Derleme
BibTex RIS Kaynak Göster

Computational Fluid Dynamics Usage Models in Agricultural Production

Yıl 2022, Cilt: 9 Sayı: 1, 583 - 595, 30.06.2022

Öz

Computational fluid dynamics (CFD) is a sub-branch of fluid mechanics that provides the determination of fluid behavior. CFD, which is defined as a method of simulation used to determine fluid behavior depends on parameters, such as fluid type, flow rate, and flow geometry. The precision and accuracy of the simulations created with the help of developing technology and increasing computer processing capacity are increasing day by day. This method is also used to solve the problems that occur in agricultural production and to improve the existing machinery and systems which is a work area where the flow is always present. This method, in which the interactions of solid, liquid, and gaseous environments with fluids can be examined, can be used for all steps from the beginning to the end of agricultural production. These steps can be listed as tillage, seeding-planting, irrigation, spraying, harvest-threshing, product processing, storage, and air conditioning. In tractors, which are used as the power source of the machines that perform these processes, this method enables the improvement of ergonomic features. This method makes it possible to examine the effects of unmanned aerial vehicles on agricultural areas in smart agriculture applications that have become widespread with the increasing use of technology. This article aims to be an example for future studies by compiling the data obtained from the studies carried out for the various machines and systems examined in the existing studies reported in the literature.

