Araştırma Makalesi
BibTex RIS Kaynak Göster

Isı Enerjisi Depolayan Faz Değişim Malzemelerinin Üretimi

Yıl 2021, , 173 - 185, 30.06.2021
https://doi.org/10.35193/bseufbd.861767

Öz

Bu çalışmada; Parafin, Polietilen glikol 600, üç farklı yüzey aktif madde (Lineer Alkil Benzen Sülfonik Asit, Setil Trimetil Amonyum Klorür ve Kokoamidopropil Betain) ve atık lastiğin kimyasal bozundurulması sonucu elde edilen Geri Kazanılmış Karbon kullanılarak Organik Faz Değişim Malzemesi üretilmiştir. Organik Faz Değişim Malzemeleri basit bir karıştırma ve vakum emdirme yöntemiyle üretilmiştir. Farklı türdeki yüzey aktif maddelerin kullanıldığı farklı kompozisyonlarda elde edilen numunelere; faz değişim sıcaklık farkı testleri yapılarak en yüksek faz değişim sıcaklık farkına sahip numuneler belirlenmiştir. Belirlenen bu numunelerin (FM13; FM20 ve FM26 Kodlu) kimyasal ve termal özellikleri, Fourier Dönüşümlü Kızılötesi Spektrotometresi ve Diferansiyel Taramalı Kalorimetri cihazı kullanılarak belirlenmiştir. En yüksek enerji depolama kapasitesine (85,64 j/g) sahip numunenin; Setil Trimetil Amonyum Klorür yüzey aktif maddesi içeren FM-26 kodlu numune olduğu belirlenmiştir.

Destekleyen Kurum

Bilecik Şeyh edebali Üniversitesi Bilimsel Araştırma (BAP)Koordinatörlüğü

Proje Numarası

2019-02.BŞEÜ.01-07

Teşekkür

Bu çalışma Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (BAP) tarafından Lisansüstü Tez projesi kapsamında desteklenmiştir.

Kaynakça

  • Sharma, A. &Tyagi, V. &Chen, C. &Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318–345.
  • Wagner L. (2007). Overview of energy storage methods. Mora Associates. https://www.moraassociates.com/.
  • Bauer, T. &Steinmann W. &Laing D. &Tamme R. (2012). Thermal energy storage materials and systems. Pfaffen waldring, 38-40, 70569.
  • Cunha, J.P. & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – a review. Applied Energy, 177, 227-238.
  • Geete, P. &Somani, S. (2017). Thermal energy storage: A review. International Journal of Engineering Science Invention. ISSN (Online):2319-6734, ISSN (Print):2319-6729, Vol:6, Issue:8, pp. 01-10.
  • Rathod, A. &Bandela, C. &Rehman, A. (2017). Experimental study on phase change material based thermal energy storage system. International research journal of engineering and technology, ISSN: 2395-0056-0072.
  • Kanimozhi, B. &Harish, K. &Tarun, B.S. &Reddy, P. &Sujeeth, P.S. (2017). Charging and discharging processes of thermal energy storage system using phase change materials. IOP Publishing, 197,012040.
  • Hale, D. & Hoover M. &O’Neill, M. (1971). Phase change materials handbook. Marshal space fight center, Alabama, 232.
  • Oro, E. &Gracia, A. &Castell, A. &Farid, M.M. &Cabeza, L.F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99,513, 533.
  • Peng, G. &Dou, G. & Hu, Y. & Sun, Y. &Chen, Z. (2020). Review article phase change material microcapsules for thermal energy storage. HindawiAdvances in Polymer Technology, 9490873, 20.
  • Prasad, D. &Senthilkumar, R. &Lakshmanarao, G. &Krishnan, S. &Prasad, N. (2019). A critical review on thermal energy storage materials and systems for solar applications. Aims energy, 7(4):507-526.
  • Amaral, C. &Vicente, R. &Marques, P. A. A. P. &Barros-Timmons, A., (2017). Phase change materials and carbon nanostructures for thermal energystorage: A literature review. Renewable and Sustainable Energy Reviews, 79, 1212-1228.
  • Anusha, A.S. (2016). Phase change materials. International journal of engineering research and general science volume 4, Issue 2, Issn: 2091-2730.
  • Arshad, A. &Jabbal, M. & Yan, Y. &Darkwa, J. (2019). Themicro/nano FDM for thermal energy storage systems: a state of art review. International Journal of Energy Research, Vol: 43, No: 11, pp: 5572-5620.
  • Shchukina, E. &Graham, M. &Zheng, Z. Shchukin, D. (2018). Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Royalsociety of chemistry, 47;4156.
  • Socaciu, L.G. (2012). Thermal energy storage with phase change material. Leonardo electronic journal of practices and technologies, ISSN 1583-1078, 75-98.
  • Balbay, S. (2017). Atık lastiklerin kimyasal yöntemle bozundurulması ve elde edilen ürünlerin değerlendirilmesi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Bilecik
  • Kee, S.Y., Munusamy, Y., Ong, K.S., Metselaar, H.S.C., Chee, S.Y., Lai, K.C. (2017). Thermal Performance Study of Composite Phase Change Material with Polyacrylic and Conformal Coating, Materials, 10;873.
  • İbiş, H. (2014). Ti-Niötektik alaşımlarının termal ve mekanik özelliklerinin incelenmesi.Bozok Üniversitesi, Fen bilimleri Enstitüsü Fizik Ana Bilim Dalı, Yüksek Lisans Tezi.
  • Aker, A. (2015). Al-Si ötektik alaşımına yapılan katkı elementlerinin (Cu, Co, Ni, Sb ve Bi) mikroyapı ve fiziksel özelliklerine etkisinin araştırılması. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı, Doktora Tezi.
  • Biçer, A., ve Sarı, A.,(2017). Isıl Enerji Depolama Amaçlı Yapıca Kararlı Yeni Bir Faz Değişim Malzemesi Olarak Silikafume /Polietilen Glikol (PEG) Kompoziti. Afyon Kocatepe University Journal of Science and Engineering, 17, 683-690.

