Araştırma Makalesi
BibTex RIS Kaynak Göster

Doğal Atık Malzemelerle Yeni NBR Bazlı Bileşiklerin Hazırlanması ve Karakterizasyonu

Yıl 2019, Cilt: 6, 42 - 49, 30.09.2019
https://doi.org/10.35193/bseufbd.563572

Öz

Bu çalışmada, Nitril-Butadien
Kauçuğu (NBR)
  esaslı Genel (FKK0) bir
referans kauçuk bileşiği içerisine,
 
karbürize edilmiş fındık kabuğu külünden (FKK) % 0- % 10- % 15 ve % 20
oranlarında ilave edilerek, 4 faklı bileşik hazırlanmıştır. Vulkanizasyon
sonrasında bileşiklerin sertlik, yoğunluk, kopma dayanımı, kopma uzaması,
yırtılma dayanımı ve çaprazbağ yoğunlukları ölçülmüştür. Çaprazbağ yoğunluğunun
mekanik özellikler üzerine etkileri değerlendirilmiştir. Karbürize edilmiş
fındıkkabuğu külü ilave edilen bileşiklerin özellikleri, hem kendi aralarında
hem de FKK0 bileşiğiyle karşılaştırılmıştır. Karbürize edilmiş fındıkkabuğu
külü, bileşiklerin maliyetini önemli ölçüde düşürmüştür.
  Artan çaprazbağ yoğunluğu ile bileşiklerin
sertliğinde artışa neden olmakla birlikte, kopma dayanımı ve kopma uzamasında
avantaj sağladığı görülmüştür. Artan fındıkkabuğu külünün yoğunluğu arttırdığı
tespit edilmiştir. Kırık yüzey morfolojilerinin belirlenmesi amacıyla,
bileşiklerin kopma yüzeyleri Taramalı Elektron Mikroskobu (SEM) ile karakterize
edilmiştir. SEM görüntüleri incelendiğinde dolgu miktarının artmasıyla kauçuk
matris içerisindeki dağılımının homojenliğin bozulduğu da görülmüştür.

