Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Electrochemically Reduced Graphene Oxide, Polythionine and Gold Nanoparticles on Electrooxidation of Dopamine, NADH and Ascorbic Acid

Yıl 2021, , 8 - 23, 30.06.2021
https://doi.org/10.35193/bseufbd.822201

Öz

In this study, screen-printed carbon electrodes (SPCE) were modified with electrochemically reduced graphene oxide (ERGO) (SPCE/ERGO), then polythionine (PTH) film was formed on SPCE/ERGO by electropolymerization technique (SPCE/ERGO/PTH). The optimum number of cycles has been determined for the electropolymerization of PTH on SPCE/ERGO. Gold nanoparticles (AuNP) were formed on SPCE/ERGO/PTH electrodes by electrodeposition method and electrochemical characterizations of SPCE/ERGO/PTH/AuNP electrodes were made by cyclic voltammetry (CV). The electrocatalytic effects of ERGO, PTH and AuNP on the electrooxidation of dopamine (DA), nicotinamide adenine dinucleotide (NADH) and ascorbic acid (AA) were investigated, and PTH was observed to play a role as a mediator for three analytes. The anodic peak potentials of DA, NADH and AA shifted in the negative direction, and anodic peak currents increased due to the synergistic effect of ERGO, PTH and AuNP together. The diffusion coefficients (D) of DA, NADH and AA were calculated as 3.37×10−8, 7.79×10−9 and 1.51×10−8, respectively, and also the electron transfer coefficients (α) were calculated as 0.327, 0.701 and 0.373, respectively. The effect of pH on the electrooxidation of DA, NADH and AA was also examined, and it was observed that the anodic peak potentials for all three analytes decreased with increasing the pH.

Kaynakça

  • Han, H. S., Seol, H., Kang, D. H., Ahmed, M. S., You, J. M., & Jeon, S. (2014). Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene. Sensors and Actuators B: Chemical, 204, 289-296.
  • Liu, A., Honma, I., & Zhou, H. (2007). Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly (acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosensors and Bioelectronics, 23(1), 74-80.
  • Liu, S., Yan, J., He, G., Zhong, D., Chen, J., Shi, L., Zhou, X., & Jiang, H. (2012). Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. Journal of Electroanalytical Chemistry, 672, 40-44.
  • Liu, A., Honma, I., & Zhou, H. (2005). Amperometric biosensor based on tyrosinase-conjugated polysacchride hybrid film: Selective determination of nanomolar neurotransmitters metabolite of 3, 4-dihydroxyphenylacetic acid (DOPAC) in biological fluid. Biosensors and Bioelectronics, 21(5), 809-816.
  • Wightman, R. M., May, L. J., & Michael, A. C. (1988). Detection of dopamine dynamics in the brain. Analytical Chemistry, 60(13), 769A-793A.
  • Bergel, A., Souppe, J., & Comtat, M. (1989). Enzymatic amplification for spectrophotometric and electrochemical assays of NAD+ and NADH. Analytical Biochemistry, 179(2), 382-388.
  • Rusling, J. F. (Ed.). (2003). Biomolecular films: design, function, and applications. CRC Press, New York, 499.
  • Omar, F. S., Duraisamy, N., Ramesh, K., & Ramesh, S. (2016). Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH). Biosensors and Bioelectronics, 79, 763-775.
  • Gunes, M., & Dilgin, Y. (2019). Flow injection amperometric determination of NADH at a calmagite-modified pencil graphite electrode. Monatshefte Fur Chemie, 150(8), 1425-1432.
  • Romay, C. H., Armesto, J., Remirez, D., Gonzalez, R., Ledon, N., & Garcia, I. (1998). Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research, 47(1), 36-41.
  • Bhagavan, N. V. (2001). Medical Biochemistry. 4th ed. Elsevier, Netherlands, pp. 331-363.
  • Eitenmiller, R. R., Landen Jr, W. O., & Ye, L. (2016). Vitamin analysis for the health and food sciences. CRC press, New York.