Production of Phase Change Materials Storing Heat Energy

Yıl 2021, , 173 - 185, 30.06.2021
https://doi.org/10.35193/bseufbd.861767

Öz

In this study; Organic Phase Change Material was produced using Paraffin, Polyethylene glycol 600, three different surfactants (Linear Alkyl Benzene Sulfonic Acid, Cetyl Trimethyl Ammonium Chloride and Cocoamidopropyl Betaine), and Recycled Carbon obtained as a result of chemical decomposition of waste tire. Organic Phase Change Materials are produced by a simple mixing and vacuum impregnation method. Samples were obtained in different compositions using different types of surfactants. Samples with the highest phase change temperature difference were determined by performing phase change temperature difference tests. The chemical and thermal properties of these samples (FM13; FM20 and FM26 Coded) were determined using Fourier Transform Infrared Spectrophotometer and Differential Scanning Calorimetry device. It was determined that the sample with the highest energy storage capacity (85.64 j/g) was FM-26 coded sample containing Cetyl Trimethyl Ammonium Chloride as surfactant.

Proje Numarası

2019-02.BŞEÜ.01-07

Kaynakça

  • Sharma, A. &Tyagi, V. &Chen, C. &Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 13, 318–345.
  • Wagner L. (2007). Overview of energy storage methods. Mora Associates. https://www.moraassociates.com/.
  • Bauer, T. &Steinmann W. &Laing D. &Tamme R. (2012). Thermal energy storage materials and systems. Pfaffen waldring, 38-40, 70569.
  • Cunha, J.P. & Eames, P. (2016). Thermal energy storage for low and medium temperature applications using phase change materials – a review. Applied Energy, 177, 227-238.
  • Geete, P. &Somani, S. (2017). Thermal energy storage: A review. International Journal of Engineering Science Invention. ISSN (Online):2319-6734, ISSN (Print):2319-6729, Vol:6, Issue:8, pp. 01-10.
  • Rathod, A. &Bandela, C. &Rehman, A. (2017). Experimental study on phase change material based thermal energy storage system. International research journal of engineering and technology, ISSN: 2395-0056-0072.
  • Kanimozhi, B. &Harish, K. &Tarun, B.S. &Reddy, P. &Sujeeth, P.S. (2017). Charging and discharging processes of thermal energy storage system using phase change materials. IOP Publishing, 197,012040.
  • Hale, D. & Hoover M. &O’Neill, M. (1971). Phase change materials handbook. Marshal space fight center, Alabama, 232.
  • Oro, E. &Gracia, A. &Castell, A. &Farid, M.M. &Cabeza, L.F. (2012). Review on phase change materials (PCMs) for cold thermal energy storage applications. Applied Energy, 99,513, 533.
  • Peng, G. &Dou, G. & Hu, Y. & Sun, Y. &Chen, Z. (2020). Review article phase change material microcapsules for thermal energy storage. HindawiAdvances in Polymer Technology, 9490873, 20.
