Selüloz Nanofibril İçeren Emülsiyon Şablonlu Gözenekli Polimer Kompozitlerin Hazırlanması ve Gizli Isıl Enerji Depolama Uygulamaları
Yıl 2021,
Cilt: 8 Sayı: 2, 855 - 867, 31.12.2021
Zehra Kanlı
,
Hatice Hande Mert
,
Emine Hilal Mert
,
Mehmet Selçuk Mert
Öz
Bu çalışmada, düşük sıcaklık gizli ısıl enerji depolama uygulamalarında destek malzeme olarak kullanılabilecek gözenekli polimer kompozitler emülsiyon kalıplama yöntemiyle üretilmiş ve elde edilen malzemelerin morfolojik, ısıl ve mekanik özellikleri araştırılmıştır. Bu amaçla fibril formundaki nanoselüloz modifiye edilerek emülsiyon sistemiyle uyumlu hale getirilmiş ve yüksek iç fazlı emülsiyonların polimerizasyonuyla elde edilen gözenekli polimerik köpüklerin özelliklerinin geliştirilmesi amacıyla dolgu olarak kullanılmıştır. Elde edilen gözenekli malzemelerin Taramalı elektron mikroskobu (SEM), termogravimetrik analiz (TGA) ve basma modülü ölçümleriyle sırasıyla morfolojik, ısıl ve mekanik özellikleri araştırılmıştır. Ayrıca üretilen destek malzemelerinin spesifik yüzey alanı değerleri Brunauer–Emmet–Teller (BET) yüzey alanı ve gözenek boyutu analiz cihazı ile belirlenmiştir. Gözenekli malzemelerdeki selüloz nanofibril dolgu katkısının kompozit malzemelerin gözenek morfolojisine ve ısıl kararlılıklarına olumlu katkı sağladığı, yüzey alanı değerlerini ise arttırdığı görülmüştür. Elde edilen kompozit malzemeler n-pentadekan içeren yapıca kararlı kompozit faz değiştiren maddelerin (FDM’lerin) üretiminde destek materyali olarak kullanılmıştır. Diferansiyel Taramalı Kalorimetre (DSC) ile gerçekleştirilen ısıl analizler sonucunda ağırlıkça %0,75 selüloz nanofibril dolgu içeren matrise sahip kompozit FDM’nin en yüksek n-pentadekan kapsülasyon oranına (%61,12) ve en yüksek ısıl enerji depolama kapasitesine (122,0 J/g) sahip olduğu bulunmuştur.
Destekleyen Kurum
Yalova Üniversitesi
Proje Numarası
2020/YL/0005
Teşekkür
Bu çalışmanın gerçekleştirilmesinde proje desteği sağlayan Yalova Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne (Proje Numarası: 2020/YL/0005) teşekkür ederiz.
Kaynakça
- Mert, M. S., Sert, M., & Mert, H. H. (2018). Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1)161-174.
- Teggar, M., Arıcı, M., Mert, M. S., Ajarostaghi, S. S. M., Niyas, H., Tunçbilek, E., Ismail, K. A. R., Younsi, Z., Benhouia, A. T., & Mezaache, E. H. (2021). A comprehensive review of micro / nano enhanced phase change materials. Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-021-10808-0.
- Zhang, Y., Tang, B., Wang, L., Lu, R., Zhao, D., & Zhang, S. (2017). Novel hybrid form-stable polyether phase change materials with good fire resistance. Energy Storage Materials, 6, 46-52.
- Mert, M. S., Mert, H. H., & Sert, M. (2019). Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 136, 1551–1561.
- Mert, H. H., & Mert, M. S. (2021). Design of n-Octadecane-Based Form-Stable Composite Phase Change Materials Embedded In Porous Nano Alumina For Thermal Energy Storage Applications. Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-021-10886-0.
- Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., & Wang, G. (2019). Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications. Chemical Engineering Journal, 356, 641-661.
- Fang, G., Li, H., Chen, Z., & Liu, X. (2010). Preparation and Characterization of Flame Retardent n-Hexadecane / Silicon dioxide Composites as Thermal Energy Storage Materials. Journal of Hazardous Materials, 181, 1004-1009.
