Araştırma Makalesi
BibTex RIS Kaynak Göster

Aktif Karbon Destekli Nano Boyutlu Sıfır Değerlikli Demir ile Sulu Ortamlardan Fosfat Giderimi: Cevap Yüzey Yöntemi ile İşletme Parametrelerinin Optimizasyonu

Yıl 2019, Cilt: 6, 30 - 41, 30.09.2019
https://doi.org/10.35193/bseufbd.560400

Öz

Bu çalışmada, sulu faz borhidrür
indirgeme metodu ile aktif karbon destekli nano boyutlu sıfır değerikli demir
(AC-nZVI) partikülleri sentezlenmiş ve sentezlenen AC-nZVI partikülleri sulu
ortamlardan fosfat gideriminde kullanılmıştır. Fosfat giderim verimi üzerinde
çözelti pH’ı, AC-nZVI miktarı, başlangıç fosfat konsantrasyonu ve temas süresi
işletme parametrelerinin etkilerini ve optimum şartları belirlemek için cevap
yüzey metodu (CYM) uygulanmıştır. Deneysel dizaynda ve sonuçların analizinde
merkezi kompozit dizaynı (MKD) kullanılmıştır. Varyans analizi (ANOVA)
sonuçlarına göre, ikinci dereceden polinominal model istatistiksel olarak
anlamlı (P=0.0002) ve determinasyon katsayısı (R2) 0.8735 olarak
bulunmuştur. AC-nZVI ile maksimum fosfat giderimi için optimum şartlar pH 3.09,
AC-nZVI miktarı 0.59 g/L, fosfat konsantrasyonu 30.69 mg P/L ve temas süresi
66.58 dakika olarak belirlenmiştir. Bu çalışmanın sonuçları, atıksulardan
fosfat gideriminde AC-nZVI’nın etkili bir adsorbent olarak kullanılabileceğini
göstermiştir.

