Araştırma Makalesi
BibTex RIS Kaynak Göster

Clay-Biomass Composite: An Ecofriendly Hybrid Adsorbent for Effective Removal of Ni (II)

Yıl 2022, Cilt: 9 Sayı: 1, 364 - 375, 30.06.2022
https://doi.org/10.35193/bseufbd.1061422

Öz

In this study, natural clay mineral: Capsicum annuum (C. annuum) L. seeds based composite adsorbent (CCAC) was prepared. Adsorption performance of CCAC was evaluated in terms of Ni (II) removal and adsorption capacity. Experimental conditions were optimized by investigating the initial pH of the metal solution, CCAC amount, initial metal ion concentration, and contact time parameters. The optimum conditions for Ni (II) adsorption by CCAC were pH:7.0, CCAC amount:0.06 g, and contact time:20 min. The adsorption isotherms were also analyzed by well-known models. The Langmuir isotherm model predicted a maximum monolayer adsorption capacity of 126 mg g–1. Functional groups and surface morphology of CCAC were examined using FT-IR and SEM analysis, respectively. The findings indicated that the Ni (II) adsorption process was spontaneous and chemical in nature. Finally, all the results of this study revealed that CCAC, a simple to produce, cost-effective, and robust composite adsorbent, is an appropriate candidate for the treatment of waters polluted with nickel ions.

Destekleyen Kurum

Eskişehir Osmangazi Üniversitesi

Proje Numarası

FHD-2021-1694

Teşekkür

This work was financially supported by the Commission of Eskisehir Osmangazi University Scientific Research Projects with project number FHD-2021-1694. The author would also thank to Dr. Sema Çelik for her assistance on FT-IR analysis.

