Araştırma Makalesi
BibTex RIS Kaynak Göster

Kimyasal Banyo Biriktirme Yöntemiyle Elde Edilen İğne Deliksiz PbS İnce Filmler

Yıl 2021, Cilt: 8 Sayı: 2, 1017 - 1023, 31.12.2021
https://doi.org/10.35193/bseufbd.996335

Öz

Bu çalışmada, kimyasal banyo biriktirme yöntemi kullanılarak tek, iki ve üç katmanlı (Kurşun Sülfür) PbS ince filmler üretilmiştir. Literatür taramasında görüldüğü gibi, PbS ince filmlerin katman katman üretimi ilk kez gerçekleştirilmiştir. Kristal yapılarını araştırmak için X-ışını difraktometre (XRD) analizi kullanıldı. Yapısal analizler kristalit boyutunun tabaka sayısına bağlı olarak yaklaşık 40 nm'den 8-10 nm'ye düştüğünü göstermiştir. Filmlerin yüzey görüntüleri taramalı elektron mikroskobu (SEM) cihazı ile incelenmiştir. PbS filmi tek kat olarak elde edildiğinde numune yüzeyinde bazı çatlaklar, iğne delikleri ve boşluklar gözlenmiştir. Ancak filmler iki ve üç kat kaplandığında film yüzeyinde herhangi bir çatlak, boşluk veya iğne deliği oluşumu görülmedi.