  • Basu, T. K., & Dickerson, J. W. T. (1996). Vitamin A. Vitamin A in human health and disease. Oxon: CAB International, 148-77.
  • Altun, M., Bilgi Kamaç, M., Bilgi, A., & Yılmaz, M. (2020). Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. International Journal of Environmental Analytical Chemistry, 100(4), 451-467.
  • Bilgi Kamaç, M., Kıymaz Onat, E., & Yılmaz, M. (2020). A new disposable amperometric NADH sensor based on screen-printed electrode modified with reduced graphene oxide/polyneutral red/gold nanoparticle. International Journal of Environmental Analytical Chemistry, 100(4), 419-431.
  • de Faria, L. V., Lisboa, T. P., de Farias, D. M., Araujo, F. M., Machado, M. M., de Sousa, R. A., Matos, M. A. C., Munoz, R. A. A., & Matos, R. C. (2020). Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chemistry, 126509.
  • Ghica, M. E., & Brett, C. M. (2010). The influence of carbon nanotubes and polyazine redox mediators on the performance of amperometric enzyme biosensors. Microchimica Acta, 170(3-4), 257-265.
  • Barsan, M. M., Ghica, M. E., & Brett, C. M. (2015). Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Analytica Chimica acta, 881, 1-23.
  • Pauliukaite, R., Ghica, M. E., Barsan, M. M., & Brett, C. M. (2010). Phenazines and polyphenazines in electrochemical sensors and biosensors. Analytical Letters, 43(10-11), 1588-1608.
  • Tanaka, K., Ikeda, S., Oyama, N., Tokuda, K., & Ohsaka, T. (1993). Preparation of poly (thionine)-modified electrode and its application to an electrochemical detector for the flow-injection analysis of NADH. Analytical Sciences, 9(6), 783-789.
  • Mi, Q., Wang, Z. W., Chai, C. Y., Zhang, J., Zhao, B., & Chen, C. Y. (2011). Multilayer structured immunosensor based on a glassy carbon electrode modified with multi-wall carbon nanotubes, polythionine, and gold nanoparticles. Microchimica Acta, 173(3-4), 459-467.
  • Ghica, M. E., & Brett, C. M. (2014). Poly (brilliant green) and poly (thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta, 130, 198-206.
  • Martínez-García, G., Pérez-Julián, E., Agüí, L., Cabré, N., Joven, J., Yáñez-Sedeño, P., & Pingarrón, J. M. (2017). An electrochemical enzyme biosensor for 3-hydroxybutyrate detection using screen-printed electrodes modified by reduced graphene oxide and thionine. Biosensors, 7(4), 50.
  • Ye, Y., Xie, J., Ye, Y., Cao, X., Zheng, H., Xu, X., & Zhang, Q. (2018). A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon, 129, 730-737.
  • Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
  • Patil, A. J., Vickery, J. L., Scott, T. B., & Mann, S. (2009). Aqueous stabilization and self‐assembly of graphene sheets into layered bio‐nanocomposites using DNA. Advanced Materials, 21(31), 3159-3164.
  • Wang, Y., Lu, J., Tang, L., Chang, H., & Li, J. (2009). Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Analytical Chemistry, 81(23), 9710-9715.
  • Liu, C., Alwarappan, S., Chen, Z., Kong, X., & Li, C. Z. (2010). Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosensors and Bioelectronics, 25(7), 1829-1833.
  • Putzbach, W., & Ronkainen, N. J. (2013). Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors, 13(4), 4811-4840.
  • Bilgi, M., & Ayranci, E. (2018). Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. Journal of Electroanalytical Chemistry, 823, 588-592.
  • Fanjul-Bolado, P., Hernández-Santos, D., Lamas-Ardisana, P. J., Martín-Pernía, A., & Costa-García, A. (2008). Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta, 53(10), 3635-3642.
  • Wang, J., Tian, B., Nascimento, V. B., & Angnes, L. (1998). Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochimica Acta, 43(23), 3459-3465.