Kaynakça

  • [1] Zhang, C., Li, Y., Wang, F., Yu, Z., Wei, J., Yang, Z., Ma, C., Li, Z., Xu, Z., and Zeng, G., “Performance of Magnetic Zirconium-Iron Oxide Nanoparticle in the Removal of Phosphate from Aqueous Solution”, Applied Surface Science, vol. 396, pp. 1783-1792, 2017.
  • [2] Belelli, P. G., Fuente, S. A., and Castellani, N. J., “Phosphate Adsorption on Goethite and Al-Rich Goethite”, Computational Materials Science, vol. 85, pp. 59-66, 2014.
  • [3] Boeykens, S. P., Piol, M. N., Legal, L. S., Saralegui, A. B., and Vázquez, C., “Eutrophication Decrease: Phosphate Adsorption Processes in Presence of Nitrates”, Journal of Environmental Management, vol. 203, pp. 888-895, 2017.
  • [4] Almeelbi, T., and Bezbaruah, A., “Aqueous Phosphate Removal Using Nanoscale Zero-Valent Iron”, Journal of Nanoparticle Research, vol. 14, 900, 2012.[5] Attour, A., Touati, M., Tlili, M., Amor, M. B., Lapicque, F., and Leclerc, J.-P., “Influence of Operating Parameters on Phosphate Removal from Water by Electrocoagulation Using Aluminum Electrodes”, Separation and Purification Technology, vol. 123, pp. 124-129, 2014.
  • [6] El Bouraie, M., and Masoud, A. A., “Adsorption of Phosphate Ions from Aqueous Solution by Modified Bentonite with Magnesium Hydroxide Mg(OH)2”, Applied Clay Science, vol. 140, 157–164, 2017.
  • [7] Franco, D., Lee, J., Arbelaez, S., Cohen, N., and Kim, J.-Y., “Removal of Phosphate from Surface and Wastewater via Electrocoagulation”, Ecological Engineering, vol. 108, pp. 589-596, 2017.
  • [8] Chen, D., Gao, B., Wang, H., and Yang, K., “Effective Removal of High Concentration of Phosphate by Starch-Stabilized Nanoscale Zerovalent Iron (SNZVI)”, Journal of the Taiwan Institute of Chemical Engineers, vol. 61, pp. 181-187, 2016.
  • [9] Van der Houwen, J., and Valsami-Jones, E., “The Application of Calcium Phosphate Precipitation Chemistry to Phosphorus Recovery: The Influence of Organic Ligands”, Environmental Technology, vol. 22, pp. 1325-1335, 2001.
  • [10] Peng, Y. Z., Wang, X. L., and Li, B. K., “Anoxic Biological Phosphorus Uptake and the Effect of Excessive Aeration on Biological Phosphorus Removal in the A(2)O Process”, Desalination, vol. 189(1–3), 155–164, 2006.
  • [11] Ajmal, Z., Muhmood, A., Usman, M., Kizito, S., Lu, J., Dong, R., and Wu, S., “Phosphate Removal from Aqueous Solution Using Iron Oxides: Adsorption, Desorption and Regeneration Characteristics”, Journal of Colloid and Interface Science, vol. 528, pp. 145-155, 2018.
  • [12] Zhang, Q., Liu, H., Chen, T., Chen, D., Li, M., and Chen, C., “The Synthesis of NZVI and Its Application to the Removal of Phosphate from Aqueous Solutions”, Water Air Soil Pollution, vol. 228, 321, 2017.
  • [13] Yan, L. G., Xu, Y. Y., Yu, H. Q., Xin, X. D., Wei, Q., and Du, B., “Adsorption of Phosphate from Aqueous Solution by Hydroxy-Aluminum, Hydroxy-Iron and Hydroxy-Iron-Aluminum Pillared Bentonites”, Journal of Hazardous Materials, vol. 179, pp. 244-250, 2010.
  • [14] Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., and Hirotsu, T., “Phosphate Adsorption on Synthetic Goethite and Akaganeite”, Journal of Colloid and Interface Science, vol. 298, pp. 602-608, 2006.
  • [15] Yue, Q. Y., Zhao, Y. Q., Li, Q., Li, W. H., Gao, B. Y., Han, S. X., Qi, Y. F., and Yu, H., “Research on the Characteristics of Red Mud Granular Adsorbents (RMGA) for Phosphate Removal”, Journal of Hazardous Materials, vol. 176, pp. 741-748, 2010.
  • [16] Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Van Leeuwen, J., Zou, L., Beecham, S., and Umar M., “Orthophosphate Removal from Domestic Wastewater Using Limestone and Granular Activated Carbon”, Desalination, vol. 271, pp. 265-272, 2011.
  • [17] Eljamal, O., Khalil, A. M. E., Sugihara, Y., and Matsunaga, N., “Phosphorus Removal from Aqueous Solution by Nanoscale Zero Valent Iron in the Presence of Copper Chloride”, Chemical Engineering Journal, vol. 293, pp. 225-231, 2016.
  • [18] Lowry, G.V., and Johnson, K. M., “Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution”, Environmental Science and Technology, vol. 38, pp. 5208-5216, 2004.
  • [19] Lavine, B.K., Auslander, G., and Ritter, J., “Polarographic Studies of Zero Valent Iron as a Reductant for Remediation of Nitroaromatics in the Environment,” Microchemical Journal, vol. 70, pp. 69–83, 2001.
  • [20] Hanay, Ö., & Türk, H., “Comprehensive Evaluation of Adsorption and Degradation of Tetracycline and Oxytetracycline by Nanoscale Zero-Valent Iron”, Desalination and Water Treatment, vol. 53, pp. 1986-1994, 2015.
  • [21] Sohrabi, M. R., Amiri, S., Masoumi, H. R. F., and Moghri, M. “Optimization of Direct Yellow 12 Dye Removal by Nanoscale Zero-Valent Iron Using Response Surface Methodology”, Journal of Industrial and Engineering Chemistry, vol. 20, pp. 2535-2542, 2014.
  • [22] Boparai, H. K., Joseph, M., and O’Carroll, D. M., “Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles”, Journal of Hazardous Materials, vol. 186, pp. 458-465, 2011.
