2-Tiyourasilin Tayini için Poli(Bromokrezol moru) ile Modifiye Camsı Karbon Elektroda Dayalı Elektrokimyasal DNA Sensörü Geliştirilmesi
Development of Electrochemical DNA Sensor Based on Poly (Bromocresol purple) Modified Glassy Carbon Electrode for the Determination of 2-Thiouracil

Derya KOYUNCU ZEYBEK [1] , Burcu DEMİR DOĞANCI [2] , Müzeyyen Özge KARAŞALLI [3]


Bu çalışmada, potansiyel bir kanser ilacı olan 2-tiyourasil (2-TU) ilacı ile balık sperminden elde edilen çift zincirli deoksiribonükleik asit (dsDNA) molekülü arasındaki etkileşim incelenmiş ve bu etkileşime dayalı olarak ilacın elektrokimyasal tayini gerçekleştirilmiştir. Bunun için, camsı karbon elektrot (GCE) yüzeyi, bromokrezol moru (BCP) monomerinin elektrokimyasal polimerizasyonu ile modifiye edilmiş ve bu elektrot (GCE/P(BCP)) yüzeyine, dsDNA elektrokimyasal olarak immobilize edilmiştir (GCE/P(BCP)/dsDNA). dsDNA ile 2-TU arasındaki etkileşim mekanizması diferansiyel puls voltametri yöntemiyle araştırılmıştır. Bu etkileşim sonrası guaninin yükseltgenme pik akımında azalma gözlenmiş ve bu azalmaya bağlı olarak 2-TU’in elektrokimyasal tayini indirekt yöntemle gerçekleştirilmiştir. 2-TU için doğrusal çalışma aralığı 0,1-50 mg L−1 ve gözlenebilme sınırı 0,033 mg L−1 olarak bulunmuştur. 2-TU−dsDNA etkileşim mekanizması UV-Görünür bölge moleküler absorpsiyon spektroskopi yöntemiyle de incelenmiştir. Hazırlanan DNA biyosensörüne bozucu etki yapabilecek türlerin etkisi araştırılmış ve ayrıca 2-TU ilacının idrar numunesinde tayini gerçekleştirilmiştir. Deneysel çalışmalardan elde edilen sonuçlara göre, 2-TU ve dsDNA arasındaki başlıca etkileşim modunun interkalasyon olduğu belirlenmiştir.

In this study, the interaction between 2-thiouracil (2-TU), a potential cancer drug, and double chain deoxyribonucleic acid (dsDNA) molecule obtained from fish sperm was investigated and electrochemical determination of the drug was performed. For this, the glassy carbon electrode (GCE) surface was modified by electrochemical polymerization of the bromocresol purple (BCP) monomer and dsDNA was electrochemically immobilized (GCE/P(BCP)/dsDNA) onto the surface of this electrode (GCE/P(BCP)).  The interaction mechanism between dsDNA and 2-TU was investigated by differential pulse voltammetry method. After this interaction, a decrease in the oxidation peak current of guanine was observed and electrochemical determination of 2-TU was performed by indirect method due to this decrease. The linear operating range for 2-TU was 0.1-50 mg L− 1 and the detection limit was 0.033 mg L−1. The interaction mechanism of 2-TU − dsDNA was also investigated by UV-Visible molecular absorption spectroscopy. The effect of the species that may cause disruptive effect on the DNA biosensor was investigated and 2-TU drug was determined in the urine sample. According to the results obtained from experimental studies, the main mode of interaction between 2-TU and dsDNA is intercalation.


