Araştırma Makalesi
BibTex RIS Kaynak Göster

Structural and Optical Properties of Mn doped ZnS Nanoparticles: Sol-gel and Quantum Chemical Studies

Yıl 2019, Cilt: 6 Sayı: 2, 629 - 637, 26.12.2019
https://doi.org/10.35193/bseufbd.613777

Öz





 A




bstract- In the present work, undoped and
Mn-doped ZnS nanoparticles (ZnS:Mn) were growth by the spin coated method at
room temperature. The concentration of the Mn ions was changed from 2 to 6%.
Different analytical techniques including were used to investigate the
influence of Mn concentration on optical properties of produced thin films. In
summary, the influence of Mn doping on the optical properties of un-doped ZnS thin
films was reported. These results were also compared to the ZnS:Mn thin films
produced by different techniques. In UV-Vis. studies, the band gap energy was
found to be 3.5–3.8 eV depending on the Mn doping ratio. In addition, undoped
and Mn-doped ZnS nanoparticles were theoretically performed as a cluster by
semi empirical calculations. In these calculations, the Zn7S7 and
Zn5Mn2S7
were optimized as a hexagonal wurtzite phase structure by semi-empirical pm6
level. The theoretical band gaps for both molecules were calculated with same
method.

Kaynakça

  • [1] Ozutok, F. Erturk K. and Bilgin, V. (2012). Growth, Electrical, and Optical Study of ZnS:Mn Thin Films. Acta Physica Polenica A, 121, 221-223.
  • [2] Gómez-Barojas, E. Sánchez-Mora, E. Mendoza-Dorantes, T. Castillo-Abriz, C. and Silva-González, R. (2009). Study of the influence of annealing parameters on the optical and compositional properties of ZnS, ZnS:Mn and ZnS:Sm grown by Sol Gel. Journal of Physics: Conference Series, 167, 012051.
  • [3] Parak, W.J. Gerion, D. Pellegrino, T. Zanchet, D. Micheel, C. Williams, S.C. Boudreau, R. Le Gros, M.A. Larabell, C.A. and Alivisatos, A.P. (2003). Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. Nano Lett, 3, 33–36.
  • [4] Falcony, C. Garcia, M. Ortiz, A. and Alonso, J.C. (1992). Luminescent properties of ZnS:Mn films deposited by spray pyrolysis. J Appl Phys, 72, 1525-1527.
  • [5] Ding, J.X. Zapien, J.A. Chen, W.W. Lifshitz, Y. Lee, S.T. and Meng, X.M. (2004). Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl Phys Lett, 85, 2361-2363.
  • [6] Barreca D., Gasparotto, A. Maragno, C. Tandello, E. and Spalding, T.R. (2002). Analysis of Nanocrystalline ZnS Thin Films by XPS. Surf. Sci. Spectra 9, 54-61.
  • [7] Afifi, H.H. Ashour, A. and Mahmoud, S.A. (1995). Structural study of ZnS thin films prepared by spray pyrolysis. Thin Solid Films 263, 248-251.
  • [8] Nabiyouni, G. Sahraei, R. Toghiany, M. Majles Ara, M.H. and Hedayati, K. (2011). Preparation and characterization of nano- structured ZnS thin films grown on glass and n-type Si substrates using a new chemical bath deposition technique. Rev. Adv. Mater. Sci. 27, 52-57.
  • [9] Wang, S. Fu, X. Xia, G. Wang, J. Shao, J. and Fan, Z. (2006). Structure and optical properties of ZnS thin films grown by glancing angle deposition. Appl. Surf. Sci. 252, 8734-8737.
  • [10] Lindross, S. Kannianen, T. and Leskela, M. (1997). Growth of ZnS thin films by liquid-phase ... highly oriented PbS thin films. Mater. Res. Bull. 32, 1631-1636.
  • [11] Wagner, H. P. K€uhnelt, M. Langbein, W. and Hvam, J. M. (1998). Dispersion of the Second-Order Nonlinear Susceptibility in ZnTe, ZnSe, and ZnS. Phys. Rev. B, 58, 10494–501.
  • [12] Brafman O. and Mitra, S. S. (1968). Raman Effect in Wurtzite- and Zinc-Blende-Type ZnS Single Crystals, Phys. Rev., 171, 931–4.
  • [13] Ding, Y. Wang, X. D. and Wang, Z. L. (2004). Phase Controlled Synthesis of ZnS Nanobelts: Zinc Blende vs Wurtzite, Chem. Phys. Lett., 398, 32–36.
  • [14] Huang F. and Banfield, J. F. (2005). Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS, J. Am. Chem. Soc., 127, 4523–4529.
  • [15] La Porta, F. A. Ferrer, M. M. Santana, Y. V. B. Raubach, C. W. Longo, V. M. Sambrano, J. R. Longo, E. Andres, J. Li, M. S. and Varela, J. A. (2013).Synthesis of Wurtzite ZnS Nanoparticles Using the Microwave Assisted Solvothermal Method, J. Alloys Compd, 555, 153–159.
  • [16] Tong, H. Zhu, Y. J. Yang, L. X. Li, L. Zhang, L. Chang, J. An, L. Q. and Wang, S. W. (2007). Self-Assembled ZnS Nanostructured Spheres: Controllable Crystal Phase and Morphology. J. Phys. Chem. C, 111, 3893–3900.
  • [17] Feigl, C. A. Barnard, A. S. and Russo, S. P. (2012). Size- and Shape-Dependent Phase Transformations in Wurtzite ZnS Nanostructures. Phys. Chem. Chem. Phys., 14, 9871–9879.
  • [18] Hohenberg P. and Kohn, W. (1964). Inhomogeneous Electron Gas. Phys. Rev., 136, B864–B871.
  • [19] Kohn W. and Sham, L. J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., 140, A1133–1138.
  • [20] Zhao Y. and Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry, Acc. Chem. Res., 41, 157–167.
  • [21] Neugebauer J. and Hickel, T. (2013). Density Functional Theory in Materials Science. WIREs Compt. Mol. Sci., 3, 1–11.
  • [22] Krainara, N. Limtrakul, J. Illas, F. and Bromley, S. T. (2013). Magic Numbers in a One-Dimensional Nanosystem: ZnS Single-Walled Nanotubes. J. Phys. Chem. C, 117, 22908–22914.
  • [23] Longo, V. M. Gracia, L. Stroppa, D. G. Cavalcante, L. S. Orlandi, M. Ramirez, A. J. Leite, E. L. Andres, J. Beltran, A. Varela, J. A. and Longo, E. (2011). A Joint Experimental and Theoretical Study on the Nanomorphology of CaWO4 Crystals. J. Phys. Chem. C, 115, 20113–9.
  • [24] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, (2009).
  • [25] Dennington, R. Keith, T. Millam, J. Eppinnett, K. Hovell, W.L. Gilliland, R. (2003). GaussView, Version 3.07, Semichem Inc., Shawnee Mission, KS.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Aslı Kaya 0000-0003-2693-6547

Yayımlanma Tarihi 26 Aralık 2019
Gönderilme Tarihi 1 Eylül 2019
Kabul Tarihi 5 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kaya, A. (2019). Structural and Optical Properties of Mn doped ZnS Nanoparticles: Sol-gel and Quantum Chemical Studies. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 6(2), 629-637. https://doi.org/10.35193/bseufbd.613777