Kaynakça

  • Akar, S. T. & Uysal, R. (2010). Untreated clay with high adsorption capacity for effective removal of C.I. Acid Red 88 from aqueous solutions: Batch and dynamic flow mode studies. Chemical Engineering Journal, 162 (2), 591-598.
  • Raval, N. P., Shah, P. U. & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management, 179, 1-20.
  • Akar, T., Celik, S., Gorgulu Ari, A. &Tunali Akar, S. (2013). Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption. Journal of Chemical Technology & Biotechnology, 88 (4), 680-689.
  • Kara, İ., Yilmazer, D. &Tunali Akar, S. (2017). Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions. Applied Clay Science, 139, 54-63.
  • WHO (2017) Guidelines for drinking-water quality, 4th edition, World Health Organization.
  • Irannajad, M. & Kamran Haghighi, H. (2021). Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review. Environmental Processes, 8 (1), 7-35.
  • Diagboya, P. N., Olu-Owolabi, B. I., Mtunzi, F. M. & Adebowale, K. O. (2020). Clay-carbonaceous material composites: Towards a new class of functional adsorbents for water treatment. Surfaces and Interfaces, 19, 100506.
  • Satir, I. T. & Erol, K. (2021). Calcined eggshell for removal of Victoria Blue R dye from wastewater medium by adsorption. Journal of the Turkish Chemical Society Section A: Chemistry, 8 (1), 47 - 56.
  • Şenol, Z. M. & Şimşek, S. (2020). Removal of Pb2+ ions from aqueous medium by using chitosan-diatomite composite: equilibrium, kinetic and thermodynamic studies. Journal of the Turkish Chemical Society Section A: Chemistry, 7 (1), 307-318.
  • Akar, T., Güray, T., Yilmazer Tunc, D. & Tunali Akar, S. (2019). Biosorptive detoxification of zearalenone biotoxin by surface-modified renewable biomass: process dynamics and application. Journal of the Science of Food and Agriculture, 99 (4), 1850-1861.
  • Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.-i.-H., Bhatti, H. N. & Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395-407.
  • Awad, A. M., Shaikh, S. M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A. & Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 228, 115719.
  • Gürel, L. (2017). Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds. Water Science and Technology, 75 (8), 1889-1898.
  • Parra-Marfíl, A., Ocampo-Pérez, R., Collins-Martínez, V. H., Flores-Vélez, L. M., Gonzalez-Garcia, R., Medellín-Castillo, N. A. & Labrada-Delgado, G. J. (2020). Synthesis and characterization of hydrochar from industrial Capsicum annuum seeds and its application for the adsorptive removal of methylene blue from water. Environmental Research, 184, 109334.
  • Özcan, A. S., Özcan, A., Tunali, S., Akar, T., Kiran, I. & Gedikbey, T. (2007). Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds. Separation Science and Technology, 42 (1), 137-151.
  • Tunali Akar, S., Gorgulu, A., Akar, T. & Celik, S. (2011). Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: Batch and continuous mode biosorption applications. Chemical Engineering Journal, 168 (1), 125-133.
  • Hammo, M. M., Akar, T., Sayin, F., Celik, S. & Tunali Akar, S. (2021). Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. Journal of Environmental Management, 289, 112490.
  • Unuabonah, E. I., Adedapo, A. O., Nnamdi, C. O., Adewuyi, A., Omorogie, M. O., Adebowale, K. O., Olu-Owolabi, B. I., Ofomaja, A. E. & Taubert, A. (2015). Successful scale-up performance of a novel papaya-clay combo adsorbent: up-flow adsorption of a basic dye. Desalination and Water Treatment, 56 (2), 536-551.
  • Ayisha Sidiqua, M. & Priya, V. S. (2021). Removal of yellow dye using composite binded adsorbent developed using natural clay and activated carbon from sapindus seed. Biocatalysis and Agricultural Biotechnology, 33, 101965.
  • Olu-Owolabi, B. I., Alabi, A. H., Unuabonah, E. I., Diagboya, P. N., Böhm, L. & Düring, R.-A. (2016). Calcined biomass-modified bentonite clay for removal of aqueous metal ions. Journal of Environmental Chemical Engineering, 4 (1), 1376-1382.
  • Olu-Owolabi, B. I., Alabi, A. H., Diagboya, P. N., Unuabonah, E. I. & Düring, R.-A. (2017). Adsorptive removal of 2,4,6-trichlorophenol in aqueous solution using calcined kaolinite-biomass composites. Journal of Environmental Management, 192, 94-99.
  • Ismadji, S., Tong, D. S., Soetaredjo, F. E., Ayucitra, A., Yu, W. H. & Zhou, C. H. (2016). Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, 119, 146-154.
  • Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., Zhong, Z. K., Yu, W. H. & Chu, M. Q. (2017). Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production, 156, 648-659.
  • Laysandra, L., Santosa, F. H., Austen, V., Soetaredjo, F. E., Foe, K., Putro, J. N., Ju, Y.-H. & Ismadji, S. (2018). Rarasaponin-bentonite-activated biochar from durian shells composite for removal of crystal violet and Cr(VI) from aqueous solution. Environmental Science and Pollution Research, 25 (30), 30680-30695.