Kaynakça

  • [1] Daniel, L. & Hertz, D. (1999). An Analysis of Rubber Under Strain From an Engineering Perspective, U.S.A.
  • [2] Akçakale,N. & Bülbül, Ş. (2017). The effect of mica powder and wollastonit fillings on the mechanical properties of NR/SBR type elastomer compounds. J. Rubb. Res., 20(3), 157-167.
  • [3] Furtado, C.R.G. Leblanc, J.L. & Nunes, R.C.R. (1999) Fatigue resistance of mica-carbon black styrene butadiene rubber (SBR) compounds. Eur. Polymer J., 35,1319–1325.
  • [4] Furtado, C.R.G. Leblanc, J.L. & Nunes, R.C.R. (2000). Mica as additional filler in SBR-silica compounds. Eur. Polymer J., 36, 1717–1723.
  • [5] De, D. Panda, P.K. Roy, M. & Bhunia, S. (2013). Reinforcing effect of reclaim rubber on natural Rubber/Polybutadiene Rubber blends. Materials and Design, 46, 142-150.
  • [6] Malas, A. Pal, P. & Das, C.K. (2014). Effect of expanded graphite and modified graphite flakes an the physical and thermo-mechanical properties of Styrene Butadiene Rubber/Polybutadiene Rubber (SBR/BR) blends. Materials and Design, 55, 664-673.
  • [7] Mohan, T.P. Kuriakose, J. & Kanny, K. (2012). Water up take and mechanical properties of Natural Rubber–Styrene Butadine Rubber (NR-SBR) – nanoclay Composites. J. of Industrial and Engineering Chemistry, 18, 979-985.
  • [8] Bülbül, Ş. Yaşar, M. & Akçakale, N. (2014). Effect of changing of filling materials in NR-SBR type elastomer based rubber materials on mechanical properties. Polymer (Korea), 38(5), 664-670.
  • [9] Saramolee, P. Sahakaro, K. Lopattananon, N. Dierkes, W.K. & Noordermeer, J.W.M. (2016). Compatibilisation of silica-filled natural rubber compounds by functionalised low molecular weight polymer. J. of Rubber Research, 19(1), 28–42.
  • [10] Alfaro, E.F. Dias, D.B. & Silva, L.G.A. (2013). The study of ionizing radiation effects on polypropylene and rice husk ash composite. Radiation Physics and Chemistry, 84, 163–165.
  • [11] Kim, S.M. & Kim, K.J. (2013). Effects of accelerators on the vulcanization properties of silica vs. carbon black filled natural rubber compounds. Polymer (Korea), 37(3), 269-275.
  • [12] Ge, X. Le, M.C. & Cho, U.R. (2014). Fabrication of EPDM Rubber/organo-bentonite composites, influence of hydrochloric acid on the characteristics of modified bentonite and final products, Polymer (Korea), 38(1) 62-68.
  • [13] Prasertsri, S. Lagarde, F. Rattanasom, N. Sirisinha, C. & Daniel, P. (2013). Raman spectroscopy and thermal analysis of gum and silica-filled NR/SBR blends prepared from latex system. Polymer Testing, 32, 852–861.
  • [14] Furtado C .R.G., Leblanc, J.L. & Nunes, R.C.R. (2000). Mica as additional filler in SBR-Silica compounds. Eur. Polym. J., 36, 1717–1723.
  • [15] Yan,G. Junchi, Z. Xin, Y. Dongli, H. Meimei, X. & Liqun, Z. (2016). Preparation and performance of Silica/SBR master batches with high silica loading by latex compounding method. Composites Part B, 85, 130–139.
  • [16] Wang, X. Hengyi, L. Guangsu, H. Li-Heng, C. & Jinrong, W. (2017). Graphene oxide induced crosslinking and reinforcement of elastomers. Composites Science and Technology, 144, 223-229.
  • [17] Bülbül Ş. & Büyük S.S. (2018) The effect of walnut shell ash fillings on the mechanical properties of SBR type rubber compounds. 5th International Symposium on Multidisciplinary Studies (ISMS 2018), 457.
  • [18] Akcakale, N. (2017). Effects of carburized rice husk powders on physical properties of elastomer based materials. KGK-Kautschuk Gummi Kunststoffe, 4093, 49-54.
  • [19] Ghari, H.S. & Jalali-Arani, A. Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: Study on the structure, cure behavior, static and dynamic-mechanical properties. Applied Clay Science 119 (2016) 348–357.
  • [20] Balat, M. (2005) Use of Biomass Sources for Energy in Turkey and a View to Biomass Potential. Biomass and Bioenergy, 29, 32-41.
  • [21] Croll, S.G. (2010). Application of the Flory–Rehner equation and the griffith fracture criterion to paint stripping, Journal of Coating Technology Research, 7(1), 49-55.
  • [22] Flegler, S.L. Heckman, J.W. & Klomparens, K.L. (1993). Scanning and transmission electron microscopy. England: Oxford University Press, ISBN 0-19-510751-9,
  • [23] Nabil,H. Ismail, H. & Ratnam, C.T. (2014). Simultaneous enhancement of mechanical anddynamic mechanical properties of natural rubber/recycled ethylene-propylene-dienerubber blends by electron beam irradiation. Int. J. Polym. Anal. Charact, 19(3), 272–285.
  • [24] Rao V. & Johns, J. (2008). Mechanical properties of thermoplastic elastomeric blends of chitosan and natural rubber latex. J. Appl. Polym. Sci., 107(4), 2217–2223.
  • [25] El-Nashar, D.E. Ahmed, N.M. & Yehia, A.A., (2012). The role of ion-exchange bentonites in changing the properties of styrene–butadiene rubber composites. Materials and Design, 34, 137–142.
  • [26] Findik, F. Yilmaz, R. & Koksal, T. (2004). Investigation of mechanical and physical properties of several industrial rubbers. Materials and Design, 25(4), 269-276.
  • [27] Bülbül, Ş. & Akçakale, N. (2019). The Production and mechanical properties of carburized corn cob ash added rubber compounds. KGK-Kautschuk Gummi Kunststoffe, 72(4/19), 30-35.