  • Lee, S. X., Lim, H. N., Ibrahim, I., Jamil, A., Pandikumar, A., & Huang, N. M. (2017). Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosensors and Bioelectronics, 89, 673-680.
  • Bilgi, M., Sahin, E. M., & Ayranci, E. (2018). Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. Journal of Electroanalytical Chemistry, 813, 67-74.
  • Bilgi Kamac, M., Kiymaz Onat, E., & Yilmaz, M. (2020). A novel non-enzymatic amperometric H2O2 sensor based on screen-printed electrode modified with reduced graphene oxide, polyneutralred and gold nanoparticles. International Journal of Environmental Analytical Chemistry, 100(4), 408-418.
  • Yu, Z., Sun, S., & Huang, M. (2016). Electrodeposition of gold nanoparticles on electrochemically reduced graphene oxide for high performance supercapacitor electrode materials. Int. J. Electrochem. Sci, 11(5), 3643-3650.
  • Yang, R., Ruan, C., Dai, W., Deng, J., & Kong, J. (1999). Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly (thionine). Electrochimica Acta, 44(10), 1585-1596.
  • Karaboğa, M. N. S., & Sezgintürk, M. K. (2019). Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst, 144(2), 611-621.
  • Yang, R., Ruan, C., Dai, W., Deng, J., & Kong, J. (1999). Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly (thionine). Electrochimica Acta, 44(10), 1585-1596.
  • Gao, Q., Cui, X., Yang, F., Ma, Y., & Yang, X. (2003). Preparation of poly (thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosensors and Bioelectronics, 19(3), 277-282.
  • Feng, H., Wang, H., Zhang, Y., Yan, B., Shen, G., & Yu, R. (2007). A direct electrochemical biosensing platform constructed by incorporating carbon nanotubes and gold nanoparticles onto redox poly (thionine) film. Analytical Sciences, 23(2), 235-239.
  • Mai, N., Liu, X., Zeng, X., Xing, L., Wei, W., & Luo, S. (2010). Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite. Microchimica Acta, 168(3-4), 215-220.
  • Deng, C., Chen, J., Nie, Z., Yang, M., & Si, S. (2012). Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode. Thin Solid Films, 520(23), 7026-7029.
  • Sahin, M., & Ayranci, E. (2015). Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochimica Acta, 166, 261-270.
  • Qu, F., Yang, M., Chen, J., Shen, G., & Yu, R. (2006). Amperometric Biosensors for Glucose Based on Layer‐by‐Layer Assembled Functionalized Carbon Nanotube and Poly (Neutral Red) Multilayer Film. Analytical Letters, 39(9), 1785-1799.
  • Bard, A. J., & Faulkner, L. R. (2001). Fundamentals and applications. Electrochemical Methods, 2(482), 580-632.
  • Zhao, C., Jiang, Z., Cai, X., Lin, L., Lin, X., & Weng, S. (2015). Ultrasensitive and reliable dopamine sensor based on polythionine/AuNPs composites. Journal of Electroanalytical Chemistry, 748, 16-22.
  • Lai, G., Liu, Y., Yu, A., Han, D., & Zhang, H. (2013). Simultaneous sensitive determination of dopamine and uric acid in the presence of excess ascorbic acid with a magnetic chitosan microsphere/thionine modified electrode. Analytical Letters, 46(10), 1525-1536.
  • Liu, Y., Zhang, H. L., Lai, G. S., Yu, A. M., Huang, Y. M., & Han, D. Y. (2010). Amperometric NADH biosensor based on magnetic chitosan microspheres/poly (thionine) modified glassy carbon electrode. Electroanalysis, 22(15), 1725-1732.
  • Li, Z., Huang, Y., Chen, L., Qin, X., Huang, Z., Zhou, Y., Meng, Y., Li, J., Huang, S., Liu, Y., Wang, W., Xie, Q., & Yao, S. (2013). Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide–polythionine nanocomposite film. Sensors and Actuators B: Chemical, 181, 280-287.
  • Pruneanu, S., Biris, A. R., Pogacean, F., Socaci, C., Coros, M., Rosu, M. C., Watanabe, F., & Biris, A. S. (2015). The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta, 154, 197-204.
