Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Machinability in Terms of Cutting Force Components and Surface Roughness in Machining of Invar 36 Alloy with Ceramic Tools

Yıl 2022, Cilt: 9 Sayı: 1, 256 - 268, 30.06.2022
https://doi.org/10.35193/bseufbd.1011706

Öz

Invar 36 is an alloy used in engineering applications where high dimensional stability is required in the field of space and aviation due to its low thermal expansion coefficient. In this study, the machinability of Invar 36 alloy has been evaluated in regard to the cutting force components (Fc, Ff and Fp) and surface roughness (Ra). The turning experiments were performed on dry conditions without using cooling liquid on a CNC lathe. The impact levels of the cutting parameters on the cutting force components and Ra are also determined with analysis of variance (Anova). The analysis results show that the feed rate has the highest significance on Fc, Ff, and Ra while the cutting depth has the highest significance on Fp. The minimum values for the cutting force components in the tests performed at a (Vc) of 240 m/min, at a (f) of 0.12 mm/rev and a (a) of 0.6 mm, have been measured as 95N, 80N, and 20N, respectively. The lowest Ra value was obtained as 0.452 µm as a result of the experiments performed at 180 m/min (Vc), 0.12 mm/rev (f) and 0.6 mm (a).

Kaynakça

  • Guillaume, C. (1920). Invar and Elinvar. Nobel Lectures Physics. 1901-1921, 444-473.
  • Davis, J. R. (2001). Alloying: Understanding the Basics. ASM International, Materials Park, Ohio, 587-594.
  • Rosenberg, S.J. (1968). Nickel and its alloys, National Bureau of Standards Monograph. Washington, D.C., A.B.D 106, 1-9.
  • Nickel-Iron Alloys. (2021). https://www.specialmetals.com/assets/smc/documents/alloys/nilo-nilomag/nilo-and-nilomag-alloys.pdf.
  • Wei, K., Yang, Q., Ling, B., Yang, X., Xie, H., Qu, Z., & Fang, D. (2020). Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Materials Science and Engineering: A, 772, 138799.
  • Nagayama, T., Yamamoto, T., & Nakamura, T. (2017). Electrodeposition of invar Fe-Ni alloy/SiC particle composite. ECS Transactions, 75(37), 69.
  • Nagayama, T., Yamamoto, T., & Nakamura, T. (2016). Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range. Electrochimica Acta, 205, 178-187.
  • Nan, J.M.,Li, G.X., Xu, K.W., Wang, H.W., Song, L.J., & Dou, X.Y. (2001). Elevated Temperature Deformation Behaviour and Mechanical Characteristics of Invar Alloy Used for Shadow Mask.J. Mater. Eng. 1(1), 19–21.
  • Li, X.F., Chen, N.N., Li, J.J., He, X.T., Liu, H.B., Zheng, X.W., & Chen, J. (2017). Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy.Acta Metall. Sin., 53(8), 968–974.
  • Ratnayake, D., & Walsh, K.M. (2016). Invar Thin Films for MEMS Bistable Devices.In Southeastcon 2016, 30 March-3 April, Norfolk, VA, USA, 1-4.
  • Corbacho, J. L., Suárez, J. C., & Molleda, F. (1998). Welding of invar Fe-36Ni alloy for tooling of composite materials. Welding international, 12(12), 966-971.
  • Hidalgo, J., Jiménez-Morales, A., Barriere, T., Gelin, J. C., & Torralba, J. M. (2014). Mechanical and functional properties of Invar alloy for μ-MIM. Powder Metallurgy, 57(2), 127-136.
  • Asgari, H., Salarian, M., Ma, H., Olubamiji, A., & Vlasea, M. (2018). On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Materials & Design, 160, 895-905.
  • Khanna, N., Gandhi, A., Nakum, B., & Srivastava, A. (2018). Optimization and analysis of surface roughness for INVAR-36 in end milling operations. Materials Today: Proceedings, 5(2), 5281-5288.
  • Basmacı, G., Kırbaş, İ., & Mustafa, A. Y. (2021). Modelling of cutting parameters for Nilo 36 superalloy with machine learning methods and developing an interactive interface. International Advanced Researches and Engineering Journal, 5(1), 79-86.
  • Porwal, R. K., Yadava, V., & Ramkumar, J. (2013). Multi-Objective optimization of hole drilling electrical discharge micromachining process using grey relational analysis coupled with principal component analysis. Journal of The Institution of Engineers (India): Series C, 94(4), 317-325.
