LinI (n=2-8) ve Lin (n=2-9) Topakların Doğrusal Olmayan Optik Aktivitelerinin Kuramsal Olarak İncelenmesi
Theoretical Investigation of Nonlinear Optical Activities of LinI (n=2-8) and Lin (n=2-9) Clusters

Arslan ÜNAL [1] , İsmail KILINÇ [2]


Lityum-iyodür topakları (LinI, n = 2 - 8) ile saf lityum topaklarının (Lin, n = 2 - 9) en kararlı geometrik yapılarının enerjitiksel ve optik özellikleri Yoğunluk Fonksiyonel Teorisi (YFT) çerçevesinde incelenmiştir. LinI (n = 2 - 8) ve Lin (n = 2 - 9) topaklarının en düşük enerjili geometrik yapıları Becke 3 Lee-Yang-Parr (B3LYP) fonksiyoneli ve Los Alamos National Laboratory -2 double zeta (LANL2dz) baz seti kullanılarak elde edilmiştir. Lityum-iyodür ve saf lityum topaklarının doğrusal olmayan optik özellikleri analiz etmek için her bir topağa ait elde edilen global minimum yapılarının statik dipol moment (μ), ortalama kutuplanabilirlik (˂α˃) ve birinci dereceden toplam hiperkutuplanabilirlik (β0) parametreleri B3LYP/LANL2dz teorisinde hesaplandı. Analiz edilen kutuplanabilirlik verileri sonucunda Li3 ve Li7I topakları diğer incelenen saf lityum veya lityum-iyodür topaklarına göre kayda değer doğrusal olmayan optik aktivite tepkileri göstermişlerdir.
The energetic and optical properties of the most stable geometric structures of lithium-iodide (LinI, n = 2 - 8) clusters and pure lithium (Lin, n = 2 - 9) clusters were examined within the framework of Density Functional Theory (DFT). The lowest energetically geometric structures of LinI (n = 2 - 8) and Lin (n = 2 - 9) clusters were obtained by using the Becke 3 Lee-Yang-Parr (B3LYP) functional and Los Alamos National Laboratory -2 double zeta (LANL2dz) basis set. In order to analyze the nonlinear optical features of lithium-iodide and pure lithium clusters, the static dipole moment (μ), average polarizability (˂α ˃) and first order total hyper polarizability (β0) parameters of the obtained global minimum structures of each cluster were computed. As a result of the analyzed polarizability data, Li3 and Li7I clusters indicated significant nonlinear optical activity responses when compared to the other researched pure lithium clusters or lithium-iodide clusters.
  • Linden, D. (1995). Handbook of Batteries 2nd ed. Mc Graw Hill, New York.
  • Şentürk, Ş. (2011). A Density Functional Study of LinCl (n=1–7) Clusters, Z. Naturforsch. A, 66, 372-376.
  • Şentürk, Ş., Ünal, A., & Kalfa, O.M. (2013). Density functional study of bromine doped lithium clusters, Comput. Theor. Chem., 1023, 46-50.
  • Srivastava, A. K., & Misra, N. (2015). Nonlinear optical behavior of LinF (n=2-5) superalkali clusters, J. Mol. Model., 21, 305.
  • Milovanović, M., Veličković, S., Veljković, F., & Jerosimić, S. (2017). Structure and stability of small lithium-chloride LinClm(0,1+) (n≥m, n= 1–6, m= 1–3) clusters, Phys. Chem. Chem. Phys., 19, 30481-30497.
  • Srivastava, A. K., & Misra, N. (2016). Remarkable NLO responses of hyperalkalized species: the size effect and atomic number dependence, New J. Chem., 40, 5467-5472.
  • Botana, J., Brgoch, J., Hou, C., & Miao, M. (2016). Iodine anions beyond -1: Formation of LinI (n=2-5) and its interaction with quasiatoms, Inorg. Chem., 55, 9377-9382.
  • Ünal, A., & Kotan, B. (2018). A DFT based study of geometries, stabilities and electronic properties of LinF (n=1-8) clusters, Main Group Chem., 17, 267-272.
  • Đustebek, J., Veličković, S., Jerosimić, S., & Veljković, M. (2011). Mass spectrometric study of the structures and ionization potential of LinI (n=2,4,6) clusters, J. Anal. At. Spectrom., 26, 1641-1647.
  • Lanaro, G., & Patey, G. N. (2017). Crystal structures of model lithium halides in bulk phase and in clusters, J. Chem. Phys., 146, 154501.
  • Veličković, S. R., Đustebek, J. B., Veljković, F. M., & Veljković, M. V. (2012). Formation of positive cluster ions LinBr (n=2-7) and ionization energies studied by thermal ionization mass spectrometry, J. Mass Spectrom., 47, 627-631.