  • Chang, H., Wu, X., Wu, C., Chen, Y., Jiang, H., & Wang, X. (2011). Catalytic oxidation and determination of β-NADH using self-assembly hybrid of gold nanoparticles and graphene. Analyst, 136(13), 2735-2740.
  • Govindhan, M., Amiri, M., & Chen, A. (2015). Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosensors and Bioelectronics, 66, 474-480.
  • Istrate, O. M., Rotariu, L., Marinescu, V. E., & Bala, C. (2016). NADH sensing platform based on electrochemically generated reduced graphene oxide–gold nanoparticles composite stabilized with poly (allylamine hydrochloride). Sensors and Actuators B: Chemical, 223, 697-704.
  • Immanuel, S., & Sivasubramanian, R. (2020). Electrochemical studies of the oxidation of NADH on chemically reduced graphene oxide nanosheets modified glassy carbon electrode. Materials Chemistry and Physics, 123015.
  • Devendiran, M., Kumar, K. K., & Narayanan, S. S. (2018). Amperometric Determination of ascorbic acid and riboflavin using ferrocene/thionin bimediator modified electrode. Int JS Res Sci Technol, 4, 628-634.
  • Szoke, A., Zsebe, Z., Turdean, G. L., & Muresan, L. M. (2019). Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid. Electrocatalysis, 10(5), 573-583.
  • Chethana, B. K., & Naik, Y. A. (2012). Electrochemical oxidation and determination of ascorbic acid present in natural fruit juices using a methionine modified carbon paste electrode. Analytical Methods, 4(11), 3754-3759.
  • Brett, C. M. A, & Brett, A. Maria Oliveira. (1993). Electrochemistry: principles, methods, and applications. Oxford: Oxford University Press.
  • Harrison, J. A., & Khan, Z. A. (1970). The oxidation of hydrazine on platinum in acid solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 28(1), 131-138.
  • Liu, B., Luo, L., Ding, Y., Si, X., Wei, Y., Ouyang, X., & Xu, D. (2014). Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochimica Acta, 142, 336-342.
  • Mie, Y., Yasutake, Y., Ikegami, M., & Tamura, T. (2019). Anodized gold surface enables mediator-free and low-overpotential electrochemical oxidation of NADH: A facile method for the development of an NAD+-dependent enzyme biosensor. Sensors and Actuators B: Chemical, 288, 512-518.
  • Fernández, L., & Carrero, H. (2005). Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid. Electrochimica Acta, 50(5), 1233-1240.
  • Habibi, B., Jahanbakhshi, M., & Pournaghi-Azar, M. H. (2011). Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon–ceramic electrode. Analytical Biochemistry, 411(2), 167-175.

Dopamin, NADH ve Askorbik Asitin Elektroyükseltgenmesine Elektrokimyasal Olarak İndirgenmiş Grafen Oksit, Politiyonin ve Altın Nanopartiküllerin Etkisi

Yıl 2021, , 8 - 23, 30.06.2021
https://doi.org/10.35193/bseufbd.822201

Öz

Bu çalışmada, yüzey baskılı karbon elektrotlar (SPCE) elektrokimyasal olarak indirgenmiş grafen oksit (ERGO) ile modifiye edilmiş (SPCE/ERGO), ardından elektropolimerizasyon tekniği ile politiyonin (PTH) filmi SPCE/ERGO’lar üzerinde oluşturulmuştur (SPCE/ERGO/PTH). PTH’nin SPCE/ERGO’lar üzerindeki elektropolimerizasyonu için optimum döngü sayısı belirlenmiştir. SPCE/ERGO/PTH elektrotları üzerinde elektrodepozisyon metodu ile altın nanopartiküller (AuNP) oluşturulmuş ve elde edilen SPCE/ERGO/PTH/AuNP elektrotlarının elektrokimyasal karakterizasyonları dönüşümlü voltametri (CV) ile yapılmıştır. Dopamin (DA), nikotinamid adenin dinükleotitin indirgenmiş formu (NADH) ve askorbik asitin (AA) elektroyükseltgenmesine ERGO, PTH ve AuNP’nin elektrokatalitik etkileri incelenmiş ve PTH’nin üç analit için de medyatör olarak rol oynadığı gözlenmiştir. ERGO, PTH ve AuNP’nin birlikte gösterdikleri sinerjik etki ile DA, NADH ve AA’nın anodik pik potansiyelleri negatif yöne kaymış ve anodik pik akımları artmıştır. DA, NADH ve AA’nın difüzyon katsayıları (D) sırasıyla 3.37×10−8, 7.79×10−9 ve 1.51×10−8 olarak, elektron transfer katsayıları (α) ise sırasıyla 0.327, 0.701 ve 0.373 olarak hesaplanmıştır. pH’nın DA, NADH ve AA’nın elektroyükseltgenmesine etkisi de incelenmiş ve pH arttıkça her üç analit için de anodik pik potansiyellerinin azaldığı gözlenmiştir.