  • Zheng, X. W., Ying, G. F., Chen, Y., & Fu, Y. C. (2015). The Effects of Cutting Parameters on Work-Hardening of Milling Invar 36. In Advanced Materials Research,1089,373-376.
  • Ramakrishnan, A., & Dinda, G.P. (2019). Direct Laser Metal Deposition of Inconel 738. Materials Science and Engineering: A, 740, 1-13.
  • Zhou, Q., Hayat, M. D., Chen, G., Cai, S., Qu, X., Tang, H., & Cao, P. (2019). Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties. Materials Science and Engineering: A, 744, 290-298.
  • Wei, K., Zeng, X., Wang, Z., Deng, J., Liu, M., Huang, G., & Yuan, X. (2019). Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property. Materials Science and Engineering: A, 756, 226-236.
  • Yakout, M., Elbestawi, M. A., & Veldhuis, S. C. (2018). A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L. Additive Manufacturing, 24, 405-418.
  • Wei, K., Yang, Q., Ling, B., Yang, X., Xie, H., Qu, Z., & Fang, D. (2020). Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Materials Science and Engineering: A, 772, 138799.
  • Kim, S.H., Choi, S.G., Choi, W.K., & Lee, E.S. (2017). Surface Characteristics of Invar Alloy According to Micro-Pulse Electrochemical Machining, Materiali in Technologije, 51, 745–749.
  • Khanna, N., Mistry, S., Rashid, R. R., & Gupta, M. K. (2019). Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy. Materials Research Express, 6(8), 086541.
  • Qiu, C., Liu, Y., & Liu, H. (2021). Influence of addition of TiAl particles on microstructural and mechanical property development in Invar 36 processed by laser powder bed fusion. Additive Manufacturing, 48, 102457.
  • Nickel-Iron Alloys. (2021). https://www.specialmetals.com/documents/technical-bulletins/nilo-alloys.pdf.
  • Özlü, B., Demir, H., Türkmen, M., & Gündüz, S. (2021). Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406220984498.
  • Demir, H., Gündüz, S., & Erden, M.A. (2018). Influence of the Heat Treatment on the Microstructure and Machinability of AISI H13 Hot Work Tool Steel.Int J Adv Manuf Technol, 95, 2951–2958.
  • Çiftçi, İ. (2005). The Influence of Cutting Tool Coating and Cutting Speed on Cutting Forces and Surface Roughness in Machining of Austenitic Stainless Steels. Journal of the Faculty of Engineering and Architecture of Gazi University, 20(2), 205-209.
  • Trent, E.M. (1989). Metal Cutting. Butterworths Press, London. [31] Akgün, M., & Demir, H. (2021). Estimation of Surface Roughness and Flank Wear in Milling of Inconel 625 Superalloy, Surface Review and Letters, 28(04), 2150011.
  • Günay, M., & Şeker, U. (2005). Investigation of the Effect of Cutting Tool Rake Angle on Feed Force, Journal of Polytechnic, 8 (4), 323-328.
  • Korkmaz, M.E.,& Günay, M. (2018). Experimental and Statistical Analysis on Machinability Of Nimonic 80A Superalloy with Pvd Coated Carbide. Sigma Journal of Engineering and Natural Sciences, 36(4), 1139-1150.
  • Arık, İ. (2010). The Effect Of Milling Cutter Having Differantial Pitched Cutting Edges On Chatter Vibrations, Selcuk University, Graduate School of Natural and Applied Sciences, Master Thesis.
  • Çiftci, İ. (2006). Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International, 39 (6), 565–569.
  • Akkuş, H., & Yaka, H. (2021). Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy. Measurement, 167, 108465.
  • Akgün, M., & Demir, H. (2021). Optimization of Cutting Parameters Affecting Surface Roughness in Turning of Inconel 625 Superalloy by Cryogenically Treated Tungsten Carbide Inserts.SN Applied Sciences, 3, 277.
  • Gürbüz, H., Şeker, U., & Kafkas, F. (202). Effects of Cutting Tool Forms on the Surface Integrity in Turning of AISI 316L Stainless Steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 225-240.
  • Akgün, M., Demir, H., & Çiftçi, İ. (2018). Mg2Si partikül takviyeli magnezyum alaşımlarının tornalanmasında yüzey pürüzlülüğünün optimizasyonu. Politeknik Dergisi, 21(3), 645-650.