Kaynakça

  • Keskin, G. (2019). Doğal Havalandırmalı Plastik Serada Bazı İklim Parametrelerinin Hesaplamalı Akışkanlar Dinamiği (HAD) İle Belirlenmesi: Hatay İli Örneği. Yüksek Lisans Tezi, Hatay Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Hatay.
  • Cemek, B., Atiş, A., & Küçüktopçu, E. (2017). Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu Tarım Bilimleri Dergisi, 32, 54-63. DOI: 10.7161/omuanajas.289354.
  • Aslanbay Güler B., & İmamoğlu, E. (2020). Bilgisayar destekli simülasyon ve hesaplamalı akışkanlar dinamiği. Türk Bilimsel Derlemeler Dergisi, 13(1), 42-52.
  • Küçüktopçu, E. (2016). Hesaplamalı Akışkanlar Dinamiği (HAD) Kullanarak Kümes İçi Çevre Koşullarının Belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun.
  • Arsenoaia, V., Vlâduţ, V., Ţenu, I., Voicea, I., Moiceanu, G., & Cârlescu, P. M. (2019). Mathematical Modeling and Numerical Simulation of the Drying Process of Seeds in a Pilot Plant. INMATEH-Agricultural Engineering, 57(1), 55-62.
  • Malekjani, N. & Jafari, S.M. (2018). Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 78, 206-223.
  • Süfer Ö., Kumcuoğlu, S., & Tavman, Ş. (2016). Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda, 14(4), 465-471.
  • Özcan, O.A. (2004). Uçak Kanatlarının CFD Analizi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Akdemir, S. & Bal, E. (2014). Elma Depolamada Kasa İçi Ortam Koşullarının Hesaplamalı Akışkanlar Dinamiği ile Modellenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 11(1), 53-62.
  • Ovalı, İ., Atay, Ö., & Yılmaz, E. (2021). Santrifüj Pompa Tasarımında Sayısal Yöntemlerin(HAD/CFD) Kullanımı. Mühendis ve Makina,62(705), 654-664.
  • Atiş, A. (2011). Hesaplamalı Akışkanlar Dinamiği (CFD) Kullanılarak Samsun Koşullarına Uygun Farklı Sera Modellerinde Doğal Havalandırma Etkinliğinin Belirlenmesi. Yüksek Lisans Tezi, Samsun Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun.
  • Akdemir, S., Öztürk, S., & Ülger, P. (2016). Bir Traktör Kabininde Ortam Şartlarının Yaz koşullarında HAD ile Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 13(02), 46-54.
  • Jurco, A.N., Gheres, M., Jurco, E.C., & Scurtu, I.L. (2018). CFD Study of the Exhaust Gases Distribution for Tractors Without Cab. ISB-INMA TEH. 149- 152.
  • Oh, J., Choi, K., Son, G., Park, Y., Kang, Y., & Kim, Y. (2020). Flow analysis inside tractor cabin for determining air conditioner vent location. Computers and Electronics in Agriculture, 169.
  • Karmakar, S., Ashrafizadeh, S. R., & Kushwaha, R. L. (2009). Experimental validation of computational fluid dynamics modellingfor narrow tillage tool draft. Journal of Terramechanics, 46, 277-283.
  • Wei, M., Zhu, L., Luo, F., Zhang, J. W., Dong, X. W., Jen, & T. C. (2019). Share-soil interaction load and wear at various tillage conditions of a horizontally reversible plough. Computers and Electronics in Agriculture, 162, 21-30.
  • Zhu, L., Cheng, X., Peng, S. S., Qi, Y. Y., Zhang, W. Z., Jiang, R., & Yin, C. L. (2016). Three-dimensional computational fluid dynamic interaction between soil and plow breast of horizontally reversal plow. Computers and Electronics in Agriculture, 123, 1-9.
  • Devarrewaere, W., Foqué, D., Nicolai, B., Nuyttens, D., & Verboven, P. (2018). Eulerian-Lagrangian CFD modellingof pesticide dust emissions from maize planters. Atmospheric Environment, 184, 304-314.
  • Han D., Zhang D., Jing H., Yang L., Cui T., Ding Y., Wang Z., Wang Y. & Zhang T. (2018). DEM-CFD coupling simulation and optimization of an inside-filling air blowing maize precision seed-metering device. Computers and Electronics in Agriculture, 150, 426-438.
  • Lei, X., Liao, Y., & Liao, Q. (2016). Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat. Computers and Electronics in Agriculture, 131, 29-39.
  • Yazgı, A., Demir, V., & Değirmencioğlu, A. (2020). Comparison of computational fluid dynamics-based simulations and visualized seed trajectories in different seed tubes. Turkish Journal of Agriculture and Forestry, 44, 599-611.
  • Hu, H., Zhou, Z., Wu, W., Yang, W., Li, T., Chang, C., Ren, W. & Lei, X. (2021). Distribution characteristics and parameter optimisation of an air-assisted centralised seed-metering device for rapeseed using a CFDDEM coupled simulation. Biosystems Engineering, 208, 249-259.
  • Fenghwei, G., Youqun, Z., Feng. W., Zhichao, H., & Lili, S. (2022). Simulation analysis and experimental validation of conveying device in uniform rushedstraw throwing and seed-sowing Machines using CFDDEM coupled approach. Computers and Electronics in Agriculture, 193, 106720.
  • Lim, B. Y., Shamsudin, R., Baharudin B. T. H. T., & Yunus, R. (2015). Performance evaluation and CFD multiphase modellingfor Multistage Jatropha Fruit Shelling Machine. Industrial Crops and Products, 85,125-138.
  • Dai, F., Song, X., Zhao, W., Han, Z., Zhang, F., & Zhang, S. (2019). Motion simulation and test on threshed grains in tapered threshing and transmission device for plot wheat breeding based on CFD-DEM. Int J Agric & Biol Eng., 12(1), 66-73.
  • Liang, Z., Xu, L., De Baerdemaeker, J., Li, Y., & Saeys, W. (2020). Optimization of a multi-duct cleaning device for rice combine harvesters utilizing CFD and experiments. Biosystems Engineering, 190, 25-40.