Preparing and Characterizing New NBR-Based Compounds with Natural Waste Materials

Yıl 2019, Cilt: 6, 42 - 49, 30.09.2019
https://doi.org/10.35193/bseufbd.563572

Öz

In this study, carbonized nutshell
ash (NSA) was added at ratios of 0, 10, 15, and 20 % into a general (FKK0)
nitrile- butadiene rubber (NBR) -based reference rubber compound and four
compounds were prepared. After the vulcanization, the hardness, density,
tensile strength, elongation at rupture, tear strength, and cross-link
densities of the compounds were measured. The effects of the cross-link density
on mechanical properties were evaluated. The properties of the compound with
carbonized nutshell addition were compared to each other as well as with the FKK0
compound. The carbonized nutshell ash considerably decreased the costs of the
compounds.
  While the increasing
cross-link density caused an increase in hardness of the compounds, it provided
an advantage for tensile strength and elongation at rupture. It was found that
increasing nutshell ash increased the density. The compounds were characterized
by a scanning electron microscope (SEM) in order to determine the fracture
surface morphologies. When the SEM images were examined, it was observed that
as a result of increasing amount of the filler, the homogeneity of the
distribution within the rubber matrix observed.





Kaynakça

  • [1] Daniel, L. & Hertz, D. (1999). An Analysis of Rubber Under Strain From an Engineering Perspective, U.S.A.
  • [2] Akçakale,N. & Bülbül, Ş. (2017). The effect of mica powder and wollastonit fillings on the mechanical properties of NR/SBR type elastomer compounds. J. Rubb. Res., 20(3), 157-167.
  • [3] Furtado, C.R.G. Leblanc, J.L. & Nunes, R.C.R. (1999) Fatigue resistance of mica-carbon black styrene butadiene rubber (SBR) compounds. Eur. Polymer J., 35,1319–1325.
  • [4] Furtado, C.R.G. Leblanc, J.L. & Nunes, R.C.R. (2000). Mica as additional filler in SBR-silica compounds. Eur. Polymer J., 36, 1717–1723.
  • [5] De, D. Panda, P.K. Roy, M. & Bhunia, S. (2013). Reinforcing effect of reclaim rubber on natural Rubber/Polybutadiene Rubber blends. Materials and Design, 46, 142-150.
  • [6] Malas, A. Pal, P. & Das, C.K. (2014). Effect of expanded graphite and modified graphite flakes an the physical and thermo-mechanical properties of Styrene Butadiene Rubber/Polybutadiene Rubber (SBR/BR) blends. Materials and Design, 55, 664-673.
  • [7] Mohan, T.P. Kuriakose, J. & Kanny, K. (2012). Water up take and mechanical properties of Natural Rubber–Styrene Butadine Rubber (NR-SBR) – nanoclay Composites. J. of Industrial and Engineering Chemistry, 18, 979-985.
  • [8] Bülbül, Ş. Yaşar, M. & Akçakale, N. (2014). Effect of changing of filling materials in NR-SBR type elastomer based rubber materials on mechanical properties. Polymer (Korea), 38(5), 664-670.
  • [9] Saramolee, P. Sahakaro, K. Lopattananon, N. Dierkes, W.K. & Noordermeer, J.W.M. (2016). Compatibilisation of silica-filled natural rubber compounds by functionalised low molecular weight polymer. J. of Rubber Research, 19(1), 28–42.
  • [10] Alfaro, E.F. Dias, D.B. & Silva, L.G.A. (2013). The study of ionizing radiation effects on polypropylene and rice husk ash composite. Radiation Physics and Chemistry, 84, 163–165.
  • [11] Kim, S.M. & Kim, K.J. (2013). Effects of accelerators on the vulcanization properties of silica vs. carbon black filled natural rubber compounds. Polymer (Korea), 37(3), 269-275.
