Araştırma Makalesi
BibTex RIS Kaynak Göster

Kimyasal Püskürtme Tekniği ile Üretilen PbS İnce Filmin Karakterizasyonu

Yıl 2021, Cilt: 8 Sayı: 2, 770 - 777, 31.12.2021
https://doi.org/10.35193/bseufbd.956725

Öz

Bu çalışmada, kurşun sülfür (PbS) filmler, kolay ve ekonomik bir yöntem olan ultrasonik kimyasal püskürtme tekniği ile 370±5 °C taban sıcaklığında mikroskop cam üzerine kaplanmıştır. Farklı molariteli Pb katkısı ile elde edilen PbS filmlerin, yapısal, yüzeysel, optik ve elektriksel özellikleri üzerindeki etkisi incelendi. Optik, yapısal, yüzeysel ve elektriksel özellikleri, UV spektrofotometre, taramalı elektron mikroskobu, Atomik kuvvet mikroskobu ve X-ışını spektroskopisi analizi kullanılarak karakterize edildi. X-ışınları kırınımı (XRD) analizinden PbS ince filminin hekzagonal yapıya sahip olduğu bulundu. Atomik Kuvvet Mikroskobu (AFM) ölçümlerinden PbS ince filminin pürüzlülükleri belirlendi. Optik soğurma spektrumundan PbS ince filminin 1.69-1.89 eV’luk dar optik bant aralığına sahip olduğu belirlendi. Üretilen filmlerin kalınlık değerleri ise spektroskopik elipsometre tekniğinde Cauchy-Urbach modeli kullanılarak belirlendi. PbS filmlerinin fotovoltaik güneş pili uygulamaları için kullanım potansiyeli araştırılmıştır.

