Araştırma Makalesi
BibTex RIS Kaynak Göster

Spiral Isı Eşanjöründe Farklı Su-Al2O3Nanoakışkan Karışımlarının Termal Davranışlarının Karşılaştırılması

Yıl 2021, , 844 - 854, 31.12.2021
https://doi.org/10.35193/bseufbd.966353

Öz

Son zamanlarda nanoteknolojinin gelişmesi, baz akışkanların ısı transfer özelliklerini geliştirmek için kullanılması fikrinin kullanılmasında artış olmuştur. Özellikle ısı eşanjörlerinde nanoakışkanların kullanılması yaygınlaşmıştır. Bu çalışmada, spiral bir ısı eşanjöründe farklı Al2O3 su nanoakışkan karışımlarının termal davranışlarının karşılaştırılması nümerik olarak incelenmiştir. Spiral ısı eşanjöründeki ısı transferinin bilgisayar destekli analizi su ve su bazlı nanoakışkanlar üzerinde yapılmıştır. Nanoakışkanlar içerisindeki Al2O3 nanoparçacığının farklı hacim konsantrasyonları (%1, %2 ve %3) ve su özellikleri belirlenerek, spiral bir ısı eşanjöründe analizleri gerçekleştirilmiştir. Nanoakışkanların termo fiziksel özelliklerinin nanopartiküllerin hacim konsantrasyonlarına ve sıcaklığa bağlı olarak değişimi gözlemlenmiştir. Isı transferi ve ortalama ısı transfer katsayısı, nanopartiküllerin farklı hacim konsantrasyonları için sayısal olarak hesaplanmış ve elde edilen sonuçlar karşılaştırılmıştır. Çalışmadaki farklı hacim konsantrasyonları arasında en iyi sonuçlar %3 hacim konsantrasyonuna sahip nanoakışkanda elde dilmiştir. Ayrıca %3 hacim konsantrasyonuna sahip nanoakışkanda suya göre ısı transferinin %47 ve toplam ısı transfer katsayısının %24 daha iyi olduğu hesaplanmıştır.

Kaynakça

  • Chon, C. H., Kihm K. D., Lee S. P., & Choi S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Physics Letter, 87, 1–3.
  • Chopkar, M., Sudarshan S., Das P. K. & Manna I. (2008). Effect of particle size on thermal conductivity of nanofluid. Metals & Materials Society, 39, 1535–1542.
  • Das, S. K., Choi S. U. S., Yu W. & Pradeep K. (2007). Nanofluids Science and Technology. John Wiley & Sons Inc., New York, 389.
  • Teng, T. P., Hung Y. H., Teng T. C., Moa H. E. & Hsu H. G. (2010). The effect of alumina water nanofluid particle size on thermal conductivity. Thermal Engineering, 30, 2213–2218.
  • Gallego, M. J. P., Lugo L., Legido J. L. & Pineiro M. M. (2011). Thermal conductivity and viscosity measurements of ethylene glycol based Al2O3 nanofluids. Nanoscale Research Letters, 6, 1–11.
  • Chandrasekar, M., Suresh S. & Bose A. C. (2010). Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3 water nanofluid. Experimental Thermal and Fluid Science, 34, 210–216.
  • Khanafer, K., & Vafai K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. Heat and Mass Transfer, 54, 4410–4428.
  • Mishra, A., Kundan L., & Mallick S. S. (2014). Modeling thermal conductivity for alumina-water nanofluids. Particulate Science and Technology, 32, 319-326.
  • Palm S.J., Roy G. & Nguyen C.T. (2006). Heat transfer enhancement with the use of nano-fluids in radial flow cooling systems considering temperature dependent proper-ties. Applied Thermal Engineering, 26, 2209–2218.
  • Roy G., Nguyen C. T. & Comeau M. (2006). Electronic component cooling enhancement using nanofluids in a radial flow cooling system. Journal of Enhanced Heat Transfer, 13, 101–115.
  • Pawel K., Jeffrey A. E. & David G. C. (2005). Nanofluids for thermal transport. Materials today, 8(6), 36-44.
  • Mohammed H. A., Bhaskaran G., Shuaib N. H. & Saidur R. (2011). Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger. Superlattices and Microstructures, 50, 215-233.
  • Farajollahi B., Etemad S.G. & Hojjat M. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53, 12-17.
  • Saidura R., Leong K. Y. & Mohammad H. A. (2011). A review on applications and challenges of nanofluids. Renewable Sustainable Energy Reviews, 15, 1646-1668.
  • Kakaç S. & Pramuanjaroenkij A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52, 3187-3196.
  • Soleimani S., Sheikholeslami M., Ganji D.D. & Gorji B. M. (2012). Natural convection heat transfer in a nanofluid filled semi annulus enclosure. International Communications in Heat and Mass transfer, 39, 565-574.
  • Dravid A. N., Smith K. A., Merrill E. W. & Brain P. L. T. (1971). Effect of secondary fluid on laminar flow heat transfer in helically coiled tubes. American Institute of Chemical Engineers Journal, 17, 1114–1122.
  • Patankar S. V., Pratap V. S. & Spalding D. B. (1974). Prediction of laminar flow and heat transfer in helically coiled pipes. Journal of Fluid Mechanics, 62, 53–551.
  • Kubair V. & Kuloor N. R. (1996). Heat transfer to Newtonian fluids in coiled pipes in laminar flow. International Journal of Heat and Mass Transfer, 9, 63–75.
  • Prabhanjan D. G., Ragbavan G. S. V. & Kennic T. J. (2002). Comparison of heat transfer rates between a straight tube heat exchanger and helically coiled heat exchanger. International Journal of Heat and Mass Transfer, 29, 185–191.
  • Naphon P. & Wongwises S. (2006). A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, 10, 463–490.
  • Kumar, V., Faizee, B., Mridha, M. & Nigam, K. D. P. (2008). Numerical studies of a tube in tube helically coiled heat exchanger. Chemical Engineering and Processing, 47, 2287–2295.
  • Lee, Y. K. (2014). The use of nanofluids in domestic water heat exchanger. J. Adv. Res. Appl. Mech, 3 (1), 9-24.
  • Khedkar R. S., Sonawane S. S. & Kailas L. W. (2013). Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering, 51, 318-323.
  • FLUENT Manual, Chapter 14: Modeling Heat Exchangers; ANSYS, Inc.: Canonsburg, PA, USA, 2001. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node489.htm
  • Jamshidi N., Farhadi M., Sedighi K. & Ganji D. D. (2012). Optimization of design parameters for nanofluids flowing inside helical coils. International Communications in Heat and Mass Transfer, 39, 311-317.