  • Xu, L., Li, Y., Chai, X., Wang, G., Liang, Z., Li, Y. & Li B. (2020). Numerical simulation of gas solidtwophase flow to predict the cleaning performance of rice combine harvesters. Biosystems Engineering, 190, 11-24.
  • Xu, H., Znahg, P., Hu Z., Mao, E., Yan, J. & Yang, H. (2022). Analysis of dust diffusion from a self-propelled peanut combine using computational fluid dynamics. Biosystems Engineering, 215, 104-114.
  • Endalew, A. M., Debaer, C., Rutten, N., Vercammen, J., Delele, M. A., Ramon, H., Nicolaï, B. M., & Verboven, P. (2010). Modellingpesticide flow and deposition from air-assisted orchard spraying in orchards: A new integrated CFD approach. Agricultural and Forest Meteorology, 150, 1383-1392.
  • Hong, S.W., Zhao, L., & Zhu, H. (2018). CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers. Computers and Electronics in Agriculture, 149, 121-132.
  • Zheng, W., Jiang, Y., Ma, X., & Qi, L. (2019). Development of a liquid-jet nozzle for fertilizer injection in paddy fields using CFD. Computers and Electronics in Agriculture. 167, 105061.
  • Fogal, M. L. F., Micheli, G. B., Scalon, V. L., & Padilha, A. (2021). Numerical-experimental comparison of radial fans applied in pneumatic transport of agricultural fertilizer spreaders. Revista Brasileira de Engenharia Agrícola e Ambiental (Brazilian Journal of Agricultural and Environmental Engineering), 25(1), 58-64.
  • Ali, H.B., Bournet, P.E., Cannavo, P., & Chantoiseau, E. (2018). Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics in Agriculture, 149, 26-40.
  • Demir, V., Yürdem, H., Yazgı, A., & Günhan T. (2020). Determination of the Hydraulic Properties of a Flat Type Drip Emitter using Computational Fluid Dynamics. Journal of Agricultural Sciences (Tarım Bilimleri Dergisi), 26, 226-235.
  • Cârlescu, P.M., Arsenoaia, V., Roşca, R., & ţenu, I. (2017). CFD simulation of heat and mass transfer during apricots drying. LWT - Food Science and Technology, 85, 479-486.
  • Alıç, E. & Daş, M. (2019). Güneş Enerjisi Destekli Kurutma Sisteminde Ürün Nem Oranının Hesaplamalı Akışkanlar Dinamiği Analizi. KSÜ Mühendislik Bilimleri Dergisi, 22, Özel Sayı, 78-82.
  • Akdemir. S., Öztürk. S., Edis. F.O., & Ülger. P. (2012). Soğuk Hava Depolarında Ortam Koşullarının Hesaplamalı Akışkanlar Dinamiği (CFD) ile Modellenmesi. Tarım Makinaları Bilimi Dergisi, 8(2), 241-248.
  • Villagrán, E.A., Romero, E.J.B., & Bojacá, C.R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304.
  • Kim, R., Hong, S., Norton, T., Amon, T., Youssef, A., Berckmans, D., & Lee I. (2020). Computational fluid dynamics for non-experts: Development of a user-friendly CFD simulator (HNVR-SYS) for natural ventilation design applications. Biosystems Engineering, 193, 232-246.
  • Cheng, X., Li, D., Shao, L., & Ren, Z. (2021). A virtual sensor simulation system of a flower greenhouse coupled with a new temperature microclimate model using three-dimensional CFD. Computers and Electronics in Agriculture, 181. 105934.
  • Hong, S-W., Exadaktylos, V., Lee, I-B., Amon, T., Youssef, A., Norton, T. & Berckmans, D. (2017). Validation of asource open-source CFD code to simulate natural ventilation for agricultural buildings. Computers and Electronics in Agriculture, 138, 80-91.
  • Dhiman, M., Sethi, V.P., Singh, B. & Sharma, A. (2019). CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks. Computers and Electronics in Agriculture, 163, 104853.
  • Müller, J., Schenk, C., Keicher, R., Schmidt, D., Schulz, V. & Velten, K. (2020). Optimization of an externally mixed biogas plant using a robust CFD method. Computers and Electronics in Agriculture, 171, 105294.
  • Guatam, K. R., Rong, L., Iqbal, A. & Zhang, G. (2021). Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone. Computers and Electronics in Agriculture, 186, 106206.
  • Pakari, A. & Ghani, S. (2021). Comparison of different mechanical ventilation systems for dairy cow barns: CFD simulations and field measurements. Computers and Electronics in Agriculture, 186, 106207.
  • Akdemir, S. (2016). Bir soğuk hava deposunda farklı menfez kanat açılarına göre hava dağılımının hesaplamalı akışkanlar dinamiği ile tahmini. Anadolu Tarım Bilim. Dergisi, 31, 84-95.
  • Bravo-Mosquera, P. D., Cerón-Muñoz, H. D., Díaz-Vázquez, G., & Catalano, F. M. (2018). Conceptual design and CFD analysis of a new prototype of agricultural aircraft. Aerospace Science and Technology, 80,156-176.
  • Yang, S., Tang, Q., Zheng, Y., Liu, X., Chen, J., & Li, X. (2020). Model migration for CFD and verification of a six-rotor UAV downwash. Int J Agric & Biol Eng., 13(4), 10-18.
  • Zhu, H., Nie, H., Zhang, L., Wei, X., & Zhang, M.(2020). Design and assessment of octocopter drones with improved aerodynamic efficiency and performance. Aerospace Science and Technology, 106. 106206.
  • Shouji, C., Dafsari, R. A., Yu, S-H., Choi, Y. & Lee, J. (2021). Mean and turbulent flow characteristics of downwash airflow generated by a single rotor blade in agricultural drones. Computers and Electronics in Agriculture, 190, 106471.
  • Koca, F., (2015). Traktör Soğutma Pompasının Hesaplamalı Akışkanlar Dinamiği ile Optimum Tasarımı ve Analizi. Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.