Kaynakça

  • Saikia, D., & Phukan, P. (2014). Fabrication and evaluation of CdS/PbS thin film solar cell by chemical bath deposition technique. Thin Solid Films 562, 239–243.
  • Mohamed, H.A. (2014). Theoretical study of the efficiency of CdS/PbS thin film solar cells. Sol. Energy 108, 360–369.
  • Xing, M., Zhang, Y., Shen, Q., & Wang, R. (2020). Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells. Sol. Energy 195, 1–5.
  • Yao, X., Song, Z., Mi, L., Li, G., Wang, X., Wang, X., & Jiang, Y. (2017). Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots. Sol. Energy Mater. Sol. Cells 164, 122–127.
  • Du, X., Wang, Y., Shi, R., Mao, Z., & Yuan, Z. (2018). Effects of anion and cation doping on the thermoelectric properties of n-type PbS. J. Eur. Ceram. Soc. 38, 3512–3517.
  • Yang, J., Zhang, X., Liu, G., Zhao, L., Liu, J., Shi, Z., Ding, J. & Qiao, G., (2020). Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 74, 104826.
  • Kim, J., Ampadu, E. K., Oh, E., Choi, H., Ahn, H.Y., Cho, S.H., Choi, W.J., & Byun, J.Y. (2020). Photocurrent spectra for above and below bandgap energies from photovoltaic PbS infrared detectors with graphene transparent electrodes. Curr. Appl. Phys. 20, 445–450.
  • Ampadu, E. K., Kim, J., Oh, E., Lee, D. Y., & Kim, K. S. (2020). Direct chemical synthesis of PbS on large-area CVD-graphene for high-performance photovoltaic infrared photo-detectors. Mater. Lett. 277, 128323.
  • Zarubin, I. V., Markov, V. F., Maskaeva, L. N., Zarubina, N. V., & Kuznetsov, M. V. (2017). Chemical sensors based on a hydrochemically deposited lead sulfide film for the determination of lead in aqueous solutions. J. Anal. Chem. 72, 327–332.
  • Faraj, M. G. (2015). Effect of Thickness on the Structural and Electrical Properties of Spray Pyrolysed Lead Sulfide Thin Films. Am. J. Condens. Matter Phys. 5, 51–55.
  • Cheragizade, M., Yousefi, R., Jamali-Sheini, F., Mahmoudian, M. R., Sáaedi, A., & Ming Huang, N. (2014). Synthesis and characterization of PbS mesostructures as an IR detector grown by hydrogen-assisted thermal evaporation. Mater. Sci. Semicond. Process. 26, 704–709.
  • Mondal, A., & Mukherjee, N. (2006). Cubic PbS thin films on TCO glass substrate by galvanic technique. Mater. Lett. 60, 2672–2674.
  • Gozalzadeh, S., Nasirpouri, F., & Seok, S. II (2021). Dimethylformamide-free synthesis and fabrication of lead halide perovskite solar cells from electrodeposited PbS precursor films. Chem. Eng. J. 411, 128460.
  • Beatriceveena, T. V., Prabhu, E., Jayaraman, V., & Gnanasekar, K. I. (2019). X-ray photoelectron and Hall studies on nanostructured thin films of PbS grown by pulsed laser deposition. Mater. Lett. 238, 324–327.
  • Sarica, E., & Bilgin, V. (2017). Effect of Pb:S molar ratio in precursor solution on the properties of lead sulphide thin films by ultrasonic spray pyrolysis. Mater. Sci. Semicond. Process. 71, 42–49.
  • Kumar, K. N. C., Pasha, S. K. K., Muhammad, G. S., Chidambaram, K., & Deshmukh, K. (2016). Influence of nickel on the structural, optical and magnetic properties of PbS thin films synthesized by successive ionic layer adsorption and reaction (SILAR) method. Mater. Lett. 164, 108–110.
  • Güneri, E., Göde, F., & Çevik, S. (2015). Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method. Thin Solid Films, 589, 578–583
  • Puišo, J., Tamulevicius, S., Laukaitis, G., Lindroos, S., Leskelä, M., & Snitka, V. (2002). Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films, 403–404, 457–461.
  • Dong, Y., Su, C., Pan, X., Zhao, Y., Wen, J., Pang, F., Huang, Y., Shang, Y., & Wang, T. (2020). Density functional theory investigation on formation of nanoscale PbS materials and its fabrication in silica optical fiber via atomic layer deposition. Opt. Fiber Technol., 58, 102257.
  • Yang, P., Song, C. F., Lü, M. K., Yin, X., Zhou, G. J., Xu, D., & Rong Yuan, D. (2001). The luminescence of PbS nanoparticles embedded in sol-gel silica glass. Chem. Phys. Lett., 345, 429–434.
  • Ketchemen, K. I. Y., Mlowe, S., Nyamen, L. D., Aboud, A. A., Akerman, M. P., Ndifon, P. T., O’Brien, P., & Revaprasadu, N. (2018). Heterocyclic lead (II) thiourea to complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films. Inorganica Chim. Acta, 479, 42–48.
  • Contreras-Rascón, J. I., Díaz-Reyes, J., Luna-Suárez, S., Carrillo-Torres, R. C., & Sánchez-Zeferino, R. (2019). Characterisation of chemical bath deposition PbS nanofilms using polyethyleneimine, triethanolamine and ammonium nitrate as complexing agents. Thin Solid Films, 692, 137609
  • Zarębska, K., & Skompska, M. (2011). Electrodeposition of CdS from acidic aqueous thiosulfate solution-Invesitigation of the mechanism by electrochemical quartz microbalance technique. Electrochim. Acta, 56, 5731–5739.
  • Altiokka, B., Baykul, M. C., & Altiokka, M. R. (2013). Some physical effects of reaction rate on PbS thin films obtained by chemical bath deposition. J. Cryst. Growth, 384, 50–54.
  • Önal, M., & Altıokka, B. (2020a). Chemical deposition of CdS thin films in the hexagonal phase without annealing. Emerg. Mater. Res., 9, 738–742.
  • Altıokka, B. (2015). Effects of Inhibitor on PbS Thin Films Obtained by Chemical Bath Deposition. Arab. J. Sci. Eng., 40, 2085–2093.
  • Önal, M., & Altıokka, B. (2020b). Pinhole-free PbS thin film production using a low-temperature chemical bath deposition method. J. Nano Res., 63, 1–9.
  • Bhowmik, R., Murty, M. N., & Srinadhu, E. S. (2008). Magnetic modulation in mechanical alloyed Cr1.4Fe0.6O3 oxide. PMC Phys. B, 1, 20.
  • Altiokka, B., & Yıldırım, K. A. (2018). Electrodeposition of CdS Thin Films at Various pH Values, Journal of the Korean Physical Society, 72(6), 687-691.
  • Yıldırım, K. A., & Altiokka, B. (2017). An investigation of effects of bath temperature on CdO films prepared by electro deposition. Appl Nanosci., 7, 513–518.
  • Kul, M. (2019). Characterızatıon of PbS Fılm Produced By Chemical Bath Deposition At Room Temperature. Eskişehir Tech. Univ. J. Sci. Technol. B- Theor. Sci., 7, 46–58.