- Jeon, J., Jeong S. G., Lee, J. H., Seo, J., & Kim, S. (2012). High Thermal Performance Composite PCMs loading xGnP for Application to Building Using Radiant Floor Heating System. Solar Energy Materials & Solar Cells, 101, 51-56.
- Umair, M. M., Zhang, Y., Iqbal, K., Zhang, S., & Tang, B. (2019). Novel Strategies and Supporting Materials Applied to Shape-stabilize Organic Phase Change Materials for Thermal Energy Storage-A Review. Applied Energy, 235, 846-873.
- Mert, E. H., & Mert, H. H. (2021). Preparation of polyHIPE nano composites: Revealing the influence of experimental parameters with the help of experimental design approach. Polymer Composites, 42, 724–738.
- Puupponen, S., Mikkola, V., Ala-Nissila, T., & Seppala, A. (2016). Novel Microstructured Polyol- Polystyrene Composites for Seasonal Heat Storage. Applied Energy, 172, 96-106.
- Balderramaa, J. A. M., Dourgesa, M-A., Magueresseb, A., Maheob, L., Deleuzea, H., & Glouannecc, P. (2018). Emulsion-Templated Pullulan Monoliths as Phase Change Materials Encapsulating Matrices. Materials Today Communications, 17, 466-473.
- Mert, H. H. (2020). PolyHIPE Composite Based-Form Stable Phase Change Material for Thermal Energy Storage. International Journal of Energy Research, 44, 6583–6594.
- Döğüşcü, D. K., Hekimoğlu, G., & Sarı, A. (2021). High Internal Phase Emulsion Templated-Polystyrene / Carbon Nano Fiber / Hexadecanol Composites Phase Change Materials for Thermal Management Applications. Journal of Energy Storage, 39, 102674.
- Yüce E., Krajnc P., Mert, H. H., & Mert, E. H. (2019). Influence of Nanoparticles and Antioxidants on Mechanical Properties of Titania / Polydicyclopentadiene PolyHIPEs: A Statistical Approach. Journal of Applied Polymer Science, 136 (7) 46913.
- Abbasian, Z., & Moghbeli, M. R. (2011). Preparation of Highly Open Porous Styrene/Acrylonitrile and Styrene / Acrylonitrile / Organoclay Polymerized High Internal Phase Emulsion (PolyHIPE) Foams via Emulsion Templating. Journal of Applied Polymer Science, 119, 3728.
- Lavoine, N., & Bergström, L. L. (2017). Nanocellulose based Foams and Aerogels: Processing, Properties, and Applications. Journal of Materials Chemistry A, 5, 16105-16117.
- Antonini, C., Wu, T., Zimmermann, T., Kherbeche, A., Thoraval, M., Nyström, G., & Geiger, T. (2019). Ultra-Porous Nanocellulose Foams A Facile and Scalable Fabrication Approach. Nanomaterials, 9, 1142.
- Abitbol, T, Marway, H., & Cranston, E. D. (2014). Surface Modification of Cellulose Nanocrystals with Cetyltrimethylammonium Bromide. Nanocellulose Nordic Pulp & Paper Research Journal, 29 (1), 46-57.
- Salajkova, M., Berglund L. A., & Zhou, Q., (2012). Hydrophobic cellulose nanocrystals modified with quaternary ammonium Salts. Journal of Materials Chemistry, 22, 19798-19805.
- Li, Y., Yu, S., Chen, P., Rojas, R., Hajian, A., & Berglund, L. (2017).Cellulose Nanofibers Enable Paraffin Encapsulation and the Formation of Stable Thermal Regulation Nanocomposites. Nano Energy, 34, 541-548.
- Zhang, Z., Zhang, Z., Chang, T., Wang, J., Wang, X., & Zhou, G. (2021). Phase Change Material Microcapsules with Melamine Resin Shell via Cellulose Nanocrystal Stabilized Pickering Emulsion In-Situ Polymerization. Chemical Engineering Journal, 131164, https://doi.org/10.1016/j.cej.2021.131164.