Kaynakça

  • Han, H. S., Seol, H., Kang, D. H., Ahmed, M. S., You, J. M., & Jeon, S. (2014). Electrochemical oxidation and determination of dopamine in the presence of AA using ferulic acid functionalized electrochemically reduced graphene. Sensors and Actuators B: Chemical, 204, 289-296.
  • Liu, A., Honma, I., & Zhou, H. (2007). Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly (acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode. Biosensors and Bioelectronics, 23(1), 74-80.
  • Liu, S., Yan, J., He, G., Zhong, D., Chen, J., Shi, L., Zhou, X., & Jiang, H. (2012). Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. Journal of Electroanalytical Chemistry, 672, 40-44.
  • Liu, A., Honma, I., & Zhou, H. (2005). Amperometric biosensor based on tyrosinase-conjugated polysacchride hybrid film: Selective determination of nanomolar neurotransmitters metabolite of 3, 4-dihydroxyphenylacetic acid (DOPAC) in biological fluid. Biosensors and Bioelectronics, 21(5), 809-816.
  • Wightman, R. M., May, L. J., & Michael, A. C. (1988). Detection of dopamine dynamics in the brain. Analytical Chemistry, 60(13), 769A-793A.
  • Bergel, A., Souppe, J., & Comtat, M. (1989). Enzymatic amplification for spectrophotometric and electrochemical assays of NAD+ and NADH. Analytical Biochemistry, 179(2), 382-388.
  • Rusling, J. F. (Ed.). (2003). Biomolecular films: design, function, and applications. CRC Press, New York, 499.
  • Omar, F. S., Duraisamy, N., Ramesh, K., & Ramesh, S. (2016). Conducting polymer and its composite materials based electrochemical sensor for Nicotinamide Adenine Dinucleotide (NADH). Biosensors and Bioelectronics, 79, 763-775.
  • Gunes, M., & Dilgin, Y. (2019). Flow injection amperometric determination of NADH at a calmagite-modified pencil graphite electrode. Monatshefte Fur Chemie, 150(8), 1425-1432.
  • Romay, C. H., Armesto, J., Remirez, D., Gonzalez, R., Ledon, N., & Garcia, I. (1998). Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research, 47(1), 36-41.
  • Bhagavan, N. V. (2001). Medical Biochemistry. 4th ed. Elsevier, Netherlands, pp. 331-363.
  • Eitenmiller, R. R., Landen Jr, W. O., & Ye, L. (2016). Vitamin analysis for the health and food sciences. CRC press, New York.
  • Basu, T. K., & Dickerson, J. W. T. (1996). Vitamin A. Vitamin A in human health and disease. Oxon: CAB International, 148-77.
  • Altun, M., Bilgi Kamaç, M., Bilgi, A., & Yılmaz, M. (2020). Dopamine biosensor based on screen-printed electrode modified with reduced graphene oxide, polyneutral red and gold nanoparticle. International Journal of Environmental Analytical Chemistry, 100(4), 451-467.