Pinhole-Free PbS Thin Films Obtained by Chemical Bath Deposition Method

Yıl 2021, Cilt: 8 Sayı: 2, 1017 - 1023, 31.12.2021
https://doi.org/10.35193/bseufbd.996335

Öz

In this study, the (Lead Sulfide) PbS thin films with one, two, and three layers were fabricated by employing the chemical bath deposition method. Layer by layer production of PbS thin films was realized for the first time as seen in the literature review. For investigating the crystal structures, the X-ray diffraction (XRD) analysis was used. The structural analyses indicated that the crystallite size was decreased from about 40 nm to 8-10 nm depending on the number of layers. The surface micrographs of the films were obtained using scanning electron microscopy (SEM). When the PbS film was obtained in one layer, some cracks, pinholes, and voids were observed on the sample surface. However, no cracks, voids, or pinhole formation were found on the film surface when the films were coated in two and three layers.

Kaynakça

  • Saikia, D., & Phukan, P. (2014). Fabrication and evaluation of CdS/PbS thin film solar cell by chemical bath deposition technique. Thin Solid Films 562, 239–243.
  • Mohamed, H.A. (2014). Theoretical study of the efficiency of CdS/PbS thin film solar cells. Sol. Energy 108, 360–369.
  • Xing, M., Zhang, Y., Shen, Q., & Wang, R. (2020). Temperature dependent photovoltaic performance of TiO2/PbS heterojunction quantum dot solar cells. Sol. Energy 195, 1–5.
  • Yao, X., Song, Z., Mi, L., Li, G., Wang, X., Wang, X., & Jiang, Y. (2017). Improved stability of depletion heterojunction solar cells employing cation-exchange PbS quantum dots. Sol. Energy Mater. Sol. Cells 164, 122–127.
  • Du, X., Wang, Y., Shi, R., Mao, Z., & Yuan, Z. (2018). Effects of anion and cation doping on the thermoelectric properties of n-type PbS. J. Eur. Ceram. Soc. 38, 3512–3517.
  • Yang, J., Zhang, X., Liu, G., Zhao, L., Liu, J., Shi, Z., Ding, J. & Qiao, G., (2020). Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 74, 104826.
  • Kim, J., Ampadu, E. K., Oh, E., Choi, H., Ahn, H.Y., Cho, S.H., Choi, W.J., & Byun, J.Y. (2020). Photocurrent spectra for above and below bandgap energies from photovoltaic PbS infrared detectors with graphene transparent electrodes. Curr. Appl. Phys. 20, 445–450.
  • Ampadu, E. K., Kim, J., Oh, E., Lee, D. Y., & Kim, K. S. (2020). Direct chemical synthesis of PbS on large-area CVD-graphene for high-performance photovoltaic infrared photo-detectors. Mater. Lett. 277, 128323.
  • Zarubin, I. V., Markov, V. F., Maskaeva, L. N., Zarubina, N. V., & Kuznetsov, M. V. (2017). Chemical sensors based on a hydrochemically deposited lead sulfide film for the determination of lead in aqueous solutions. J. Anal. Chem. 72, 327–332.
  • Faraj, M. G. (2015). Effect of Thickness on the Structural and Electrical Properties of Spray Pyrolysed Lead Sulfide Thin Films. Am. J. Condens. Matter Phys. 5, 51–55.
  • Cheragizade, M., Yousefi, R., Jamali-Sheini, F., Mahmoudian, M. R., Sáaedi, A., & Ming Huang, N. (2014). Synthesis and characterization of PbS mesostructures as an IR detector grown by hydrogen-assisted thermal evaporation. Mater. Sci. Semicond. Process. 26, 704–709.
  • Mondal, A., & Mukherjee, N. (2006). Cubic PbS thin films on TCO glass substrate by galvanic technique. Mater. Lett. 60, 2672–2674.
  • Gozalzadeh, S., Nasirpouri, F., & Seok, S. II (2021). Dimethylformamide-free synthesis and fabrication of lead halide perovskite solar cells from electrodeposited PbS precursor films. Chem. Eng. J. 411, 128460.
  • Beatriceveena, T. V., Prabhu, E., Jayaraman, V., & Gnanasekar, K. I. (2019). X-ray photoelectron and Hall studies on nanostructured thin films of PbS grown by pulsed laser deposition. Mater. Lett. 238, 324–327.