- Shen, Z., Oh, k., Kwon, S., Toivakka, M., & Hak L. L. (2021). Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage. International Journal of Biological Macromolecules, 174, 402-412.
- Kanlı, Z., Mert, M. S., & Mert, H. H. (2021). Isıl Enerji Depolama Uygulamaları İçin Selüloz Nanofibril Temelli Parafin İçeren Kompozit Faz Değiştiren Maddelerin Üretilmesi ve Karakterizasyonu. Avrupa Bilim ve Teknoloji Dergisi, (22), 273-281.
- Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., & Kommula V. P. (2016). Exploration on the Characteristics of Cellulose Microfibers from Palmyra Palm Fruits. International Journal of Polymer Analysis and Characterization, 21(4), 286-295.
- Mert, H. H., & Şen, S. (2016). Synthesis and Characterization of PolyHIPE Composites Containing Halloysite Nanotubes. E-Polymers, 16(6), 419-428.
- Aydınoğlu, D., Akgül, Ö., Bayram, V., & Şen, S. (2014). Polymer Nanocomposites Hydrogels with Improved Metal Adsorption Capacity and Swelling Behaviour: Influence of Spirulina Immobilization onto Montmorillonite Clay. Polymer-Plastics Technology and Engineering, 53, 1706-1722.
- Mert, H. H., & Mert, M. S. (2019). Preparation and Characterization of Encapsulated Phase Change Materials in Presence of Gamma Alumina for Thermal Energy Storage Applications. Thermochimica Acta, 681, 178382.
- Mert, H. H., Mert, M. S., & Mert, E. H. (2019). A Statistical Approach for Tailoring the Morphological and Mechanical Properties of Polystyrene PolyHIPEs: Looking Through Experimental Design. Materials Research Express, 6, 115306.
- Berber, E., Çira, F., & Mert, E. H. (2016). Preparation of Porous Polyester Composites via Emulsion Templating: Investigation of the Morphological, Mechanical, and Thermal Properties. Polymer Composites 37(5) 1531-1538.
- Wu, R., Menner, A., & Bismarck, A. (2013). Macroporous Polymers Made From Medium Internal Phase Emulsion Templates: Effect of Emulsion Formulation on the Pore Structure of PolyMIPEs. Polymer 54(21) 5511-5517.
Preparation of Emulsion Templated Porous Polymer Composites Containing Cellulose Nanofibril and Latent Thermal Energy Storage Applications
Yıl 2021,
Cilt: 8 Sayı: 2, 855 - 867, 31.12.2021
Zehra Kanlı
,
Hatice Hande Mert
,
Emine Hilal Mert
,
Mehmet Selçuk Mert
Öz
In this study, porous polymer composites that can be used as support materials in low temperature latent thermal energy storage applications were produced by emulsion templating method and the morphological, thermal and mechanical properties of the obtained materials were investigated. For this purpose, nanocellulose in the form of fibril was modified in order to make compatible with the emulsion system and used as a filler to improve the properties of porous polymeric foams obtained by polymerization of high internal phase emulsions. The morphological, thermal and mechanical properties of the obtained porous materials were investigated by Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA) and compression modulus measurements, respectively. In addition, the specific surface area values of the produced support materials were determined with the Brunauer–Emmet–Teller (BET) surface area and pore size analyzer. It has been observed that the addition of cellulose nanofibril filler in porous materials contributes positively to the pore morphology and thermal stability of the composite materials, while increasing the surface area values. The obtained composite materials were used as support materials in the production of shape-stabilized composite phase change materials (PCMs) containing n-pentadecane. As a result of thermal analyzes performed with Differential Scanning Calorimetry (DSC); it was found that composite PCM with a support matrix containing 0.75 wt(%) cellulose nanofibril filler has the highest n-pentadecane encapsulation ratio (61.12%) and the highest thermal energy storage capacity (122.0 J/g).