  • [23] Arancibia-Miranda, N., Baltazar, S. E., García, A., Mu˜noz-Lira, D., Sepúlveda, P., Rubio, M. A., and Altbir, D., “Nanoscale Zero Valent Supported by Zeolite and Montmorillonite: Template Effect of the Removal of Lead Ion from an Aqueous Solution”, Journal of Hazardous Materials, vol. 301, pp. 371-380, 2016.
  • [24] Diao, Z.-H., Xu, X.-R., Jiang, D., Kong, L.-J., Sun, Y.-X., Hu, Y.-X., Hao, Q.-W., and Chen, H., “Bentonite-Supported Nanoscale Zero-Valent Iron/Persulfate System for the Simultaneous Removal of Cr(VI) and Phenol from Aqueous Solutions”, Chemical Engineering Journal, vol. 302, pp. 213-222, 2016.
  • [25] Wang J., Liu G., Zhou C., Li T., and Liu J., “Synthesis, Characterization and Aging Study of Kaolinite-Supported Zero-Valent Iron Nanoparticles and Its Application for Ni(II) Adsorption”, Materials Research Bulletin, vol. 60, pp. 421-432, 2014.
  • [26] Sun, Z., Zheng, S., Ayoko, G.A., Frost, R.L., and Xi, Y., “Degradation of Simazine from Aqueous Solutions by Diatomite-Supported Nanosized Zero-Valent Iron Composite Materials”, Journal of Hazardous Materials, vol. 263, pp. 768-777, 2013.
  • [27] Abbasi, M., and Habibi, M. M., “Optimization and Characterization of Direct Blue 71 Removal Using Nanocomposite of Chitosan-MWCNTs: Central Composite Design Modeling”, Journal of the Taiwan Institute of Chemical Engineers, vol. 62, pp. 112-121, 2016.
  • [28] Tanyol, M. “Malahit Yeşili İçeren Atıksuların Fenton Oksidasyon Prosesi ile Renk Gideriminde İşletme Parametrelerinin Optimizasyonu”, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, vol. 29(1), pp. 183-191, 2017.
  • [29] Torgut, G., Tanyol, M., Biryan, F., Pihtili, G., and Demirelli, K., “Application of Response Surface Methodology for Optimization of Remazol Brilliant Blue R Removal onto A Novel Polymeric Adsorbent”, Journal of the Taiwan Institute of Chemical Engineers, vol. 80, pp. 406-414, 2017.
  • [30] Muhamad, M. H., Abdullah, S. R. S., Mohamad, A. B., Rahman, R. A., and Kadhum, A. A. H., “Application of Response Surface Methodology (RSM) for Optimisation of COD, NH3–N and 2,4-DCP Removal from Recycled Paper Wastewater in a Pilot-scale Granular Activated Carbon Sequencing Batch Biofilm Reactor (GAC-SBBR)”, Journal of Environmental Management, vol. 121, pp. 179-190, 2013.
  • [31] Shi, L.-n., Zhang, X., and Chen, Z.-l. “Removal of Chromium (VI) from Wastewater Using Bentonite-Supported Nanoscale Zero-Valent Iron”, Water Research, vol. 45, pp. 886-892, 2011.
  • [32] Fan, J., Guo, Y., Wang, J., and Fan, M., “Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale, zerovalent iron particles”, Journal of Hazardous Materials, vol. 166, pp. 904-910, 2009.
  • [33] Singh, A.K., and Singh, K.P., “Optimization Of Phosphate Removal from Aqueous Solution Using Activated Carbon Supported Zero‑Valent Iron Nanoparticles: Application of RSM Approach”, Applied Water Science, vol. 8, pp. 226, 2018.
  • [34] Kasap, T., Kağıt Endüstrisi Atıksularının Peroksit İlaveli Elektrokoagülasyon Yöntemi ile Arıtımında Cevap Yüzey Yöntemi Kullanılarak Proses Optimizasyonu, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü/Çevre Mühendisliği Anabilim Dalı, İstanbul, 2017.
  • [35] Arslan-Alaton, I., Tureli, G., and Olmez-Hanci, T., “Treatment of Azo Dye Production Wastewaters Using Photo-Fenton-Like Advanced Oxidation Processes: Optimization by Response Surface Methodology”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 202, pp. 142-153, 2009.
  • [36] Tepe, O., “Adsorption of Remazol Brillant Green 6B (RBG 6B) on Chitin: Process Optimization Using Response Surface Methodology”, Global NEST Journal, vol. 20, pp. 257-268, 2018.
  • [37] Iqbal, M., Iqbal, N., Bhatti, I.A., Ahmad, N., and Zahid, M., “Response Surface Methodology Application in Optimization of Cadmium Adsorption by Shoe Waste: A Good Option of Waste Mitigation by Waste”, Ecological Engineering, vol. 88, pp. 265-275, 2016.
  • [38] Wen, Z., Zhang, Y., and Dai, C., “Removal of Phosphate from Aqueous Solution Using Nanoscale Zerovalent Iron (nZVI)”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 457, pp. 433-440, 2014.
  • [39] Shu, H. Y., Chang, M. C., Chen, C. C., and Chen, P. E., “Using Resin Supported Nano Zero-Valent Iron Particles for Decoloration of Acid Blue 113 Azo Dye Solution”, Journal of Hazardous Materials, vol. 184, pp. 499-505. 2010.
  • [40] Baytar, O., Ceyhan, A.A. ve Şahin, Ö., “İğde Çekirdeğinden Elde Edilen Aktif Karbon Kullanılarak Sulu Çözeltilerden Pb(II) Adsorpsiyonun İncelenmesi: İzoterm ve Kinetik”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7 (2), pp. 256-267, 2018.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Müslün Sara Tunç 0000-0001-9907-0428

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 3 Mayıs 2019
Kabul Tarihi 5 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6

Kaynak Göster

APA Tunç, M. S. (2019). Aktif Karbon Destekli Nano Boyutlu Sıfır Değerlikli Demir ile Sulu Ortamlardan Fosfat Giderimi: Cevap Yüzey Yöntemi ile İşletme Parametrelerinin Optimizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 30-41. https://doi.org/10.35193/bseufbd.560400