  • Bilgi Kamaç, M., Kıymaz Onat, E., & Yılmaz, M. (2020). A new disposable amperometric NADH sensor based on screen-printed electrode modified with reduced graphene oxide/polyneutral red/gold nanoparticle. International Journal of Environmental Analytical Chemistry, 100(4), 419-431.
  • de Faria, L. V., Lisboa, T. P., de Farias, D. M., Araujo, F. M., Machado, M. M., de Sousa, R. A., Matos, M. A. C., Munoz, R. A. A., & Matos, R. C. (2020). Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chemistry, 126509.
  • Ghica, M. E., & Brett, C. M. (2010). The influence of carbon nanotubes and polyazine redox mediators on the performance of amperometric enzyme biosensors. Microchimica Acta, 170(3-4), 257-265.
  • Barsan, M. M., Ghica, M. E., & Brett, C. M. (2015). Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Analytica Chimica acta, 881, 1-23.
  • Pauliukaite, R., Ghica, M. E., Barsan, M. M., & Brett, C. M. (2010). Phenazines and polyphenazines in electrochemical sensors and biosensors. Analytical Letters, 43(10-11), 1588-1608.
  • Tanaka, K., Ikeda, S., Oyama, N., Tokuda, K., & Ohsaka, T. (1993). Preparation of poly (thionine)-modified electrode and its application to an electrochemical detector for the flow-injection analysis of NADH. Analytical Sciences, 9(6), 783-789.
  • Mi, Q., Wang, Z. W., Chai, C. Y., Zhang, J., Zhao, B., & Chen, C. Y. (2011). Multilayer structured immunosensor based on a glassy carbon electrode modified with multi-wall carbon nanotubes, polythionine, and gold nanoparticles. Microchimica Acta, 173(3-4), 459-467.
  • Ghica, M. E., & Brett, C. M. (2014). Poly (brilliant green) and poly (thionine) modified carbon nanotube coated carbon film electrodes for glucose and uric acid biosensors. Talanta, 130, 198-206.
  • Martínez-García, G., Pérez-Julián, E., Agüí, L., Cabré, N., Joven, J., Yáñez-Sedeño, P., & Pingarrón, J. M. (2017). An electrochemical enzyme biosensor for 3-hydroxybutyrate detection using screen-printed electrodes modified by reduced graphene oxide and thionine. Biosensors, 7(4), 50.
  • Ye, Y., Xie, J., Ye, Y., Cao, X., Zheng, H., Xu, X., & Zhang, Q. (2018). A label-free electrochemical DNA biosensor based on thionine functionalized reduced graphene oxide. Carbon, 129, 730-737.
  • Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
  • Patil, A. J., Vickery, J. L., Scott, T. B., & Mann, S. (2009). Aqueous stabilization and self‐assembly of graphene sheets into layered bio‐nanocomposites using DNA. Advanced Materials, 21(31), 3159-3164.
  • Wang, Y., Lu, J., Tang, L., Chang, H., & Li, J. (2009). Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Analytical Chemistry, 81(23), 9710-9715.
  • Liu, C., Alwarappan, S., Chen, Z., Kong, X., & Li, C. Z. (2010). Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosensors and Bioelectronics, 25(7), 1829-1833.
  • Putzbach, W., & Ronkainen, N. J. (2013). Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors, 13(4), 4811-4840.
  • Bilgi, M., & Ayranci, E. (2018). Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. Journal of Electroanalytical Chemistry, 823, 588-592.
  • Fanjul-Bolado, P., Hernández-Santos, D., Lamas-Ardisana, P. J., Martín-Pernía, A., & Costa-García, A. (2008). Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta, 53(10), 3635-3642.
  • Wang, J., Tian, B., Nascimento, V. B., & Angnes, L. (1998). Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochimica Acta, 43(23), 3459-3465.
  • Lee, S. X., Lim, H. N., Ibrahim, I., Jamil, A., Pandikumar, A., & Huang, N. M. (2017). Horseradish peroxidase-labeled silver/reduced graphene oxide thin film-modified screen-printed electrode for detection of carcinoembryonic antigen. Biosensors and Bioelectronics, 89, 673-680.