  • [1] Pattar, V. P., & Nandibewoor, S. T. (2016). Staircase voltammetric determination of 2-thiouracil in pharmaceuticals and human biological fluids at polyaniline and polypyrrole film modified sensors. Sensors and Actuators A: Physical, 250, 40-47.
  • [2] Shah, A., Nosheen, E., Zafar, F., uddin, S. N., Dionysiou, D. D., Badshah, A., . . . Khan, G. S. (2012). Photochemistry and electrochemistry of anticancer uracils. Journal of Photochemistry and Photobiology B: Biology, 117, 269-277.
  • [3] Palumbo, A., d’Ischia, M., & Cioffi, F. A. (2000). 2-Thiouracil is a selective inhibitor of neuronal nitric oxide synthase antagonising tetrahydrobiopterin-dependent enzyme activation and dimerisation. FEBS Letters, 485(2), 109-112.
  • [4] Sułkowska, A., Równicka, J., Bojko, B., & Sułkowski, W. (2003). Interaction of anticancer drugs with human and bovine serum albumin. Journal of Molecular Structure, 651-653, 133-140.
  • [5] Saleh, T. A., Al-Shalalfeh, M. M., & Al-Saadi, A. A. (2018). Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sensors and Actuators B: Chemical, 254, 1110-1117.
  • [6] Beheshti, A., Riahi, S., Pourbasheer, E., Ganjali, M. R., & Norouzi, P. (2010). Simultaneous Spectrophotometric Determination of 2-Thiouracil and 2-Mercaptobenzimidazole in Animal Tissue Using Multivariate Calibration Methods: Concerns and Rapid Methods for Detection. Journal of Food Science, 75(2), C135-C139.
  • [7] Chi, Y., Duan, J., Lin, S., & Chen, G. (2006). Flow Injection Analysis System Equipped with a Newly Designed Electrochemiluminescent Detector and Its Application for Detection of 2-Thiouracil. Analytical Chemistry, 78(5), 1568-1573.
  • [8] Shahrokhian, S., Hamzehloei, A., Thaghani, A., & Mousavi, S. R. (2004). Electrocatalytic Oxidation of 2-Thiouracil and 2-Thiobarbituric Acid at a Carbon-Paste Electrode Modified with Cobalt Phthalocyanine. Electroanalysis, 16(11), 915-921.
  • [9] Gokavi, N. M., Patil, S. M., & Nandibewoor, S. T. (2015). Fabrication of Polyethylene Glycol Modified Carbon Paste Electrode for the Sensitive Determination of Anti-thyroidal Drug 2-Thio-Uracil in Human Biological Fluids. Analytical Chemistry Letters, 5(4), 239-250.
  • [10] Bukkitgar, S. D., Shetti, N. P., & Kulkarni, R. M. (2017). Electro-oxidation and determination of 2-thiouracil at TiO2 nanoparticles-modified gold electrode. Surfaces and Interfaces, 6, 127-133.
  • [11] Liu, Y., Zou, Q.-H., Xie, M.-X., & Han, J. (2007). A novel approach for simultaneous determination of 2-mercaptobenzimidazole and derivatives of 2-thiouracil in animal tissue by gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 21(9), 1504-1510.
  • [12] Kurbanoglu, S., Dogan-Topal, B., Rodriguez, E. P., Bozal-Palabiyik, B., Ozkan, S. A., & Uslu, B. (2016). Advances in electrochemical DNA biosensors and their interaction mechanism with pharmaceuticals. Journal of Electroanalytical Chemistry, 775, 8-26.
  • [13] Florea, A., Guo, Z., Cristea, C., Bessueille, F., Vocanson, F., Goutaland, F., . . . Jaffrezic-Renault, N. (2015). Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta, 138, 71-76.
  • [14] Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1-19.
  • [15] Rauf, S., Gooding, J. J., Akhtar, K., Ghauri, M. A., Rahman, M., Anwar, M. A., & Khalid, A. M. (2005). Electrochemical approach of anticancer drugs–DNA interaction. Journal of Pharmaceutical and Biomedical Analysis, 37(2), 205-217.
  • [16] Dogan-Topal, B., Bozal-Palabiyik, B., Ozkan, S. A., & Uslu, B. (2014). Investigation of anticancer drug lapatinib and its interaction with dsDNA by electrochemical and spectroscopic techniques. Sensors and Actuators B: Chemical, 194, 185-194.
  • [17] Oliveira-Brett, A. M. (2008). Electrochemical DNA Assays. In P. N. Bartlett (Ed.), Bioelectrochemistry: Fundamentals Experimental Techniques and Applications (pp. 411-442).
  • [18] Kurbanoglu, S., Dogan-Topal, B., Hlavata, L., Labuda, J., Ozkan, S. A., & Uslu, B. (2015). Electrochemical investigation of an interaction of the antidepressant drug aripiprazole with original and damaged calf thymus dsDNA. Electrochimica Acta, 169, 233-240.
  • [19] Koyuncu Zeybek, D., Demir, B., Zeybek, B., & Pekyardımcı, Ş. (2015). A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly(bromocresol purple). Talanta, 144, 793-800.
  • [20] Ersin, D., Onur, I., Recai, I., & Hassan, Y. A.-E. (2018). Voltammetric Determination of Ophthalmic Drug Dexamethasone Using Poly-glycine Multi Walled Carbon Nanotubes Modified Paste Electrode. Current Analytical Chemistry, 14(1), 83-89.
  • [21] Yang , G., Yan, J., Qi, F., & Sun, C. (2010). High Sensitivity and Reproducibility of a Bismuth/Poly(bromocresol purple) Film Modified Glassy Carbon Electrode for Determination of Trace Amount of Cadmium by Differential Pulse Anodic Stripping Voltammetry. Electroanalysis, 22(22), 2729-2738.
  • [22] Carter, M. T., Rodriguez, M., & Bard, A. J. (1989). Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine. Journal of the American Chemical Society, 111(24), 8901-8911.
  • [23] Gokavi, N. M., Pattar, V. P., Bagoji, A. M., & Nandibewoor, S. T. (2013). Square Wave Voltammetric Determination of 2-Thiouracil in Pharmaceuticals and Real Samples Using Glassy Carbon Electrode. International Journal of Electrochemistry, 2013, 8.
  • [24] Bagoji, A. M., Gokavi, N. M., Pattar, V. P., & Nandibewoor, S. T. (2015). Fabrication, characterization and application of NiSO4 modified carbon paste electrode for the detection of 2-thiouracil in biological fluids. Analytical and Bioanalytical Electrochemistry, 7(6), 684-700.
  • [25] Pattar, V. P., & Nandibewoor, S. T. (2015). Polybenzoin Based Sensor for Determination of 2thiouracil in Biological Fluids and Pharmaceutical Formulations. Journal of the Chinese Chemical Society, 62(3), 287-295.
  • [26] Pattar, V. P., Bagoji, A. M., Gokavi, N. M., & Nandibewoor, S. T. (2014). Electrochemical determination of 2-thiouracil in pharmaceuticals and real samples using gold electrode. Analytical and Bioanalytical Electrochemistry, 6(1), 1-15.
  • [27] Nawaz, H., Rauf, S., Akhtar, K., & Khalid, A. M. (2006). Electrochemical DNA biosensor for the study of ciprofloxacin–DNA interaction. Analytical Biochemistry, 354(1), 28-34.
  • [28] Chu, X., Shen, G.-L., Jiang, J.-H., Kang, T.-F., Xiong, B., & Yu, R.-Q. (1998). Voltammetric studies of the interaction of daunomycin anticancer drug with DNA and analytical applications. Analytica Chimica Acta, 373(1), 29-38.
  • [29] Ibrahim, M. S. (2001). Voltammetric studies of the interaction of nogalamycin antitumor drug with DNA. Analytica Chimica Acta, 443(1), 63-72.
  • [30] Rahban, M., Divsalar, A., Saboury, A. A., & Golestani, A. (2010). Nanotoxicity and Spectroscopy Studies of Silver Nanoparticle: Calf Thymus DNA and K562 as Targets. The Journal of Physical Chemistry C, 114(13), 5798-5803.
  • [31] Dimitrakopoulou, A., Dendrinou-Samara, C., Pantazaki, A. A., Alexiou, M., Nordlander, E., & Kessissoglou, D. P. (2008). Synthesis, structure and interactions with DNA of novel tetranuclear, [Mn4(II/II/II/IV)] mixed valence complexes. Journal of Inorganic Biochemistry, 102(4), 618-628.
Birincil Dil tr
Konular Temel Bilimler
Bölüm Makaleler
Yazarlar