  • Chukwuemeka-Okorie, H. O., Ekemezie, P. N., Akpomie, K. G. & Olikagu, C. S. (2018). Calcined corncob-kaolinite combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption. Frontiers in Chemistry, 6, 273.
  • Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., Soja, G., Rompel, A., Matík, M. & Briančin, J. (2018). Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Management, 79, 385-394.
  • Wang, Z., Xu, G., Lin, R., Wang, H. & Ren, J. (2019). Energy performance contracting, risk factors, and policy implications: Identification and analysis of risks based on the best-worst network method. Energy, 170, 1-13.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9), 1361-1403.
  • Freundlich, H. M. F. (1906). Über die adsorption in lösungen. Zeitschrift fur Physikalische Chemie, 57, 385-470.
  • Dubinin, M. M. & Radushkevich L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331-333.
  • Zhang, D., Luo, Q., Gao, B., Chiang, S.-Y. D., Woodward, D. & Huang, Q. (2016). Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere, 144, 2336-2342.
  • Özcan, A., Özcan, A. S., Tunali, S., Akar, T. & Kiran, I. (2005). Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. Journal of Hazardous Materials, 124 (1), 200-208.
  • Liu, C., Cai, W. & Liu, L. (2018). Hydrothermal carbonization synthesis of Al-pillared montmorillonite@carbon composites as high performing toluene adsorbents. Applied Clay Science, 162, 113-120.
  • Mobarak, M., Selim, A. Q., Mohamed, E. A. & Seliem, M. K. (2018). A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. Journal of Molecular Liquids, 259, 384-397.
  • Tunali Akar, S., Sayin, F., Ozdemir, I. & Tunc, D. (2020). A natural montmorillonite-based magsorbent as an effective scavenger for cadmium contamination. Water, Air, & Soil Pollution, 231 (8), 409.
  • Söğüt, E. G. & Kılıç, N. Ç. (2020). Equilibrium and kinetic studies of a cationic dye adsorption onto raw clay. Journal of the Turkish Chemical Society Section A: Chemistry, 7 (3), 713-726.
  • Sayin, F., Tunali Akar, S. & Akar, T. (2021). From green biowaste to water treatment applications: Utilization of modified new biochar for the efficient removal of ciprofloxacin. Sustainable Chemistry and Pharmacy, 24, 100522.
  • Chatterjee, A., Basu, J. K. & Jana, A. K. (2019). Alumina-silica nano-sorbent from plant fly ash and scrap aluminium foil in removing nickel through adsorption. Powder Technology, 354, 792-803.
  • Hadi, M., Samarghandi, M. R. & McKay, G. (2010). Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chemical Engineering Journal, 160 (2), 408-416.
  • Mahramanlioglu, M., Kizilcikli, I. & Bicer, I. O. (2002). Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. Journal of Fluorine Chemistry, 115 (1), 41-47.
  • Tahir, S. S. & Rauf, N. (2006). Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere, 63 (11), 1842-1848.
  • Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156 (1), 2-10.
  • de Morais Pinos, J. Y., de Melo, L. B., de Souza, S. D., Marçal, L. & de Faria, E. H. (2022). Bentonite functionalized with amine groups by the sol-gel route as efficient adsorbent of rhodamine-B and nickel (II). Applied Clay Science, 223, 106494.
  • Ibigbami, T. B., Adeola, A. O., Olawade, D. B., Ore, O. T., Isaac, B. O. & Sunkanmi, A. A. (2022). Pristine and activated bentonite for toxic metal removal from wastewater. Water Practice and Technology, 17 (3), 784-797.
  • Abdelfattah, I., Abdelwahab, W. & El-Shamy, A. M. (2022). Montmorillonitic clay as a cost effective, eco-friendly and sustainable adsorbent for physicochemical treatment of contaminated water. Egyptian Journal of Chemistry, 65 (2), 687-694.
  • Singh, J. & Mishra, V. (2022). Development of sustainable and ecofriendly metal ion scavenger for adsorbing Cu2+, Ni2+ and Zn2+ ions from the aqueous phase. Separation Science and Technology, 57 (3), 354-371.
  • Díaz, A., Marrero, J., Cabrera, G., Coto, O. & Gómez, J. M. (2022). Optimization of nickel and cobalt biosorption by native Serratia marcescens strains isolated from serpentine deposits using response surface methodology. Environmental Monitoring and Assessment, 194 (3), 167.
  • Gratia, Z. K., Nandhakumar, R., Mahanty, B., Murugan, S., Muthusamy, P. & Vinayak, K. S. (2021). Biosorption of nickel from metal finishing effluent using lichen Parmotrema tinctorum biomass. Water, Air, & Soil Pollution, 232 (11), 478.
  • İnan, S. & Özkan, B. (2021). Sorption of cobalt and nickel on Narcissus tazetta L. leaf powder. Journal of the Turkish Chemical Society Section A: Chemistry, 8 (3), 705-714.
  • Çelebi, H., Bahadır, T., Şimşek, İ., Tulun, Ş. & Bilgin, M. (2022). Çöp döngüsünün etkili bileşeni: Poşet çay atıkları ve Ni+2 adsorpsiyonu. Avrupa Bilim ve Teknoloji Dergisi, (34), 62-69