Comparison of Thermal Behaviors of Different Water/Al2O3 Nanofluid Mixtures in a Spiral Heat Exchanger

Yıl 2021, , 844 - 854, 31.12.2021
https://doi.org/10.35193/bseufbd.966353

Öz

Recently, with the development of nanotechnology, there has been an increase in the use of the idea of using base fluids to improve heat transfer properties. The use of nanofluids, especially in heat exchangers, has become widespread. In this study, the comparison of the thermal behavior of different Al2O3 water nanofluid mixtures in a spiral heat exchanger was investigated numerically. Computer aided analysis of the heat transfer in the spiral heat exchanger was carried out on water and water-based nanofluids. Different volume concentrations (1%, 2% and 3%) and water properties of Al2O3 nanoparticles in nanofluids were determined and analyzed in a spiral heat exchanger. It was observed that the thermophysical properties of nanofluids change depending on the volume concentration of the nanoparticles and the temperature. Heat transfer and average heat transfer coefficient were calculated numerically for different volume concentrations of nanoparticles, and the obtained results were compared. Among the different volume concentrations in the study, the best results were obtained in the nanofluid with 3% volume concentration. In addition, it has been calculated that the heat transfer is 47% better, and the total heat transfer coefficient is 24% better than water in the nanofluid with 3% volume concentration.