Invar 36 Alaşımının Seramik Takımlar ile İşlenmesinde Kesme Kuvveti Bileşenleri ve Yüzey Pürüzlülüğü Bakımından İşlenebilirliğinin Değerlendirilmesi

Yıl 2022, Cilt: 9 Sayı: 1, 256 - 268, 30.06.2022
https://doi.org/10.35193/bseufbd.1011706

Öz

Invar 36, düşük ısıl genleşme katsayısı nedeniyle uzay ve havacılık alanında yüksek boyutsal stabilitenin gerekli olduğu mühendislik uygulamalarında kullanılan bir malzemedir. Bu çalışmada, kesme kuvveti bileşenleri (Fc, Ff, Fp) ve yüzey pürüzlülüğü (Ra) bakımından Invar 36 alaşımının işlenebilirliği değerlendirilmiştir. Tornalama deneyleri, kuru kesme şartlarında CNC torna tezgahında gerçekleştirilmiştir. Ayrıca, varyans analizi (Anova) ile kesme kuvveti bileşenleri ve Ra üzerinde kesme parametrelerinin etki düzeyleri belirlenmiştir. Analiz sonuçları, ilerleme miktarının Fc, Ff ve Ra üzerinde en etkili parametre olduğunu talaş derinliğinin ise Fpüzerinde en etkili kesme parametresi olduğunu göstermektedir. Kesme kuvveti bileşenleri (Fc, Ff veFp) için en düşük değerler 240 m/dak (Vc), 0,12 mm/dev (f) ve 0,6 mm (a) değerlerinde yapılan deneylerde sırasıyla 95 N, 80 N ve 20 N olarak ölçülmüştür. En düşük Ra değeri ise 180 m/dak (Vc), 0,12 mm/dev (f) ve 0,6 mm (a) değerlerinde yapılan deneyler sonucunda 0,452 µm olarak elde edilmiştir.