Tarımsal Üretimde Hesaplamalı Akışkanlar Dinamiği Yöntemi Kullanım Modelleri

Yıl 2022, Cilt: 9 Sayı: 1, 583 - 595, 30.06.2022

Öz

Hesaplamalı akışkanlar dinamiği (HAD), akışkan davranışının belirlenmesini sağlayan akışkanlar mekaniğinin bir alt dalıdır. Akışkan davranışını belirlemek için kullanılan bir simülasyon yöntemi olarak tanımlanan HAD, akışkan tipi, akış hızı ve akış geometrisi gibi parametrelere bağlıdır. Gelişen teknoloji ve artan bilgisayar işlem kapasitesi ile oluşturulan simülasyonların hassasiyeti ve doğruluğu her geçen gün artmaktadır. Bu yöntem aynı zamanda tarımsal üretimde meydana gelen sorunları çözmek ve akışın her zaman olduğu bir çalışma alanı olan mevcut makine ve sistemleri iyileştirmek için de kullanılmaktadır. Katı, sıvı ve gaz ortamın sıvılarla etkileşimlerinin incelenebildiği bu yöntem, tarımsal üretimin başlangıcından sonuna kadar tüm aşamalarda kullanılabilir. Bu adımlar toprak işleme, tohum ekimi, sulama, ilaçlama, hasat-harmanlama, ürün işleme, depolama ve iklimlendirme olarak sıralanabilir. Bu işlemleri gerçekleştiren makinelerin güç kaynağı olarak kullanılan traktörlerde bu yöntem ergonomik özelliklerin iyileştirilmesini sağlar. Bu yöntem ile teknolojinin kullanımının artmasıyla yaygınlaşan akıllı tarım uygulamalarında insansız hava araçlarının tarım alanları üzerindeki etkilerini incelemek mümkündür. Bu makalede, literatürde bildirilen mevcut çalışmalarda incelenmesi düşünülen çeşitli makine ve sistemler için yapılan çalışmalardan elde edilen veriler derlenerek ileride yapılacak çalışmalara örnek olması amaçlanmıştır.