  • Moreira, N. L., Brito, B. G. A., Rabelo, J. N. T., & Cândido, L. (2016). Quantum Monte Carlo study of the energetics of small hydrogenated and fluoride lithium clusters, J. Comput. Chem., 37, 1534-1536.
  • Đustebek, J., Veličković, S. R., Veljković, F. M., & Veljković, M. V. (2012). Production of heterogeneous superalkali clusters LinF (n=2-6) by Knudsen cell Mass Spectrometry, Dig. J. Nanomater Bios., 7, 1365-1372.
  • Milonavić, M. Z., & Jerosimić, S. V. (2014). Theoretical investigation of geometry and stability of small lithium-iodide LinI (n=2-6) clusters, Int. J. Quantum Chem., 114, 192-208.
  • Đustebek, J., Milovanović, M., Jerosimić, S., Veljković, M., & Veličković, S. (2013). Theoretical and experimental study of the non-stoichiometric LinI (n=3 and 5) clusters, Chem. Phys. Lett., 556, 380-385.
  • Schleyer, P.v.R. (1986). Are CLi6, NLi5, OLi4, Etc, Hypervalent? In New Horizons of Quantum Chemistry, Reidel, Dordrecht, 95-109.
  • Gutsev, G. L., & Boldryev, A. I. (1981). DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”, Chem. Phys., 56, 277-283.
  • Gutsev, G. L., & Boldryev, A. I. (1982). DVM Xα calculations on the electronic structure of “superalkali” cations, Chem. Phys. Lett., 92, 262-266.
  • Rehm, E, Boldryev, A. I., & Schleyer, P.v.R. (1992). Ab initio study of superalkalis. First ionization potentials and thermodynamic stability, Inorg. Chem., 31, 4834-4842.
  • Li, Y., & Wu., D. (2010). Theoretical study on static first hyperpolarizabilities of hypervalent compounds FnLin+1 (n = 1–3), Gaodeng Xuexiao Huaxue Xuebao, 31, 1811-1814.
  • Tai, T. B., Nhat, P. V., Nguyen, M. T., Li, S., & Dixon, D. A. (2011). Electronic structure and thermochemical properties of small neutral and cationic lithium clusters and boron-doped lithium clusters: Lin0/+ and LinB0/+ (n = 1-8), J. Phys. Chem. A, 115, 7673-7686.
  • Brito, B. G. A., Candido, L., Teixeria Rabelo, J. N., & Hai, G.-Q., (2014). Binding energies of small lithium clusters: A comparison of different theoretical calculations, Chem. Phys. Lett., 616-617, 212-216.
  • Perez, J., & Restrepo, A. (2008). ASCEC V-02: Annealing Simulado con Energia Cuantica. Property, development and implementation: Grupo de Quimica–Fisica Teorica, Instituto de Quimica, Universidad de Antioquia: Medellin, Colombia.
  • Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. J. (1953). Equation of State Calculations, by Fast Computing Machines, Chem. Phys., 21, 1087-1092.
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing, Science 220 (1983) 671-680.
  • Aarts, E., & Laarhoven, H. (1987). Simulated annealing: theory and applications, Springer, New York, 55-75.
  • Frisch, M.J., et al. (2009) Gaussian 09 Revision A.1, Gaussian Inc., Wallingford, CT.
  • Cohen, H. D., & Roothaan, C. C. (1965). Electric Dipole Polarizability of Atoms by the Hartree—Fock Method. I. Theory for Closed‐Shell Systems. J. Chem. Phys., 43, S34-S39.
  • Ünal, A., & Güvenir, S. (2019). The Investigation of Optical Features of Linear and Non-Linear Fluorine-Doped Lithium Clusters. BSEU Journal of Science, 6, 146-152.
Birincil Dil tr
Konular Temel Bilimler
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-5857-7318
Yazar: Arslan ÜNAL (Sorumlu Yazar)
Kurum: Bilecik Şeyh Edebali Üniversitesi
Ülke: Turkey


Orcid: 0000-0003-2743-459X
Yazar: İsmail KILINÇ
Kurum: BİLECİK ŞEYH EDEBALİ ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ
Ülke: Turkey


Tarihler

Başvuru Tarihi : 26 Ocak 2020
Kabul Tarihi : 5 Mart 2020
Yayımlanma Tarihi : 23 Mart 2020

APA ÜNAL, A , KILINÇ, İ . (2020). LinI (n=2-8) ve Lin (n=2-9) Topakların Doğrusal Olmayan Optik Aktivitelerinin Kuramsal Olarak İncelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi , 7 (100. Yıl Özel Sayı) , 1-8 . DOI: 10.35193/bseufbd.680146