Kaynakça

  • Guillaume, C. (1920). Invar and Elinvar. Nobel Lectures Physics. 1901-1921, 444-473.
  • Davis, J. R. (2001). Alloying: Understanding the Basics. ASM International, Materials Park, Ohio, 587-594.
  • Rosenberg, S.J. (1968). Nickel and its alloys, National Bureau of Standards Monograph. Washington, D.C., A.B.D 106, 1-9.
  • Nickel-Iron Alloys. (2021). https://www.specialmetals.com/assets/smc/documents/alloys/nilo-nilomag/nilo-and-nilomag-alloys.pdf.
  • Wei, K., Yang, Q., Ling, B., Yang, X., Xie, H., Qu, Z., & Fang, D. (2020). Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Materials Science and Engineering: A, 772, 138799.
  • Nagayama, T., Yamamoto, T., & Nakamura, T. (2017). Electrodeposition of invar Fe-Ni alloy/SiC particle composite. ECS Transactions, 75(37), 69.
  • Nagayama, T., Yamamoto, T., & Nakamura, T. (2016). Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range. Electrochimica Acta, 205, 178-187.
  • Nan, J.M.,Li, G.X., Xu, K.W., Wang, H.W., Song, L.J., & Dou, X.Y. (2001). Elevated Temperature Deformation Behaviour and Mechanical Characteristics of Invar Alloy Used for Shadow Mask.J. Mater. Eng. 1(1), 19–21.
  • Li, X.F., Chen, N.N., Li, J.J., He, X.T., Liu, H.B., Zheng, X.W., & Chen, J. (2017). Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy.Acta Metall. Sin., 53(8), 968–974.
  • Ratnayake, D., & Walsh, K.M. (2016). Invar Thin Films for MEMS Bistable Devices.In Southeastcon 2016, 30 March-3 April, Norfolk, VA, USA, 1-4.
  • Corbacho, J. L., Suárez, J. C., & Molleda, F. (1998). Welding of invar Fe-36Ni alloy for tooling of composite materials. Welding international, 12(12), 966-971.
  • Hidalgo, J., Jiménez-Morales, A., Barriere, T., Gelin, J. C., & Torralba, J. M. (2014). Mechanical and functional properties of Invar alloy for μ-MIM. Powder Metallurgy, 57(2), 127-136.
  • Asgari, H., Salarian, M., Ma, H., Olubamiji, A., & Vlasea, M. (2018). On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Materials & Design, 160, 895-905.
  • Khanna, N., Gandhi, A., Nakum, B., & Srivastava, A. (2018). Optimization and analysis of surface roughness for INVAR-36 in end milling operations. Materials Today: Proceedings, 5(2), 5281-5288.
  • Basmacı, G., Kırbaş, İ., & Mustafa, A. Y. (2021). Modelling of cutting parameters for Nilo 36 superalloy with machine learning methods and developing an interactive interface. International Advanced Researches and Engineering Journal, 5(1), 79-86.
  • Porwal, R. K., Yadava, V., & Ramkumar, J. (2013). Multi-Objective optimization of hole drilling electrical discharge micromachining process using grey relational analysis coupled with principal component analysis. Journal of The Institution of Engineers (India): Series C, 94(4), 317-325.
  • Zheng, X. W., Ying, G. F., Chen, Y., & Fu, Y. C. (2015). The Effects of Cutting Parameters on Work-Hardening of Milling Invar 36. In Advanced Materials Research,1089,373-376.
  • Ramakrishnan, A., & Dinda, G.P. (2019). Direct Laser Metal Deposition of Inconel 738. Materials Science and Engineering: A, 740, 1-13.
  • Zhou, Q., Hayat, M. D., Chen, G., Cai, S., Qu, X., Tang, H., & Cao, P. (2019). Selective electron beam melting of NiTi: Microstructure, phase transformation and mechanical properties. Materials Science and Engineering: A, 744, 290-298.
  • Wei, K., Zeng, X., Wang, Z., Deng, J., Liu, M., Huang, G., & Yuan, X. (2019). Selective laser melting of Mg-Zn binary alloys: effects of Zn content on densification behavior, microstructure, and mechanical property. Materials Science and Engineering: A, 756, 226-236.
  • Yakout, M., Elbestawi, M. A., & Veldhuis, S. C. (2018). A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L. Additive Manufacturing, 24, 405-418.
  • Wei, K., Yang, Q., Ling, B., Yang, X., Xie, H., Qu, Z., & Fang, D. (2020). Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Materials Science and Engineering: A, 772, 138799.
  • Kim, S.H., Choi, S.G., Choi, W.K., & Lee, E.S. (2017). Surface Characteristics of Invar Alloy According to Micro-Pulse Electrochemical Machining, Materiali in Technologije, 51, 745–749.
  • Khanna, N., Mistry, S., Rashid, R. R., & Gupta, M. K. (2019). Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy. Materials Research Express, 6(8), 086541.
  • Qiu, C., Liu, Y., & Liu, H. (2021). Influence of addition of TiAl particles on microstructural and mechanical property development in Invar 36 processed by laser powder bed fusion. Additive Manufacturing, 48, 102457.
  • Nickel-Iron Alloys. (2021). https://www.specialmetals.com/documents/technical-bulletins/nilo-alloys.pdf.
  • Özlü, B., Demir, H., Türkmen, M., & Gündüz, S. (2021). Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406220984498.
  • Demir, H., Gündüz, S., & Erden, M.A. (2018). Influence of the Heat Treatment on the Microstructure and Machinability of AISI H13 Hot Work Tool Steel.Int J Adv Manuf Technol, 95, 2951–2958.
  • Çiftçi, İ. (2005). The Influence of Cutting Tool Coating and Cutting Speed on Cutting Forces and Surface Roughness in Machining of Austenitic Stainless Steels. Journal of the Faculty of Engineering and Architecture of Gazi University, 20(2), 205-209.
  • Trent, E.M. (1989). Metal Cutting. Butterworths Press, London. [31] Akgün, M., & Demir, H. (2021). Estimation of Surface Roughness and Flank Wear in Milling of Inconel 625 Superalloy, Surface Review and Letters, 28(04), 2150011.
  • Günay, M., & Şeker, U. (2005). Investigation of the Effect of Cutting Tool Rake Angle on Feed Force, Journal of Polytechnic, 8 (4), 323-328.
  • Korkmaz, M.E.,& Günay, M. (2018). Experimental and Statistical Analysis on Machinability Of Nimonic 80A Superalloy with Pvd Coated Carbide. Sigma Journal of Engineering and Natural Sciences, 36(4), 1139-1150.
  • Arık, İ. (2010). The Effect Of Milling Cutter Having Differantial Pitched Cutting Edges On Chatter Vibrations, Selcuk University, Graduate School of Natural and Applied Sciences, Master Thesis.
  • Çiftci, İ. (2006). Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribology International, 39 (6), 565–569.
  • Akkuş, H., & Yaka, H. (2021). Experimental and statistical investigation of the effect of cutting parameters on surface roughness, vibration and energy consumption in machining of titanium 6Al-4V ELI (grade 5) alloy. Measurement, 167, 108465.
  • Akgün, M., & Demir, H. (2021). Optimization of Cutting Parameters Affecting Surface Roughness in Turning of Inconel 625 Superalloy by Cryogenically Treated Tungsten Carbide Inserts.SN Applied Sciences, 3, 277.
  • Gürbüz, H., Şeker, U., & Kafkas, F. (202). Effects of Cutting Tool Forms on the Surface Integrity in Turning of AISI 316L Stainless Steel. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(1), 225-240.
  • Akgün, M., Demir, H., & Çiftçi, İ. (2018). Mg2Si partikül takviyeli magnezyum alaşımlarının tornalanmasında yüzey pürüzlülüğünün optimizasyonu. Politeknik Dergisi, 21(3), 645-650.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mahir Akgün 0000-0002-4522-066X

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 18 Ekim 2021
Kabul Tarihi 21 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Akgün, M. (2022). Invar 36 Alaşımının Seramik Takımlar ile İşlenmesinde Kesme Kuvveti Bileşenleri ve Yüzey Pürüzlülüğü Bakımından İşlenebilirliğinin Değerlendirilmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 256-268. https://doi.org/10.35193/bseufbd.1011706