Kaynakça

  • Göde, F., Güneri, E., Eman, F. M., Kafadar, V. E. & Ünlü, S. (2014). Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS thin films. Journal of Luminescence, 147, 41–48.
  • Rajashree, C., Balu, A. R & Nagarethinam, V. S. (2015). Properties of Cd doped PbS thin films: doping concentration effect. Surface Engineering, 31(4), 316-321.
  • Rex Rosario, S., Kulandaisamy, I., Deva Arun Kumar, K., Arulanantham, A. M. S, Valanarasu, S., Youssef, M. A. & Awwad, N. S. (2019). Deposition of p-type Al doped PbS thin films for hetero structure solar cell device using feasible nebulizer spray pyrolysis technique. Physica B: Physics of Condensed Matter, 575, 411704.
  • Thangaraju, B., & Kaliannan, P. (2000). Polycrystalline lead tin chalcogenide thin film grown by spray pyrolysis. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 35(1), 71-75.
  • Pentia, E., Pintillie, L., Matei, I., Botillia, T. & Ozbay, E. (2001). Chemically Prepared Nanocrystalline PbS Thin Films. Journal of Optoelectronics and Advanced Materials 3, 525-530.
  • Kul, M. (2019). Characterization of PbS Film Produced by Chemical Bath Deposition at Room Temperature. Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences, 7(1), 46 -58.
  • Al Din, N. S., Hussain, N. & Jandow, N. (2016). Structural and optical studied of nano structured lead sulphide thin films prepared by the chemical bath deposition technique. AIP Conference Proceedings. 1758, 020002 (7p).
  • Thirumavalavana, S., Mani, K. & Suresh, S. (2015). Investigation on structural, optical, morphological and electrical properties of lead sulphide (PbS) thin films. Journal of Ovonic Research, 11, 123-130.
  • Beddek, L., Messaoudi, M., Attaf, N., Aida, M. S. & Bougdira, J. (2016). Sulfide precursor concentration and lead source effect on PbS thin films properties. Journal of Alloys and Compounds, 666, 327-333.
  • Mathews, N. R., Angeles–Chavez, C., Cortes-Jacome M. A. & Toledo-Antonio, J. A. (2013). Physical properties of pulse electrod eposited lead sulphide thin films. Electrochimica Acta, 99, 76– 84.
  • J. Patel, J., Mighri, F., Ajji, A., Tiwari, D. & Chaudhuri, T. K. (2014). Spin-coating deposition of PbS and CdS thin films for solar cell application. Applied Physics A, 117, 1791–1799.
  • Thangaraju, B. & Kaliannan, P. (2000). Spray pyrolytically deposited PbS thin films. Semiconductor Science and Technology, 15, 849–853.
  • Faraj, M. G. (2015). Effect of thickness on the structural and electrical properties of spray pyrolysed lead sulphide thin films. American Journal of Condensed Matter Physics, 5, 51-55.
  • Motlagh, Z. & Araghi, M. E. A. (2016). Effect of film thickness and texture morphology on the physical properties of lead sulphide thin films. Semiconductor Science and Technology, 31, 025017 (11).
  • Boadi, N.O, McNaughter, P. D., Helliwell, M., Malik, M. A., Awudza, J. A. M. & O’Brien, P. (2016). The deposition of PbS and PbSe thin films from lead dichalcogenoimido phosphinates by AACVD. Inorganica Chimica Acta, 453, 439–442.
  • Kurtaran, S., Aldağ, S., Öföfoğlu, G., Akyüz, I. & Atay, F. (2016). Transparent conductive ZnO thin films grown by chemical spray pyrolysis: the effect of Mg. Journal of Materials Science: Materials in Electronics, 27, 8478-8485.
  • Atay, F., Köse, S., Bilgin, V. & Akyüz, I. (2003). CdS:Ni films obtained by ultrasonic spray pyrolysis:effect of the Ni concentration. Materials Letters, 57, 3461–3472.
  • Cullity, B. D. & Stock, S. R. (2001). Elements of X-ray Diffraction. Pearson Prentice Hall, USA.
  • Williamson, G. B. & Smallman, R. C. (1956). Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray Debye-Scherrer spectrum. Philosophical Magazine Series A: Series, 8(1), 34-46.
  • Rajashree, C. & Balu, A. R. (2016). Tuning the physical properties of PbS thin films toward sopto electronic applications through Ni doping. Optik, 127, 8892–8898.
  • Touati, B., Gassoumi, A., Dobryden, I., Natile, M. M., Vomiero, A. & Turki, N. K. (2016). Engineering of electronic and optical properties of PbS thin films via Cu doping. Superlattices and Microstructures, 97, 519-528.
  • Vigil, O., Cruz, F., Acevedo, A. M., Puente, G. C., Vaillant, L. & G. Santana, G. (2001). Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Materials Chemistry and Physics, 68, 249–252.
  • Manjula, N., Usharan,i K., Balu, A. R., Nagarethinam, V. S. (2014). Studies on the physical properties of three potentially important TCO thin films fabricated by a simplified spray technique under same deposition conditions. International Journal of ChemTech Research, 6(1), 705-718.
  • Pankove J. I. (1975). Optical Process in Semiconductors. New York, USA: Dover.
  • Chen, J. H., Chao, C. G., Ou, J. C., & Liu, T. F. (2007). Growth and characteristics of lead sulphide nanocrystals produced by the porous alumina membrane. Surface Science, 601, 5142-5147.
  • Perez R. G., Tellez G. H., Rosas, U. P., Torres, A. M., Tecorralco, J. H., Lima, L. C., & Moreno, O. P. (2013). Growth of PbS nanocrystals thin films by chemical bath. Journal of Materials Science and Engineering A, 3, 1-13.
  • Sherwin, R., Clark, R. J. H., Lauck, R., & Cardona, M. (2005). Effect of isotope substitution and doping on the Raman spectrum of galena (PbS). Solid State Communications, 134, 565-570.
  • Cao, H., Wang, G., Zhang, S., & Zhang, X. (2006). Growth and photoluminescence properties of PbS nanocubes. Nanotechnology, 17, 3280-3287.
  • Tohidi, T., Jamshidi-Ghaleh, K., Namdar, A., & Abdi-Ghaleh, R. (2014). Comparative studies on the structural, morphological, optical, and electrical properties of nanocrystalline PbS thin films grown by chemical bath deposition using two different bath compositions. Materials Science in Semiconductor Processing, 25,197-206.
  • Milekhin, A., Sveshnikova, L., Duda, T., Surovtsev, N., Adichtchev, S., & Zahn, D. R. T. (2011). Optical phonons in nanoclusters formed by the Langmuir-Blodgett technique. Chinese Journal of Physics, 49, 63-70.
  • Krauss, T. D., Wise, F. W., & Tanner, D. B. (1996). Observation of coupled vibrational modes of a semiconductor nanocrystal. Physical Review Letters, 76, 1376-1379.
  • Batonneau, Y., Bremard, C., Laureyns, J., Merlin, J. C. (2000). Microscopic and imaging Raman scattering study of PbS andits photo-oxidation products. Journal of Raman Spectroscopy, 31, 1113-1119.
  • Lynch, M. (2017). An investigation of solutions of sulfur in oleylamine by Raman spectroscopy and their relation to lead sulphide quantum dot synthesis. Under graduate honorstheses, University of Colorado, Boulder, Colorado, USA.
  • Ramaswamy, S., Rajaram, R. K., & Ramakrishnan, V. (2005). Infrared and laser Raman spectra of bis (DLmethioninium) sulfate. Journal of Raman Spectroscopy, 36, 840-847.