  • [12] Ge, X. Le, M.C. & Cho, U.R. (2014). Fabrication of EPDM Rubber/organo-bentonite composites, influence of hydrochloric acid on the characteristics of modified bentonite and final products, Polymer (Korea), 38(1) 62-68.
  • [13] Prasertsri, S. Lagarde, F. Rattanasom, N. Sirisinha, C. & Daniel, P. (2013). Raman spectroscopy and thermal analysis of gum and silica-filled NR/SBR blends prepared from latex system. Polymer Testing, 32, 852–861.
  • [14] Furtado C .R.G., Leblanc, J.L. & Nunes, R.C.R. (2000). Mica as additional filler in SBR-Silica compounds. Eur. Polym. J., 36, 1717–1723.
  • [15] Yan,G. Junchi, Z. Xin, Y. Dongli, H. Meimei, X. & Liqun, Z. (2016). Preparation and performance of Silica/SBR master batches with high silica loading by latex compounding method. Composites Part B, 85, 130–139.
  • [16] Wang, X. Hengyi, L. Guangsu, H. Li-Heng, C. & Jinrong, W. (2017). Graphene oxide induced crosslinking and reinforcement of elastomers. Composites Science and Technology, 144, 223-229.
  • [17] Bülbül Ş. & Büyük S.S. (2018) The effect of walnut shell ash fillings on the mechanical properties of SBR type rubber compounds. 5th International Symposium on Multidisciplinary Studies (ISMS 2018), 457.
  • [18] Akcakale, N. (2017). Effects of carburized rice husk powders on physical properties of elastomer based materials. KGK-Kautschuk Gummi Kunststoffe, 4093, 49-54.
  • [19] Ghari, H.S. & Jalali-Arani, A. Nanocomposites based on natural rubber, organoclay and nano-calcium carbonate: Study on the structure, cure behavior, static and dynamic-mechanical properties. Applied Clay Science 119 (2016) 348–357.
  • [20] Balat, M. (2005) Use of Biomass Sources for Energy in Turkey and a View to Biomass Potential. Biomass and Bioenergy, 29, 32-41.
  • [21] Croll, S.G. (2010). Application of the Flory–Rehner equation and the griffith fracture criterion to paint stripping, Journal of Coating Technology Research, 7(1), 49-55.
  • [22] Flegler, S.L. Heckman, J.W. & Klomparens, K.L. (1993). Scanning and transmission electron microscopy. England: Oxford University Press, ISBN 0-19-510751-9,
  • [23] Nabil,H. Ismail, H. & Ratnam, C.T. (2014). Simultaneous enhancement of mechanical anddynamic mechanical properties of natural rubber/recycled ethylene-propylene-dienerubber blends by electron beam irradiation. Int. J. Polym. Anal. Charact, 19(3), 272–285.
  • [24] Rao V. & Johns, J. (2008). Mechanical properties of thermoplastic elastomeric blends of chitosan and natural rubber latex. J. Appl. Polym. Sci., 107(4), 2217–2223.
  • [25] El-Nashar, D.E. Ahmed, N.M. & Yehia, A.A., (2012). The role of ion-exchange bentonites in changing the properties of styrene–butadiene rubber composites. Materials and Design, 34, 137–142.
  • [26] Findik, F. Yilmaz, R. & Koksal, T. (2004). Investigation of mechanical and physical properties of several industrial rubbers. Materials and Design, 25(4), 269-276.
  • [27] Bülbül, Ş. & Akçakale, N. (2019). The Production and mechanical properties of carburized corn cob ash added rubber compounds. KGK-Kautschuk Gummi Kunststoffe, 72(4/19), 30-35.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şaban Bülbül 0000-0002-9268-1469

Yayımlanma Tarihi 30 Eylül 2019
Gönderilme Tarihi 13 Mayıs 2019
Kabul Tarihi 11 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6

Kaynak Göster

APA Bülbül, Ş. (2019). Doğal Atık Malzemelerle Yeni NBR Bazlı Bileşiklerin Hazırlanması ve Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6, 42-49. https://doi.org/10.35193/bseufbd.563572