  • Prasad, D. &Senthilkumar, R. &Lakshmanarao, G. &Krishnan, S. &Prasad, N. (2019). A critical review on thermal energy storage materials and systems for solar applications. Aims energy, 7(4):507-526.
  • Amaral, C. &Vicente, R. &Marques, P. A. A. P. &Barros-Timmons, A., (2017). Phase change materials and carbon nanostructures for thermal energystorage: A literature review. Renewable and Sustainable Energy Reviews, 79, 1212-1228.
  • Anusha, A.S. (2016). Phase change materials. International journal of engineering research and general science volume 4, Issue 2, Issn: 2091-2730.
  • Arshad, A. &Jabbal, M. & Yan, Y. &Darkwa, J. (2019). Themicro/nano FDM for thermal energy storage systems: a state of art review. International Journal of Energy Research, Vol: 43, No: 11, pp: 5572-5620.
  • Shchukina, E. &Graham, M. &Zheng, Z. Shchukin, D. (2018). Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Royalsociety of chemistry, 47;4156.
  • Socaciu, L.G. (2012). Thermal energy storage with phase change material. Leonardo electronic journal of practices and technologies, ISSN 1583-1078, 75-98.
  • Balbay, S. (2017). Atık lastiklerin kimyasal yöntemle bozundurulması ve elde edilen ürünlerin değerlendirilmesi, Bilecik Şeyh Edebali Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Bilecik
  • Kee, S.Y., Munusamy, Y., Ong, K.S., Metselaar, H.S.C., Chee, S.Y., Lai, K.C. (2017). Thermal Performance Study of Composite Phase Change Material with Polyacrylic and Conformal Coating, Materials, 10;873.
  • İbiş, H. (2014). Ti-Niötektik alaşımlarının termal ve mekanik özelliklerinin incelenmesi.Bozok Üniversitesi, Fen bilimleri Enstitüsü Fizik Ana Bilim Dalı, Yüksek Lisans Tezi.
  • Aker, A. (2015). Al-Si ötektik alaşımına yapılan katkı elementlerinin (Cu, Co, Ni, Sb ve Bi) mikroyapı ve fiziksel özelliklerine etkisinin araştırılması. Erciyes Üniversitesi, Fen Bilimleri Enstitüsü Fizik Ana Bilim Dalı, Doktora Tezi.
  • Biçer, A., ve Sarı, A.,(2017). Isıl Enerji Depolama Amaçlı Yapıca Kararlı Yeni Bir Faz Değişim Malzemesi Olarak Silikafume /Polietilen Glikol (PEG) Kompoziti. Afyon Kocatepe University Journal of Science and Engineering, 17, 683-690.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Çağlayan Açıkgöz 0000-0003-2195-6231

Şenay Balbay 0000-0002-0016-7973

İsmail Dal Bu kişi benim 0000-0002-4346-912X

Proje Numarası 2019-02.BŞEÜ.01-07
Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 15 Ocak 2021
Kabul Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Açıkgöz, Ç., Balbay, Ş., & Dal, İ. (2021). Isı Enerjisi Depolayan Faz Değişim Malzemelerinin Üretimi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(1), 173-185. https://doi.org/10.35193/bseufbd.861767