Kil-Biyokütle Kompoziti: Ni (II)’nin Etkin Giderimi için Çevre Dostu Hibrit Adsorban

Yıl 2022, Cilt: 9 Sayı: 1, 364 - 375, 30.06.2022
https://doi.org/10.35193/bseufbd.1061422

Öz

Bu çalışmada, doğal kil minerali: Capsicumannuum (C. annuum) L. çekirdekleri bazlı kompozit bir adsorban (CCAC) hazırlanmıştır. CCAC'nin adsorpsiyon performansı, Ni (II) uzaklaştırma ve adsorpsiyon kapasitesi açısından değerlendirildi. Deneysel koşullar, metal çözeltisinin başlangıç pH'ı, CCAC miktarı, başlangıç metal iyonu konsantrasyonu ve temas süresi parametreleri araştırılarak optimize edilmiştir. CCAC ile Ni (II) adsorpsiyonu için optimum pH: 7.0, CCAC miktarı: 0.06 g ve temas süresi: 20 dakika olarak bulunmuştur. Adsorpsiyon izotermleri sık kullanılan modeller ile belirlenmiştir. Langmuir izoterm modeli ile maksimum tek tabakalı adsorpsiyon kapasitesi 126mg g-1 olarak belirlenmiştir. CCAC’nin fonksiyonel grupları ve yüzey morfolojisi sırasıyla FT-IR ve SEM analizleri kullanılarak araştırılmıştır. Bulgular, kimyasal ve kendiliğinden gerçekleşen bir Ni(II) adsorpsiyon sürecini işaret etmiştir. Son olarak, bu çalışmadan elde edilen tüm sonuçlar, basit olarak üretilebilen, maliyeti uygun ve sağlam bir kompozit adsorban olan CCAC'nin nikel iyonları ile kirlenmiş suların arıtılması için uygun bir aday olduğunu göstermektedir.