Proje Numarası
2020/YL/0005
Kaynakça
- Mert, M. S., Sert, M., & Mert, H. H. (2018). Isıl Enerji Depolama Sistemleri İçin Organik Faz Değiştiren Maddelerin Mevcut Durumu Üzerine Bir İnceleme. Mühendislik Bilimleri ve Tasarım Dergisi, 6(1)161-174.
- Teggar, M., Arıcı, M., Mert, M. S., Ajarostaghi, S. S. M., Niyas, H., Tunçbilek, E., Ismail, K. A. R., Younsi, Z., Benhouia, A. T., & Mezaache, E. H. (2021). A comprehensive review of micro / nano enhanced phase change materials. Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-021-10808-0.
- Zhang, Y., Tang, B., Wang, L., Lu, R., Zhao, D., & Zhang, S. (2017). Novel hybrid form-stable polyether phase change materials with good fire resistance. Energy Storage Materials, 6, 46-52.
- Mert, M. S., Mert, H. H., & Sert, M. (2019). Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. Journal of Thermal Analysis and Calorimetry, 136, 1551–1561.
- Mert, H. H., & Mert, M. S. (2021). Design of n-Octadecane-Based Form-Stable Composite Phase Change Materials Embedded In Porous Nano Alumina For Thermal Energy Storage Applications. Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-021-10886-0.
- Huang, X., Chen, X., Li, A., Atinafu, D., Gao, H., Dong, W., & Wang, G. (2019). Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage Applications. Chemical Engineering Journal, 356, 641-661.
- Fang, G., Li, H., Chen, Z., & Liu, X. (2010). Preparation and Characterization of Flame Retardent n-Hexadecane / Silicon dioxide Composites as Thermal Energy Storage Materials. Journal of Hazardous Materials, 181, 1004-1009.
- Jeon, J., Jeong S. G., Lee, J. H., Seo, J., & Kim, S. (2012). High Thermal Performance Composite PCMs loading xGnP for Application to Building Using Radiant Floor Heating System. Solar Energy Materials & Solar Cells, 101, 51-56.
- Umair, M. M., Zhang, Y., Iqbal, K., Zhang, S., & Tang, B. (2019). Novel Strategies and Supporting Materials Applied to Shape-stabilize Organic Phase Change Materials for Thermal Energy Storage-A Review. Applied Energy, 235, 846-873.
- Mert, E. H., & Mert, H. H. (2021). Preparation of polyHIPE nano composites: Revealing the influence of experimental parameters with the help of experimental design approach. Polymer Composites, 42, 724–738.
- Puupponen, S., Mikkola, V., Ala-Nissila, T., & Seppala, A. (2016). Novel Microstructured Polyol- Polystyrene Composites for Seasonal Heat Storage. Applied Energy, 172, 96-106.
- Balderramaa, J. A. M., Dourgesa, M-A., Magueresseb, A., Maheob, L., Deleuzea, H., & Glouannecc, P. (2018). Emulsion-Templated Pullulan Monoliths as Phase Change Materials Encapsulating Matrices. Materials Today Communications, 17, 466-473.
- Mert, H. H. (2020). PolyHIPE Composite Based-Form Stable Phase Change Material for Thermal Energy Storage. International Journal of Energy Research, 44, 6583–6594.
- Döğüşcü, D. K., Hekimoğlu, G., & Sarı, A. (2021). High Internal Phase Emulsion Templated-Polystyrene / Carbon Nano Fiber / Hexadecanol Composites Phase Change Materials for Thermal Management Applications. Journal of Energy Storage, 39, 102674.
- Yüce E., Krajnc P., Mert, H. H., & Mert, E. H. (2019). Influence of Nanoparticles and Antioxidants on Mechanical Properties of Titania / Polydicyclopentadiene PolyHIPEs: A Statistical Approach. Journal of Applied Polymer Science, 136 (7) 46913.
- Abbasian, Z., & Moghbeli, M. R. (2011). Preparation of Highly Open Porous Styrene/Acrylonitrile and Styrene / Acrylonitrile / Organoclay Polymerized High Internal Phase Emulsion (PolyHIPE) Foams via Emulsion Templating. Journal of Applied Polymer Science, 119, 3728.
