Weerts, H., & Wells, J. (2012). CLIC e+e- Linear Collider Studies. arXiv: 1208.1402 (hep-ex).
  • [41] Abramowicz, H, vd. (2013). Physics at the CLIC e+e- Linear Collider -- Input to the Snow Mass Process 2013. arXiv:1307.5288 (hep-ex).
  • [42] CLIC and CLICdp Collaborations. (2018). The Compact Linear Collider (CLIC) - 2018 Summary Report, CERN Yellow Rep. Monogr. 1802, 1-98.
  • [43] de Blas, J. et al. (2019). The CLIC Potential for New Physics arXiv:1812.02093v2 (hep-ph).
  • [44] Rarita, W., & Schwinger, J. S. (1941). On a Theory of Particles with Half Integral Spin. Physical Review, 60 (1).
  • [45] Ginzburg, I. F., et al. (1984). Colliding γe and γγ Beams Based on Single-Pass e+e− Accelerators II. Polarization Effects, Monochromatization Improvement. Nuclear Instruments and Methods in Physics Research 219 (5).
  • [46] Telnov, V. I. (1990). Problems in Obtaining γγ and γe Colliding Beams at Linear Colliders. Nuclear Instruments and Methods in Physics Research, 294 (72) (Sect. A).
  • [47] Pukhov, A., Boos, E., Dubinin, M., et al., (2000). CompHEP-a Package for Evaluation of Feynman Diagrams and Integration over Multi-Particle Phase Space. User’s Manual for Version 33. https://arxiv.org/abs/hep-ph/9908288v2, 08.11.2019
  • [48] Pukhov, A. (2009). CalcHEP 2.3: MSSM, Structure Functions, Event Generation, Batchs, and Generation of Matrix Elements for Other Packages. https://arxiv.org/abs/hep-ph/0412191v2, 08.11.2019
  • [49] Belyaev, A., Christensen, N. D., & Pukhov, A. (2013). CalcHEP 3.4 for Collider Physics Within and Beyond the Standard Model,”Computer Physics Communications, 184 (7), 1729–1769.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Volkan Çetinkaya 0000-0001-7056-3325

Yayımlanma Tarihi 26 Aralık 2019
Gönderilme Tarihi 17 Kasım 2019
Kabul Tarihi 9 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Çetinkaya, V. (2019). Uyarılmış Spin-3/2 Nötrinoların Foton İndüklü Reaksiyonda Doğrudan Olmayan Üretimi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 509-520. https://doi.org/10.35193/bseufbd.647817