Proje Numarası

FHD-2021-1694

Kaynakça

  • Akar, S. T. & Uysal, R. (2010). Untreated clay with high adsorption capacity for effective removal of C.I. Acid Red 88 from aqueous solutions: Batch and dynamic flow mode studies. Chemical Engineering Journal, 162 (2), 591-598.
  • Raval, N. P., Shah, P. U. & Shah, N. K. (2016). Adsorptive removal of nickel(II) ions from aqueous environment: A review. Journal of Environmental Management, 179, 1-20.
  • Akar, T., Celik, S., Gorgulu Ari, A. &Tunali Akar, S. (2013). Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic and mechanism analysis of the biosorption. Journal of Chemical Technology & Biotechnology, 88 (4), 680-689.
  • Kara, İ., Yilmazer, D. &Tunali Akar, S. (2017). Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions. Applied Clay Science, 139, 54-63.
  • WHO (2017) Guidelines for drinking-water quality, 4th edition, World Health Organization.
  • Irannajad, M. & Kamran Haghighi, H. (2021). Removal of heavy metals from polluted solutions by zeolitic adsorbents: a review. Environmental Processes, 8 (1), 7-35.
  • Diagboya, P. N., Olu-Owolabi, B. I., Mtunzi, F. M. & Adebowale, K. O. (2020). Clay-carbonaceous material composites: Towards a new class of functional adsorbents for water treatment. Surfaces and Interfaces, 19, 100506.
  • Satir, I. T. & Erol, K. (2021). Calcined eggshell for removal of Victoria Blue R dye from wastewater medium by adsorption. Journal of the Turkish Chemical Society Section A: Chemistry, 8 (1), 47 - 56.
  • Şenol, Z. M. & Şimşek, S. (2020). Removal of Pb2+ ions from aqueous medium by using chitosan-diatomite composite: equilibrium, kinetic and thermodynamic studies. Journal of the Turkish Chemical Society Section A: Chemistry, 7 (1), 307-318.
  • Akar, T., Güray, T., Yilmazer Tunc, D. & Tunali Akar, S. (2019). Biosorptive detoxification of zearalenone biotoxin by surface-modified renewable biomass: process dynamics and application. Journal of the Science of Food and Agriculture, 99 (4), 1850-1861.
  • Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.-i.-H., Bhatti, H. N. & Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395-407.
  • Awad, A. M., Shaikh, S. M. R., Jalab, R., Gulied, M. H., Nasser, M. S., Benamor, A. & Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: A comprehensive review. Separation and Purification Technology, 228, 115719.
  • Gürel, L. (2017). Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds. Water Science and Technology, 75 (8), 1889-1898.
  • Parra-Marfíl, A., Ocampo-Pérez, R., Collins-Martínez, V. H., Flores-Vélez, L. M., Gonzalez-Garcia, R., Medellín-Castillo, N. A. & Labrada-Delgado, G. J. (2020). Synthesis and characterization of hydrochar from industrial Capsicum annuum seeds and its application for the adsorptive removal of methylene blue from water. Environmental Research, 184, 109334.
  • Özcan, A. S., Özcan, A., Tunali, S., Akar, T., Kiran, I. & Gedikbey, T. (2007). Adsorption potential of lead(II) ions from aqueous solutions onto Capsicum annuum seeds. Separation Science and Technology, 42 (1), 137-151.
  • Tunali Akar, S., Gorgulu, A., Akar, T. & Celik, S. (2011). Decolorization of Reactive Blue 49 contaminated solutions by Capsicum annuum seeds: Batch and continuous mode biosorption applications. Chemical Engineering Journal, 168 (1), 125-133.
  • Hammo, M. M., Akar, T., Sayin, F., Celik, S. & Tunali Akar, S. (2021). Efficacy of green waste-derived biochar for lead removal from aqueous systems: Characterization, equilibrium, kinetic and application. Journal of Environmental Management, 289, 112490.
  • Unuabonah, E. I., Adedapo, A. O., Nnamdi, C. O., Adewuyi, A., Omorogie, M. O., Adebowale, K. O., Olu-Owolabi, B. I., Ofomaja, A. E. & Taubert, A. (2015). Successful scale-up performance of a novel papaya-clay combo adsorbent: up-flow adsorption of a basic dye. Desalination and Water Treatment, 56 (2), 536-551.
  • Ayisha Sidiqua, M. & Priya, V. S. (2021). Removal of yellow dye using composite binded adsorbent developed using natural clay and activated carbon from sapindus seed. Biocatalysis and Agricultural Biotechnology, 33, 101965.
  • Olu-Owolabi, B. I., Alabi, A. H., Unuabonah, E. I., Diagboya, P. N., Böhm, L. & Düring, R.-A. (2016). Calcined biomass-modified bentonite clay for removal of aqueous metal ions. Journal of Environmental Chemical Engineering, 4 (1), 1376-1382.
  • Olu-Owolabi, B. I., Alabi, A. H., Diagboya, P. N., Unuabonah, E. I. & Düring, R.-A. (2017). Adsorptive removal of 2,4,6-trichlorophenol in aqueous solution using calcined kaolinite-biomass composites. Journal of Environmental Management, 192, 94-99.
  • Ismadji, S., Tong, D. S., Soetaredjo, F. E., Ayucitra, A., Yu, W. H. & Zhou, C. H. (2016). Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied Clay Science, 119, 146-154.
  • Chen, L., Chen, X. L., Zhou, C. H., Yang, H. M., Ji, S. F., Tong, D. S., Zhong, Z. K., Yu, W. H. & Chu, M. Q. (2017). Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production, 156, 648-659.
  • Laysandra, L., Santosa, F. H., Austen, V., Soetaredjo, F. E., Foe, K., Putro, J. N., Ju, Y.-H. & Ismadji, S. (2018). Rarasaponin-bentonite-activated biochar from durian shells composite for removal of crystal violet and Cr(VI) from aqueous solution. Environmental Science and Pollution Research, 25 (30), 30680-30695.