- Lavoine, N., & Bergström, L. L. (2017). Nanocellulose based Foams and Aerogels: Processing, Properties, and Applications. Journal of Materials Chemistry A, 5, 16105-16117.
- Antonini, C., Wu, T., Zimmermann, T., Kherbeche, A., Thoraval, M., Nyström, G., & Geiger, T. (2019). Ultra-Porous Nanocellulose Foams A Facile and Scalable Fabrication Approach. Nanomaterials, 9, 1142.
- Abitbol, T, Marway, H., & Cranston, E. D. (2014). Surface Modification of Cellulose Nanocrystals with Cetyltrimethylammonium Bromide. Nanocellulose Nordic Pulp & Paper Research Journal, 29 (1), 46-57.
- Salajkova, M., Berglund L. A., & Zhou, Q., (2012). Hydrophobic cellulose nanocrystals modified with quaternary ammonium Salts. Journal of Materials Chemistry, 22, 19798-19805.
- Li, Y., Yu, S., Chen, P., Rojas, R., Hajian, A., & Berglund, L. (2017).Cellulose Nanofibers Enable Paraffin Encapsulation and the Formation of Stable Thermal Regulation Nanocomposites. Nano Energy, 34, 541-548.
- Zhang, Z., Zhang, Z., Chang, T., Wang, J., Wang, X., & Zhou, G. (2021). Phase Change Material Microcapsules with Melamine Resin Shell via Cellulose Nanocrystal Stabilized Pickering Emulsion In-Situ Polymerization. Chemical Engineering Journal, 131164, https://doi.org/10.1016/j.cej.2021.131164.
- Shen, Z., Oh, k., Kwon, S., Toivakka, M., & Hak L. L. (2021). Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage. International Journal of Biological Macromolecules, 174, 402-412.
- Kanlı, Z., Mert, M. S., & Mert, H. H. (2021). Isıl Enerji Depolama Uygulamaları İçin Selüloz Nanofibril Temelli Parafin İçeren Kompozit Faz Değiştiren Maddelerin Üretilmesi ve Karakterizasyonu. Avrupa Bilim ve Teknoloji Dergisi, (22), 273-281.
- Reddy, K. O., Maheswari, C. U., Dhlamini, M. S., & Kommula V. P. (2016). Exploration on the Characteristics of Cellulose Microfibers from Palmyra Palm Fruits. International Journal of Polymer Analysis and Characterization, 21(4), 286-295.
- Mert, H. H., & Şen, S. (2016). Synthesis and Characterization of PolyHIPE Composites Containing Halloysite Nanotubes. E-Polymers, 16(6), 419-428.
- Aydınoğlu, D., Akgül, Ö., Bayram, V., & Şen, S. (2014). Polymer Nanocomposites Hydrogels with Improved Metal Adsorption Capacity and Swelling Behaviour: Influence of Spirulina Immobilization onto Montmorillonite Clay. Polymer-Plastics Technology and Engineering, 53, 1706-1722.
- Mert, H. H., & Mert, M. S. (2019). Preparation and Characterization of Encapsulated Phase Change Materials in Presence of Gamma Alumina for Thermal Energy Storage Applications. Thermochimica Acta, 681, 178382.
- Mert, H. H., Mert, M. S., & Mert, E. H. (2019). A Statistical Approach for Tailoring the Morphological and Mechanical Properties of Polystyrene PolyHIPEs: Looking Through Experimental Design. Materials Research Express, 6, 115306.
- Berber, E., Çira, F., & Mert, E. H. (2016). Preparation of Porous Polyester Composites via Emulsion Templating: Investigation of the Morphological, Mechanical, and Thermal Properties. Polymer Composites 37(5) 1531-1538.
- Wu, R., Menner, A., & Bismarck, A. (2013). Macroporous Polymers Made From Medium Internal Phase Emulsion Templates: Effect of Emulsion Formulation on the Pore Structure of PolyMIPEs. Polymer 54(21) 5511-5517.