  • Bilgi, M., Sahin, E. M., & Ayranci, E. (2018). Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. Journal of Electroanalytical Chemistry, 813, 67-74.
  • Bilgi Kamac, M., Kiymaz Onat, E., & Yilmaz, M. (2020). A novel non-enzymatic amperometric H2O2 sensor based on screen-printed electrode modified with reduced graphene oxide, polyneutralred and gold nanoparticles. International Journal of Environmental Analytical Chemistry, 100(4), 408-418.
  • Yu, Z., Sun, S., & Huang, M. (2016). Electrodeposition of gold nanoparticles on electrochemically reduced graphene oxide for high performance supercapacitor electrode materials. Int. J. Electrochem. Sci, 11(5), 3643-3650.
  • Yang, R., Ruan, C., Dai, W., Deng, J., & Kong, J. (1999). Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly (thionine). Electrochimica Acta, 44(10), 1585-1596.
  • Karaboğa, M. N. S., & Sezgintürk, M. K. (2019). Cerebrospinal fluid levels of alpha-synuclein measured using a poly-glutamic acid-modified gold nanoparticle-doped disposable neuro-biosensor system. Analyst, 144(2), 611-621.
  • Yang, R., Ruan, C., Dai, W., Deng, J., & Kong, J. (1999). Electropolymerization of thionine in neutral aqueous media and H2O2 biosensor based on poly (thionine). Electrochimica Acta, 44(10), 1585-1596.
  • Gao, Q., Cui, X., Yang, F., Ma, Y., & Yang, X. (2003). Preparation of poly (thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosensors and Bioelectronics, 19(3), 277-282.
  • Feng, H., Wang, H., Zhang, Y., Yan, B., Shen, G., & Yu, R. (2007). A direct electrochemical biosensing platform constructed by incorporating carbon nanotubes and gold nanoparticles onto redox poly (thionine) film. Analytical Sciences, 23(2), 235-239.
  • Mai, N., Liu, X., Zeng, X., Xing, L., Wei, W., & Luo, S. (2010). Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite. Microchimica Acta, 168(3-4), 215-220.
  • Deng, C., Chen, J., Nie, Z., Yang, M., & Si, S. (2012). Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode. Thin Solid Films, 520(23), 7026-7029.
  • Sahin, M., & Ayranci, E. (2015). Electrooxidation of NADH on modified screen-printed electrodes: effects of conducting polymer and nanomaterials. Electrochimica Acta, 166, 261-270.
  • Qu, F., Yang, M., Chen, J., Shen, G., & Yu, R. (2006). Amperometric Biosensors for Glucose Based on Layer‐by‐Layer Assembled Functionalized Carbon Nanotube and Poly (Neutral Red) Multilayer Film. Analytical Letters, 39(9), 1785-1799.
  • Bard, A. J., & Faulkner, L. R. (2001). Fundamentals and applications. Electrochemical Methods, 2(482), 580-632.
  • Zhao, C., Jiang, Z., Cai, X., Lin, L., Lin, X., & Weng, S. (2015). Ultrasensitive and reliable dopamine sensor based on polythionine/AuNPs composites. Journal of Electroanalytical Chemistry, 748, 16-22.
  • Lai, G., Liu, Y., Yu, A., Han, D., & Zhang, H. (2013). Simultaneous sensitive determination of dopamine and uric acid in the presence of excess ascorbic acid with a magnetic chitosan microsphere/thionine modified electrode. Analytical Letters, 46(10), 1525-1536.
  • Liu, Y., Zhang, H. L., Lai, G. S., Yu, A. M., Huang, Y. M., & Han, D. Y. (2010). Amperometric NADH biosensor based on magnetic chitosan microspheres/poly (thionine) modified glassy carbon electrode. Electroanalysis, 22(15), 1725-1732.