  • Chukwuemeka-Okorie, H. O., Ekemezie, P. N., Akpomie, K. G. & Olikagu, C. S. (2018). Calcined corncob-kaolinite combo as new sorbent for sequestration of toxic metal ions from polluted aqua media and desorption. Frontiers in Chemistry, 6, 273.
  • Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., Soja, G., Rompel, A., Matík, M. & Briančin, J. (2018). Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Management, 79, 385-394.
  • Wang, Z., Xu, G., Lin, R., Wang, H. & Ren, J. (2019). Energy performance contracting, risk factors, and policy implications: Identification and analysis of risks based on the best-worst network method. Energy, 170, 1-13.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9), 1361-1403.
  • Freundlich, H. M. F. (1906). Über die adsorption in lösungen. Zeitschrift fur Physikalische Chemie, 57, 385-470.
  • Dubinin, M. M. & Radushkevich L. V. (1947). The equation of the characteristic curve of activated charcoal. Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, 331-333.
  • Zhang, D., Luo, Q., Gao, B., Chiang, S.-Y. D., Woodward, D. & Huang, Q. (2016). Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon. Chemosphere, 144, 2336-2342.
  • Özcan, A., Özcan, A. S., Tunali, S., Akar, T. & Kiran, I. (2005). Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. Journal of Hazardous Materials, 124 (1), 200-208.
  • Liu, C., Cai, W. & Liu, L. (2018). Hydrothermal carbonization synthesis of Al-pillared montmorillonite@carbon composites as high performing toluene adsorbents. Applied Clay Science, 162, 113-120.
  • Mobarak, M., Selim, A. Q., Mohamed, E. A. & Seliem, M. K. (2018). A superior adsorbent of CTAB/H2O2 solution−modified organic carbon rich-clay for hexavalent chromium and methyl orange uptake from solutions. Journal of Molecular Liquids, 259, 384-397.
  • Tunali Akar, S., Sayin, F., Ozdemir, I. & Tunc, D. (2020). A natural montmorillonite-based magsorbent as an effective scavenger for cadmium contamination. Water, Air, & Soil Pollution, 231 (8), 409.
  • Söğüt, E. G. & Kılıç, N. Ç. (2020). Equilibrium and kinetic studies of a cationic dye adsorption onto raw clay. Journal of the Turkish Chemical Society Section A: Chemistry, 7 (3), 713-726.
  • Sayin, F., Tunali Akar, S. & Akar, T. (2021). From green biowaste to water treatment applications: Utilization of modified new biochar for the efficient removal of ciprofloxacin. Sustainable Chemistry and Pharmacy, 24, 100522.
  • Chatterjee, A., Basu, J. K. & Jana, A. K. (2019). Alumina-silica nano-sorbent from plant fly ash and scrap aluminium foil in removing nickel through adsorption. Powder Technology, 354, 792-803.
  • Hadi, M., Samarghandi, M. R. & McKay, G. (2010). Equilibrium two-parameter isotherms of acid dyes sorption by activated carbons: Study of residual errors. Chemical Engineering Journal, 160 (2), 408-416.
  • Mahramanlioglu, M., Kizilcikli, I. & Bicer, I. O. (2002). Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. Journal of Fluorine Chemistry, 115 (1), 41-47.
  • Tahir, S. S. & Rauf, N. (2006). Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere, 63 (11), 1842-1848.
  • Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156 (1), 2-10.
  • de Morais Pinos, J. Y., de Melo, L. B., de Souza, S. D., Marçal, L. & de Faria, E. H. (2022). Bentonite functionalized with amine groups by the sol-gel route as efficient adsorbent of rhodamine-B and nickel (II). Applied Clay Science, 223, 106494.
  • Ibigbami, T. B., Adeola, A. O., Olawade, D. B., Ore, O. T., Isaac, B. O. & Sunkanmi, A. A. (2022). Pristine and activated bentonite for toxic metal removal from wastewater. Water Practice and Technology, 17 (3), 784-797.
  • Abdelfattah, I., Abdelwahab, W. & El-Shamy, A. M. (2022). Montmorillonitic clay as a cost effective, eco-friendly and sustainable adsorbent for physicochemical treatment of contaminated water. Egyptian Journal of Chemistry, 65 (2), 687-694.
  • Singh, J. & Mishra, V. (2022). Development of sustainable and ecofriendly metal ion scavenger for adsorbing Cu2+, Ni2+ and Zn2+ ions from the aqueous phase. Separation Science and Technology, 57 (3), 354-371.
  • Díaz, A., Marrero, J., Cabrera, G., Coto, O. & Gómez, J. M. (2022). Optimization of nickel and cobalt biosorption by native Serratia marcescens strains isolated from serpentine deposits using response surface methodology. Environmental Monitoring and Assessment, 194 (3), 167.
  • Gratia, Z. K., Nandhakumar, R., Mahanty, B., Murugan, S., Muthusamy, P. & Vinayak, K. S. (2021). Biosorption of nickel from metal finishing effluent using lichen Parmotrema tinctorum biomass. Water, Air, & Soil Pollution, 232 (11), 478.
  • İnan, S. & Özkan, B. (2021). Sorption of cobalt and nickel on Narcissus tazetta L. leaf powder. Journal of the Turkish Chemical Society Section A: Chemistry, 8 (3), 705-714.
  • Çelebi, H., Bahadır, T., Şimşek, İ., Tulun, Ş. & Bilgin, M. (2022). Çöp döngüsünün etkili bileşeni: Poşet çay atıkları ve Ni+2 adsorpsiyonu. Avrupa Bilim ve Teknoloji Dergisi, (34), 62-69
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Sayın 0000-0001-7649-9694

Proje Numarası FHD-2021-1694
Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 22 Ocak 2022
Kabul Tarihi 26 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Sayın, F. (2022). Kil-Biyokütle Kompoziti: Ni (II)’nin Etkin Giderimi için Çevre Dostu Hibrit Adsorban. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 364-375. https://doi.org/10.35193/bseufbd.1061422