Kaynakça

  • Keskin, G. (2019). Doğal Havalandırmalı Plastik Serada Bazı İklim Parametrelerinin Hesaplamalı Akışkanlar Dinamiği (HAD) İle Belirlenmesi: Hatay İli Örneği. Yüksek Lisans Tezi, Hatay Mustafa Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Hatay.
  • Cemek, B., Atiş, A., & Küçüktopçu, E. (2017). Evaluation of temperature distribution in different greenhouse models using computational fluid dynamics (CFD). Anadolu Tarım Bilimleri Dergisi, 32, 54-63. DOI: 10.7161/omuanajas.289354.
  • Aslanbay Güler B., & İmamoğlu, E. (2020). Bilgisayar destekli simülasyon ve hesaplamalı akışkanlar dinamiği. Türk Bilimsel Derlemeler Dergisi, 13(1), 42-52.
  • Küçüktopçu, E. (2016). Hesaplamalı Akışkanlar Dinamiği (HAD) Kullanarak Kümes İçi Çevre Koşullarının Belirlenmesi. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun.
  • Arsenoaia, V., Vlâduţ, V., Ţenu, I., Voicea, I., Moiceanu, G., & Cârlescu, P. M. (2019). Mathematical Modeling and Numerical Simulation of the Drying Process of Seeds in a Pilot Plant. INMATEH-Agricultural Engineering, 57(1), 55-62.
  • Malekjani, N. & Jafari, S.M. (2018). Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches. Trends in Food Science & Technology, 78, 206-223.
  • Süfer Ö., Kumcuoğlu, S., & Tavman, Ş. (2016). Gıda Mühendisliğinde Hesaplamalı Akışkanlar Dinamiği Uygulamaları. Akademik Gıda, 14(4), 465-471.
  • Özcan, O.A. (2004). Uçak Kanatlarının CFD Analizi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Akdemir, S. & Bal, E. (2014). Elma Depolamada Kasa İçi Ortam Koşullarının Hesaplamalı Akışkanlar Dinamiği ile Modellenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 11(1), 53-62.
  • Ovalı, İ., Atay, Ö., & Yılmaz, E. (2021). Santrifüj Pompa Tasarımında Sayısal Yöntemlerin(HAD/CFD) Kullanımı. Mühendis ve Makina,62(705), 654-664.
  • Atiş, A. (2011). Hesaplamalı Akışkanlar Dinamiği (CFD) Kullanılarak Samsun Koşullarına Uygun Farklı Sera Modellerinde Doğal Havalandırma Etkinliğinin Belirlenmesi. Yüksek Lisans Tezi, Samsun Ondokuz Mayıs Üniversitesi, Fen Bilimleri Enstitüsü, Samsun.
  • Akdemir, S., Öztürk, S., & Ülger, P. (2016). Bir Traktör Kabininde Ortam Şartlarının Yaz koşullarında HAD ile Belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 13(02), 46-54.
  • Jurco, A.N., Gheres, M., Jurco, E.C., & Scurtu, I.L. (2018). CFD Study of the Exhaust Gases Distribution for Tractors Without Cab. ISB-INMA TEH. 149- 152.
  • Oh, J., Choi, K., Son, G., Park, Y., Kang, Y., & Kim, Y. (2020). Flow analysis inside tractor cabin for determining air conditioner vent location. Computers and Electronics in Agriculture, 169.
  • Karmakar, S., Ashrafizadeh, S. R., & Kushwaha, R. L. (2009). Experimental validation of computational fluid dynamics modellingfor narrow tillage tool draft. Journal of Terramechanics, 46, 277-283.
  • Wei, M., Zhu, L., Luo, F., Zhang, J. W., Dong, X. W., Jen, & T. C. (2019). Share-soil interaction load and wear at various tillage conditions of a horizontally reversible plough. Computers and Electronics in Agriculture, 162, 21-30.
  • Zhu, L., Cheng, X., Peng, S. S., Qi, Y. Y., Zhang, W. Z., Jiang, R., & Yin, C. L. (2016). Three-dimensional computational fluid dynamic interaction between soil and plow breast of horizontally reversal plow. Computers and Electronics in Agriculture, 123, 1-9.
  • Devarrewaere, W., Foqué, D., Nicolai, B., Nuyttens, D., & Verboven, P. (2018). Eulerian-Lagrangian CFD modellingof pesticide dust emissions from maize planters. Atmospheric Environment, 184, 304-314.
  • Han D., Zhang D., Jing H., Yang L., Cui T., Ding Y., Wang Z., Wang Y. & Zhang T. (2018). DEM-CFD coupling simulation and optimization of an inside-filling air blowing maize precision seed-metering device. Computers and Electronics in Agriculture, 150, 426-438.