  • Sarica, E., & Bilgin, V. (2017). Effect of Pb:S molar ratio in precursor solution on the properties of lead sulphide thin films by ultrasonic spray pyrolysis. Mater. Sci. Semicond. Process. 71, 42–49.
  • Kumar, K. N. C., Pasha, S. K. K., Muhammad, G. S., Chidambaram, K., & Deshmukh, K. (2016). Influence of nickel on the structural, optical and magnetic properties of PbS thin films synthesized by successive ionic layer adsorption and reaction (SILAR) method. Mater. Lett. 164, 108–110.
  • Güneri, E., Göde, F., & Çevik, S. (2015). Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method. Thin Solid Films, 589, 578–583
  • Puišo, J., Tamulevicius, S., Laukaitis, G., Lindroos, S., Leskelä, M., & Snitka, V. (2002). Growth of PbS thin films on silicon substrate by SILAR technique. Thin Solid Films, 403–404, 457–461.
  • Dong, Y., Su, C., Pan, X., Zhao, Y., Wen, J., Pang, F., Huang, Y., Shang, Y., & Wang, T. (2020). Density functional theory investigation on formation of nanoscale PbS materials and its fabrication in silica optical fiber via atomic layer deposition. Opt. Fiber Technol., 58, 102257.
  • Yang, P., Song, C. F., Lü, M. K., Yin, X., Zhou, G. J., Xu, D., & Rong Yuan, D. (2001). The luminescence of PbS nanoparticles embedded in sol-gel silica glass. Chem. Phys. Lett., 345, 429–434.
  • Ketchemen, K. I. Y., Mlowe, S., Nyamen, L. D., Aboud, A. A., Akerman, M. P., Ndifon, P. T., O’Brien, P., & Revaprasadu, N. (2018). Heterocyclic lead (II) thiourea to complexes as single-source precursors for the aerosol assisted chemical vapour deposition of PbS thin films. Inorganica Chim. Acta, 479, 42–48.
  • Contreras-Rascón, J. I., Díaz-Reyes, J., Luna-Suárez, S., Carrillo-Torres, R. C., & Sánchez-Zeferino, R. (2019). Characterisation of chemical bath deposition PbS nanofilms using polyethyleneimine, triethanolamine and ammonium nitrate as complexing agents. Thin Solid Films, 692, 137609
  • Zarębska, K., & Skompska, M. (2011). Electrodeposition of CdS from acidic aqueous thiosulfate solution-Invesitigation of the mechanism by electrochemical quartz microbalance technique. Electrochim. Acta, 56, 5731–5739.
  • Altiokka, B., Baykul, M. C., & Altiokka, M. R. (2013). Some physical effects of reaction rate on PbS thin films obtained by chemical bath deposition. J. Cryst. Growth, 384, 50–54.
  • Önal, M., & Altıokka, B. (2020a). Chemical deposition of CdS thin films in the hexagonal phase without annealing. Emerg. Mater. Res., 9, 738–742.
  • Altıokka, B. (2015). Effects of Inhibitor on PbS Thin Films Obtained by Chemical Bath Deposition. Arab. J. Sci. Eng., 40, 2085–2093.
  • Önal, M., & Altıokka, B. (2020b). Pinhole-free PbS thin film production using a low-temperature chemical bath deposition method. J. Nano Res., 63, 1–9.
  • Bhowmik, R., Murty, M. N., & Srinadhu, E. S. (2008). Magnetic modulation in mechanical alloyed Cr1.4Fe0.6O3 oxide. PMC Phys. B, 1, 20.
  • Altiokka, B., & Yıldırım, K. A. (2018). Electrodeposition of CdS Thin Films at Various pH Values, Journal of the Korean Physical Society, 72(6), 687-691.
  • Yıldırım, K. A., & Altiokka, B. (2017). An investigation of effects of bath temperature on CdO films prepared by electro deposition. Appl Nanosci., 7, 513–518.
  • Kul, M. (2019). Characterızatıon of PbS Fılm Produced By Chemical Bath Deposition At Room Temperature. Eskişehir Tech. Univ. J. Sci. Technol. B- Theor. Sci., 7, 46–58.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hale Yıldızay 0000-0002-3896-9912

Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 16 Eylül 2021
Kabul Tarihi 9 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

APA Yıldızay, H. (2021). Pinhole-Free PbS Thin Films Obtained by Chemical Bath Deposition Method. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 8(2), 1017-1023. https://doi.org/10.35193/bseufbd.996335