Kaynakça

  • Chon, C. H., Kihm K. D., Lee S. P., & Choi S. U. S. (2005). Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Physics Letter, 87, 1–3.
  • Chopkar, M., Sudarshan S., Das P. K. & Manna I. (2008). Effect of particle size on thermal conductivity of nanofluid. Metals & Materials Society, 39, 1535–1542.
  • Das, S. K., Choi S. U. S., Yu W. & Pradeep K. (2007). Nanofluids Science and Technology. John Wiley & Sons Inc., New York, 389.
  • Teng, T. P., Hung Y. H., Teng T. C., Moa H. E. & Hsu H. G. (2010). The effect of alumina water nanofluid particle size on thermal conductivity. Thermal Engineering, 30, 2213–2218.
  • Gallego, M. J. P., Lugo L., Legido J. L. & Pineiro M. M. (2011). Thermal conductivity and viscosity measurements of ethylene glycol based Al2O3 nanofluids. Nanoscale Research Letters, 6, 1–11.
  • Chandrasekar, M., Suresh S. & Bose A. C. (2010). Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3 water nanofluid. Experimental Thermal and Fluid Science, 34, 210–216.
  • Khanafer, K., & Vafai K. (2011). A critical synthesis of thermophysical characteristics of nanofluids. Heat and Mass Transfer, 54, 4410–4428.
  • Mishra, A., Kundan L., & Mallick S. S. (2014). Modeling thermal conductivity for alumina-water nanofluids. Particulate Science and Technology, 32, 319-326.
  • Palm S.J., Roy G. & Nguyen C.T. (2006). Heat transfer enhancement with the use of nano-fluids in radial flow cooling systems considering temperature dependent proper-ties. Applied Thermal Engineering, 26, 2209–2218.
  • Roy G., Nguyen C. T. & Comeau M. (2006). Electronic component cooling enhancement using nanofluids in a radial flow cooling system. Journal of Enhanced Heat Transfer, 13, 101–115.
  • Pawel K., Jeffrey A. E. & David G. C. (2005). Nanofluids for thermal transport. Materials today, 8(6), 36-44.
  • Mohammed H. A., Bhaskaran G., Shuaib N. H. & Saidur R. (2011). Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger. Superlattices and Microstructures, 50, 215-233.
  • Farajollahi B., Etemad S.G. & Hojjat M. (2010). Heat transfer of nanofluids in a shell and tube heat exchanger. International Journal of Heat and Mass Transfer, 53, 12-17.
  • Saidura R., Leong K. Y. & Mohammad H. A. (2011). A review on applications and challenges of nanofluids. Renewable Sustainable Energy Reviews, 15, 1646-1668.
  • Kakaç S. & Pramuanjaroenkij A. (2009). Review of convective heat transfer enhancement with nanofluids. International Journal of Heat and Mass Transfer, 52, 3187-3196.
  • Soleimani S., Sheikholeslami M., Ganji D.D. & Gorji B. M. (2012). Natural convection heat transfer in a nanofluid filled semi annulus enclosure. International Communications in Heat and Mass transfer, 39, 565-574.
  • Dravid A. N., Smith K. A., Merrill E. W. & Brain P. L. T. (1971). Effect of secondary fluid on laminar flow heat transfer in helically coiled tubes. American Institute of Chemical Engineers Journal, 17, 1114–1122.
  • Patankar S. V., Pratap V. S. & Spalding D. B. (1974). Prediction of laminar flow and heat transfer in helically coiled pipes. Journal of Fluid Mechanics, 62, 53–551.
  • Kubair V. & Kuloor N. R. (1996). Heat transfer to Newtonian fluids in coiled pipes in laminar flow. International Journal of Heat and Mass Transfer, 9, 63–75.
  • Prabhanjan D. G., Ragbavan G. S. V. & Kennic T. J. (2002). Comparison of heat transfer rates between a straight tube heat exchanger and helically coiled heat exchanger. International Journal of Heat and Mass Transfer, 29, 185–191.
  • Naphon P. & Wongwises S. (2006). A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, 10, 463–490.
  • Kumar, V., Faizee, B., Mridha, M. & Nigam, K. D. P. (2008). Numerical studies of a tube in tube helically coiled heat exchanger. Chemical Engineering and Processing, 47, 2287–2295.
  • Lee, Y. K. (2014). The use of nanofluids in domestic water heat exchanger. J. Adv. Res. Appl. Mech, 3 (1), 9-24.
  • Khedkar R. S., Sonawane S. S. & Kailas L. W. (2013). Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Engineering, 51, 318-323.
  • FLUENT Manual, Chapter 14: Modeling Heat Exchangers; ANSYS, Inc.: Canonsburg, PA, USA, 2001. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node489.htm
  • Jamshidi N., Farhadi M., Sedighi K. & Ganji D. D. (2012). Optimization of design parameters for nanofluids flowing inside helical coils. International Communications in Heat and Mass Transfer, 39, 311-317.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Kan 0000-0001-7336-1489

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 8 Temmuz 2021
Kabul Tarihi 9 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kan, M. (2021). Spiral Isı Eşanjöründe Farklı Su-Al2O3Nanoakışkan Karışımlarının Termal Davranışlarının Karşılaştırılması. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 844-854. https://doi.org/10.35193/bseufbd.966353