  • Lei, X., Liao, Y., & Liao, Q. (2016). Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat. Computers and Electronics in Agriculture, 131, 29-39.
  • Yazgı, A., Demir, V., & Değirmencioğlu, A. (2020). Comparison of computational fluid dynamics-based simulations and visualized seed trajectories in different seed tubes. Turkish Journal of Agriculture and Forestry, 44, 599-611.
  • Hu, H., Zhou, Z., Wu, W., Yang, W., Li, T., Chang, C., Ren, W. & Lei, X. (2021). Distribution characteristics and parameter optimisation of an air-assisted centralised seed-metering device for rapeseed using a CFDDEM coupled simulation. Biosystems Engineering, 208, 249-259.
  • Fenghwei, G., Youqun, Z., Feng. W., Zhichao, H., & Lili, S. (2022). Simulation analysis and experimental validation of conveying device in uniform rushedstraw throwing and seed-sowing Machines using CFDDEM coupled approach. Computers and Electronics in Agriculture, 193, 106720.
  • Lim, B. Y., Shamsudin, R., Baharudin B. T. H. T., & Yunus, R. (2015). Performance evaluation and CFD multiphase modellingfor Multistage Jatropha Fruit Shelling Machine. Industrial Crops and Products, 85,125-138.
  • Dai, F., Song, X., Zhao, W., Han, Z., Zhang, F., & Zhang, S. (2019). Motion simulation and test on threshed grains in tapered threshing and transmission device for plot wheat breeding based on CFD-DEM. Int J Agric & Biol Eng., 12(1), 66-73.
  • Liang, Z., Xu, L., De Baerdemaeker, J., Li, Y., & Saeys, W. (2020). Optimization of a multi-duct cleaning device for rice combine harvesters utilizing CFD and experiments. Biosystems Engineering, 190, 25-40.
  • Xu, L., Li, Y., Chai, X., Wang, G., Liang, Z., Li, Y. & Li B. (2020). Numerical simulation of gas solidtwophase flow to predict the cleaning performance of rice combine harvesters. Biosystems Engineering, 190, 11-24.
  • Xu, H., Znahg, P., Hu Z., Mao, E., Yan, J. & Yang, H. (2022). Analysis of dust diffusion from a self-propelled peanut combine using computational fluid dynamics. Biosystems Engineering, 215, 104-114.
  • Endalew, A. M., Debaer, C., Rutten, N., Vercammen, J., Delele, M. A., Ramon, H., Nicolaï, B. M., & Verboven, P. (2010). Modellingpesticide flow and deposition from air-assisted orchard spraying in orchards: A new integrated CFD approach. Agricultural and Forest Meteorology, 150, 1383-1392.
  • Hong, S.W., Zhao, L., & Zhu, H. (2018). CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers. Computers and Electronics in Agriculture, 149, 121-132.
  • Zheng, W., Jiang, Y., Ma, X., & Qi, L. (2019). Development of a liquid-jet nozzle for fertilizer injection in paddy fields using CFD. Computers and Electronics in Agriculture. 167, 105061.
  • Fogal, M. L. F., Micheli, G. B., Scalon, V. L., & Padilha, A. (2021). Numerical-experimental comparison of radial fans applied in pneumatic transport of agricultural fertilizer spreaders. Revista Brasileira de Engenharia Agrícola e Ambiental (Brazilian Journal of Agricultural and Environmental Engineering), 25(1), 58-64.
  • Ali, H.B., Bournet, P.E., Cannavo, P., & Chantoiseau, E. (2018). Development of a CFD crop submodel for simulating microclimate and transpiration of ornamental plants grown in a greenhouse under water restriction. Computers and Electronics in Agriculture, 149, 26-40.
  • Demir, V., Yürdem, H., Yazgı, A., & Günhan T. (2020). Determination of the Hydraulic Properties of a Flat Type Drip Emitter using Computational Fluid Dynamics. Journal of Agricultural Sciences (Tarım Bilimleri Dergisi), 26, 226-235.
  • Cârlescu, P.M., Arsenoaia, V., Roşca, R., & ţenu, I. (2017). CFD simulation of heat and mass transfer during apricots drying. LWT - Food Science and Technology, 85, 479-486.