  • Li, Z., Huang, Y., Chen, L., Qin, X., Huang, Z., Zhou, Y., Meng, Y., Li, J., Huang, S., Liu, Y., Wang, W., Xie, Q., & Yao, S. (2013). Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide–polythionine nanocomposite film. Sensors and Actuators B: Chemical, 181, 280-287.
  • Pruneanu, S., Biris, A. R., Pogacean, F., Socaci, C., Coros, M., Rosu, M. C., Watanabe, F., & Biris, A. S. (2015). The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta, 154, 197-204.
  • Chang, H., Wu, X., Wu, C., Chen, Y., Jiang, H., & Wang, X. (2011). Catalytic oxidation and determination of β-NADH using self-assembly hybrid of gold nanoparticles and graphene. Analyst, 136(13), 2735-2740.
  • Govindhan, M., Amiri, M., & Chen, A. (2015). Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosensors and Bioelectronics, 66, 474-480.
  • Istrate, O. M., Rotariu, L., Marinescu, V. E., & Bala, C. (2016). NADH sensing platform based on electrochemically generated reduced graphene oxide–gold nanoparticles composite stabilized with poly (allylamine hydrochloride). Sensors and Actuators B: Chemical, 223, 697-704.
  • Immanuel, S., & Sivasubramanian, R. (2020). Electrochemical studies of the oxidation of NADH on chemically reduced graphene oxide nanosheets modified glassy carbon electrode. Materials Chemistry and Physics, 123015.
  • Devendiran, M., Kumar, K. K., & Narayanan, S. S. (2018). Amperometric Determination of ascorbic acid and riboflavin using ferrocene/thionin bimediator modified electrode. Int JS Res Sci Technol, 4, 628-634.
  • Szoke, A., Zsebe, Z., Turdean, G. L., & Muresan, L. M. (2019). Composite Electrode Material Based on Electrochemically Reduced Graphene Oxide and Gold Nanoparticles for Electrocatalytic Detection of Ascorbic Acid. Electrocatalysis, 10(5), 573-583.
  • Chethana, B. K., & Naik, Y. A. (2012). Electrochemical oxidation and determination of ascorbic acid present in natural fruit juices using a methionine modified carbon paste electrode. Analytical Methods, 4(11), 3754-3759.
  • Brett, C. M. A, & Brett, A. Maria Oliveira. (1993). Electrochemistry: principles, methods, and applications. Oxford: Oxford University Press.
  • Harrison, J. A., & Khan, Z. A. (1970). The oxidation of hydrazine on platinum in acid solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 28(1), 131-138.
  • Liu, B., Luo, L., Ding, Y., Si, X., Wei, Y., Ouyang, X., & Xu, D. (2014). Differential pulse voltammetric determination of ascorbic acid in the presence of folic acid at electro-deposited NiO/graphene composite film modified electrode. Electrochimica Acta, 142, 336-342.
  • Mie, Y., Yasutake, Y., Ikegami, M., & Tamura, T. (2019). Anodized gold surface enables mediator-free and low-overpotential electrochemical oxidation of NADH: A facile method for the development of an NAD+-dependent enzyme biosensor. Sensors and Actuators B: Chemical, 288, 512-518.
  • Fernández, L., & Carrero, H. (2005). Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid. Electrochimica Acta, 50(5), 1233-1240.
  • Habibi, B., Jahanbakhshi, M., & Pournaghi-Azar, M. H. (2011). Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon–ceramic electrode. Analytical Biochemistry, 411(2), 167-175.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Melike Bilgi Kamaç 0000-0002-3381-7522

Muhammed Altun 0000-0002-0387-1819

Merve Yılmaz Bu kişi benim 0000-0003-3690-2455

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 5 Kasım 2020
Kabul Tarihi 17 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Bilgi Kamaç, M., Altun, M., & Yılmaz, M. (2021). Dopamin, NADH ve Askorbik Asitin Elektroyükseltgenmesine Elektrokimyasal Olarak İndirgenmiş Grafen Oksit, Politiyonin ve Altın Nanopartiküllerin Etkisi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 8-23. https://doi.org/10.35193/bseufbd.822201