Characterization of PbS Thin Film Produced by Chemical Spray Pyrolysis Technique

Yıl 2021, Cilt: 8 Sayı: 2, 770 - 777, 31.12.2021
https://doi.org/10.35193/bseufbd.956725

Öz

In this study, lead sulfide (PbS) films were coated on microscope glass at the substrate temperature of 370±5 °C by ultrasonic chemical spray pyrolysis technique, which is an easy and economical method. The effect of PbS films obtained with different molarity Pb additions on their structural, surface, optical, and electrical properties was investigated. Their optical, structural, surface, and electrical properties were characterized using UV, spectrophotometer, scanning electron microscopy, Atomic force microscopy, and X-ray spectroscopy analyses. From the X-ray diffraction (XRD) analysis, the PbS thin film was found to have a hexagonal structure. The roughness of the PbS thin film was determined by Atomic Force Microscopy (AFM). From the optical absorption spectrum, it was calculated that the PbS thin film has a narrow optic band gap of 1.69-1.89 eV. The thickness values of the produced films were determined using the spectroscopic ellipsometry technique. The Cauchy-Urbach model was used to determine the thickness of the films. The potential for use of PbS films for photovoltaic solar cell applications was investigated.

Kaynakça

  • Göde, F., Güneri, E., Eman, F. M., Kafadar, V. E. & Ünlü, S. (2014). Synthesis, structural, optical, electrical and thermoluminescence properties of chemically deposited PbS thin films. Journal of Luminescence, 147, 41–48.
  • Rajashree, C., Balu, A. R & Nagarethinam, V. S. (2015). Properties of Cd doped PbS thin films: doping concentration effect. Surface Engineering, 31(4), 316-321.
  • Rex Rosario, S., Kulandaisamy, I., Deva Arun Kumar, K., Arulanantham, A. M. S, Valanarasu, S., Youssef, M. A. & Awwad, N. S. (2019). Deposition of p-type Al doped PbS thin films for hetero structure solar cell device using feasible nebulizer spray pyrolysis technique. Physica B: Physics of Condensed Matter, 575, 411704.
  • Thangaraju, B., & Kaliannan, P. (2000). Polycrystalline lead tin chalcogenide thin film grown by spray pyrolysis. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 35(1), 71-75.
  • Pentia, E., Pintillie, L., Matei, I., Botillia, T. & Ozbay, E. (2001). Chemically Prepared Nanocrystalline PbS Thin Films. Journal of Optoelectronics and Advanced Materials 3, 525-530.
  • Kul, M. (2019). Characterization of PbS Film Produced by Chemical Bath Deposition at Room Temperature. Eskişehir Technical University Journal of Science and Technology B- Theoretical Sciences, 7(1), 46 -58.
  • Al Din, N. S., Hussain, N. & Jandow, N. (2016). Structural and optical studied of nano structured lead sulphide thin films prepared by the chemical bath deposition technique. AIP Conference Proceedings. 1758, 020002 (7p).
  • Thirumavalavana, S., Mani, K. & Suresh, S. (2015). Investigation on structural, optical, morphological and electrical properties of lead sulphide (PbS) thin films. Journal of Ovonic Research, 11, 123-130.
  • Beddek, L., Messaoudi, M., Attaf, N., Aida, M. S. & Bougdira, J. (2016). Sulfide precursor concentration and lead source effect on PbS thin films properties. Journal of Alloys and Compounds, 666, 327-333.
  • Mathews, N. R., Angeles–Chavez, C., Cortes-Jacome M. A. & Toledo-Antonio, J. A. (2013). Physical properties of pulse electrod eposited lead sulphide thin films. Electrochimica Acta, 99, 76– 84.
  • J. Patel, J., Mighri, F., Ajji, A., Tiwari, D. & Chaudhuri, T. K. (2014). Spin-coating deposition of PbS and CdS thin films for solar cell application. Applied Physics A, 117, 1791–1799.
  • Thangaraju, B. & Kaliannan, P. (2000). Spray pyrolytically deposited PbS thin films. Semiconductor Science and Technology, 15, 849–853.
  • Faraj, M. G. (2015). Effect of thickness on the structural and electrical properties of spray pyrolysed lead sulphide thin films. American Journal of Condensed Matter Physics, 5, 51-55.
  • Motlagh, Z. & Araghi, M. E. A. (2016). Effect of film thickness and texture morphology on the physical properties of lead sulphide thin films. Semiconductor Science and Technology, 31, 025017 (11).