  • Alıç, E. & Daş, M. (2019). Güneş Enerjisi Destekli Kurutma Sisteminde Ürün Nem Oranının Hesaplamalı Akışkanlar Dinamiği Analizi. KSÜ Mühendislik Bilimleri Dergisi, 22, Özel Sayı, 78-82.
  • Akdemir. S., Öztürk. S., Edis. F.O., & Ülger. P. (2012). Soğuk Hava Depolarında Ortam Koşullarının Hesaplamalı Akışkanlar Dinamiği (CFD) ile Modellenmesi. Tarım Makinaları Bilimi Dergisi, 8(2), 241-248.
  • Villagrán, E.A., Romero, E.J.B., & Bojacá, C.R. (2019). Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188, 288-304.
  • Kim, R., Hong, S., Norton, T., Amon, T., Youssef, A., Berckmans, D., & Lee I. (2020). Computational fluid dynamics for non-experts: Development of a user-friendly CFD simulator (HNVR-SYS) for natural ventilation design applications. Biosystems Engineering, 193, 232-246.
  • Cheng, X., Li, D., Shao, L., & Ren, Z. (2021). A virtual sensor simulation system of a flower greenhouse coupled with a new temperature microclimate model using three-dimensional CFD. Computers and Electronics in Agriculture, 181. 105934.
  • Hong, S-W., Exadaktylos, V., Lee, I-B., Amon, T., Youssef, A., Norton, T. & Berckmans, D. (2017). Validation of asource open-source CFD code to simulate natural ventilation for agricultural buildings. Computers and Electronics in Agriculture, 138, 80-91.
  • Dhiman, M., Sethi, V.P., Singh, B. & Sharma, A. (2019). CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks. Computers and Electronics in Agriculture, 163, 104853.
  • Müller, J., Schenk, C., Keicher, R., Schmidt, D., Schulz, V. & Velten, K. (2020). Optimization of an externally mixed biogas plant using a robust CFD method. Computers and Electronics in Agriculture, 171, 105294.
  • Guatam, K. R., Rong, L., Iqbal, A. & Zhang, G. (2021). Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone. Computers and Electronics in Agriculture, 186, 106206.
  • Pakari, A. & Ghani, S. (2021). Comparison of different mechanical ventilation systems for dairy cow barns: CFD simulations and field measurements. Computers and Electronics in Agriculture, 186, 106207.
  • Akdemir, S. (2016). Bir soğuk hava deposunda farklı menfez kanat açılarına göre hava dağılımının hesaplamalı akışkanlar dinamiği ile tahmini. Anadolu Tarım Bilim. Dergisi, 31, 84-95.
  • Bravo-Mosquera, P. D., Cerón-Muñoz, H. D., Díaz-Vázquez, G., & Catalano, F. M. (2018). Conceptual design and CFD analysis of a new prototype of agricultural aircraft. Aerospace Science and Technology, 80,156-176.
  • Yang, S., Tang, Q., Zheng, Y., Liu, X., Chen, J., & Li, X. (2020). Model migration for CFD and verification of a six-rotor UAV downwash. Int J Agric & Biol Eng., 13(4), 10-18.
  • Zhu, H., Nie, H., Zhang, L., Wei, X., & Zhang, M.(2020). Design and assessment of octocopter drones with improved aerodynamic efficiency and performance. Aerospace Science and Technology, 106. 106206.
  • Shouji, C., Dafsari, R. A., Yu, S-H., Choi, Y. & Lee, J. (2021). Mean and turbulent flow characteristics of downwash airflow generated by a single rotor blade in agricultural drones. Computers and Electronics in Agriculture, 190, 106471.
  • Koca, F., (2015). Traktör Soğutma Pompasının Hesaplamalı Akışkanlar Dinamiği ile Optimum Tasarımı ve Analizi. Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

Yaşar Serhat Saygılı 0000-0001-6974-3820

Bülent Çakmak 0000-0002-3587-0933

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 1 Ekim 2021
Kabul Tarihi 18 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Saygılı, Y. S., & Çakmak, B. (2022). Tarımsal Üretimde Hesaplamalı Akışkanlar Dinamiği Yöntemi Kullanım Modelleri. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 583-595. https://doi.org/10.35193/bseufbd.1003649