Orcid: 0000-0003-4214-1744
Yazar: Derya KOYUNCU ZEYBEK (Sorumlu Yazar)
Kurum: KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ
Ülke: Turkey


Orcid: 0000-0002-7567-1875
Yazar: Burcu DEMİR DOĞANCI
Kurum: KÜTAHYA DUMLUPINAR ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ

Orcid: 0000-0001-6614-7660
Yazar: Müzeyyen Özge KARAŞALLI
Kurum: Kütahya Dumlupınar Üniversitesi Fen Edebiyat Fakültesi

Destekleyen Kurum Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Birimi
Proje Numarası 2015-41
Teşekkür Yazarlar 2015-41 nolu proje ile destek sağlayan Kütahya Dumlupınar Üniversitesi Bilimsel Araştırma Projeleri Birimine ve Burcu Demir’e yüksek lisans tez dönemi boyunca Yurtiçi Öncelikli Alanlar Yüksek Lisans Burs Programı (2210-C) kapsamında burs sağlayan Türkiye Bilimsel ve Teknolojik Araştırma Kurumuna (TÜBİTAK) teşekkür ederler.
Tarihler

Başvuru Tarihi : 4 Kasım 2019
Kabul Tarihi : 23 Aralık 2019
Yayımlanma Tarihi : 23 Mart 2020

APA KOYUNCU ZEYBEK, D , DEMİR DOĞANCI, B , KARAŞALLI, M . (2020). 2-Tiyourasilin Tayini için Poli(Bromokrezol moru) ile Modifiye Camsı Karbon Elektroda Dayalı Elektrokimyasal DNA Sensörü Geliştirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 7 (100. Yıl Özel Sayı) , 229-242 . DOI: 10.35193/bseufbd.642171