  • Boadi, N.O, McNaughter, P. D., Helliwell, M., Malik, M. A., Awudza, J. A. M. & O’Brien, P. (2016). The deposition of PbS and PbSe thin films from lead dichalcogenoimido phosphinates by AACVD. Inorganica Chimica Acta, 453, 439–442.
  • Kurtaran, S., Aldağ, S., Öföfoğlu, G., Akyüz, I. & Atay, F. (2016). Transparent conductive ZnO thin films grown by chemical spray pyrolysis: the effect of Mg. Journal of Materials Science: Materials in Electronics, 27, 8478-8485.
  • Atay, F., Köse, S., Bilgin, V. & Akyüz, I. (2003). CdS:Ni films obtained by ultrasonic spray pyrolysis:effect of the Ni concentration. Materials Letters, 57, 3461–3472.
  • Cullity, B. D. & Stock, S. R. (2001). Elements of X-ray Diffraction. Pearson Prentice Hall, USA.
  • Williamson, G. B. & Smallman, R. C. (1956). Dislocation densities in some annealed and cold-worked metals from measurements on the x-ray Debye-Scherrer spectrum. Philosophical Magazine Series A: Series, 8(1), 34-46.
  • Rajashree, C. & Balu, A. R. (2016). Tuning the physical properties of PbS thin films toward sopto electronic applications through Ni doping. Optik, 127, 8892–8898.
  • Touati, B., Gassoumi, A., Dobryden, I., Natile, M. M., Vomiero, A. & Turki, N. K. (2016). Engineering of electronic and optical properties of PbS thin films via Cu doping. Superlattices and Microstructures, 97, 519-528.
  • Vigil, O., Cruz, F., Acevedo, A. M., Puente, G. C., Vaillant, L. & G. Santana, G. (2001). Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Materials Chemistry and Physics, 68, 249–252.
  • Manjula, N., Usharan,i K., Balu, A. R., Nagarethinam, V. S. (2014). Studies on the physical properties of three potentially important TCO thin films fabricated by a simplified spray technique under same deposition conditions. International Journal of ChemTech Research, 6(1), 705-718.
  • Pankove J. I. (1975). Optical Process in Semiconductors. New York, USA: Dover.
  • Chen, J. H., Chao, C. G., Ou, J. C., & Liu, T. F. (2007). Growth and characteristics of lead sulphide nanocrystals produced by the porous alumina membrane. Surface Science, 601, 5142-5147.
  • Perez R. G., Tellez G. H., Rosas, U. P., Torres, A. M., Tecorralco, J. H., Lima, L. C., & Moreno, O. P. (2013). Growth of PbS nanocrystals thin films by chemical bath. Journal of Materials Science and Engineering A, 3, 1-13.
  • Sherwin, R., Clark, R. J. H., Lauck, R., & Cardona, M. (2005). Effect of isotope substitution and doping on the Raman spectrum of galena (PbS). Solid State Communications, 134, 565-570.
  • Cao, H., Wang, G., Zhang, S., & Zhang, X. (2006). Growth and photoluminescence properties of PbS nanocubes. Nanotechnology, 17, 3280-3287.
  • Tohidi, T., Jamshidi-Ghaleh, K., Namdar, A., & Abdi-Ghaleh, R. (2014). Comparative studies on the structural, morphological, optical, and electrical properties of nanocrystalline PbS thin films grown by chemical bath deposition using two different bath compositions. Materials Science in Semiconductor Processing, 25,197-206.
  • Milekhin, A., Sveshnikova, L., Duda, T., Surovtsev, N., Adichtchev, S., & Zahn, D. R. T. (2011). Optical phonons in nanoclusters formed by the Langmuir-Blodgett technique. Chinese Journal of Physics, 49, 63-70.
  • Krauss, T. D., Wise, F. W., & Tanner, D. B. (1996). Observation of coupled vibrational modes of a semiconductor nanocrystal. Physical Review Letters, 76, 1376-1379.
  • Batonneau, Y., Bremard, C., Laureyns, J., Merlin, J. C. (2000). Microscopic and imaging Raman scattering study of PbS andits photo-oxidation products. Journal of Raman Spectroscopy, 31, 1113-1119.
  • Lynch, M. (2017). An investigation of solutions of sulfur in oleylamine by Raman spectroscopy and their relation to lead sulphide quantum dot synthesis. Under graduate honorstheses, University of Colorado, Boulder, Colorado, USA.
  • Ramaswamy, S., Rajaram, R. K., & Ramakrishnan, V. (2005). Infrared and laser Raman spectra of bis (DLmethioninium) sulfate. Journal of Raman Spectroscopy, 36, 840-847.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Sema Kurtaran 0000-0003-2069-4719

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 23 Haziran 2021
Kabul Tarihi 8 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

APA Kurtaran, S. (2021). Kimyasal Püskürtme Tekniği ile Üretilen PbS İnce Filmin Karakterizasyonu. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 770-777. https://doi.org/10.35193/bseufbd.956725