Araştırma Makalesi
BibTex RIS Kaynak Göster

Mercimekte Çimlenme ve Fide Gelişimi Üzerine Optimum PGPB- Priming Protokolünün Belirlenmesi

Yıl 2022, Cilt: 9 Sayı: 1, 62 - 70, 30.06.2022
https://doi.org/10.35193/bseufbd.991736

Öz

Bitki gelişimini teşvik eden bakteriler (PGPB), su ve besin alımını artıran, biyolojik azot fiksasyonu ve fosfat mineralizasyonu ile bitkilere azot ve fosfor kazandıran, bitki büyümesini teşvik eden bakteri ırkları olarak tanımlanabilir. Ek olarak, PGPB çeşitli fitohormonlar, vitaminler ve büyüme düzenleyici salgılar gibi mekanizmalar sayesinde stres faktörlerine karşı toleransın artırılmasını, ACC deaminaz aktivitesi ile etilen sentezinin kısıtlanmasını, antibiyotik ve fungisidal bileşiklerin sentezi ile patojen hasarının azaltılmasını sağlar. Bu çalışma Siirt Üniversitesi Tarla Bitkileri Bölümü Laboratuvarında kontrollü koşullarda yürütülmüştür. Fırat-87 mercimek çeşidine iki orijinal PGPB ırkı (KF3B ve KF63C) ve beş farklı priming süresi (kontrol, 1, 2, 4 ve 6 saat) uygulanmıştır. Araştırma tesadüf parsellerinde faktöriyel deneme desenine göre üç tekerrürlü olarak planlanmıştır. Bu çalışma ile mercimeklerde bakteri biyo-çeşitliliğin ve priming süresinin çimlenme özellikleri ve fide gelişimi üzerine etkilerinin araştırılması amaçlanmıştır. Sonuçlara göre, çimlenme yüzdesi, fide yaş ağırlığı, fide kuru ağırlığı, fide uzunluğu ve fide canlılık indeksinde biyo-çeşitlilik kaynaklı farklılıklar gözlenirken, priming süresi çimlenme yüzdesi dışında incelenen tüm parametreleri önemli ölçüde etkilemiştir. Bununla birlikte, bakteri ırkları ve priming sürelerinin interaksiyonu fide kuru ağırlığı dışında özellikler üzerinde önemli bir farklılığa yol açmamıştır. Sonuç olarak, priming tekniğinin başarılı olmasında mikrobiyal çeşitlilik ve priming süresi kritik bir role sahiptir. Mercimek için en uygun priming süresi dört saat olarak belirlenmiştir. Ayrıca KF63C ırkı denemede özellikle fide büyümesi üzerinde kayda değer bir uyarıcı etkide bulunmuştur.

Kaynakça

  • FAO. (2019). Lentil production. Available from: http://www.faostat.fao.org/beta/en/#data/OA > (Accessed at: 10.08.2021).
  • Reddy, P. P. (2012). Bio-priming of seeds. Recent advances in crop protection 1st ed. Springer, New Delhi.
  • Prajapati, R., Kataria, S., & Jain, M. (2020). Seed priming for alleviation of heavy metal toxicity in plants: An overview. Plant Science Today, 7(3), 308-313.
  • Kumar, A., Droby, S., White, J. F., Singh, V. K., Singh, S. K., Zhimo, V. Y., & Biasi, A. (2020). Endophytes and seed priming: agricultural applications and future prospects. Microbial Endophytes: Functional Biology and Applications. Elsevier Inc., Switzerland.
  • Ceritoglu, M., & Erman, M. (2021). Effect of silicon priming treatments on germination and some agronomic traits in lentil. 3. International African Conference on Current Studies, 27-28 February, Abomey-Calavi, Benin, 436-444.
  • Sita, K., & Kumar, V. (2020). Role of gamma aminobutyric acid (GABA) against abiotic stress tolerance in legumes: A review. Plant Physiology Reports, 25(4), 654-663.
  • Ceritoglu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. International Journal of Agriculture and Wildlife Science, 6(3), 582-591.
  • Açıkbaş, S., & Özyazıcı, M. A. (2021). Silisyum tohum ön uygulamasının tuz stresine maruzbırakılan yem bezelyesi [Pisum sativum ssp. Arvense L. (Poir.)]’nin çimlenme gelişimine etkisi. Middle East International Conference on contemporary Scientific Studies-V, 27-28 March, Ankara, 148-158.
  • Hasanuzzaman, M., & Fotopoulos, V. (2019). Priming and Pretreatment of Seeds and Seedlings 1st ed. https://doi.org/10.1007/978-981-13-8625-1
  • Ahammed, G. J., Gantait, S., Mitra, M., Yang, Y., & Li, X. (2020). Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiology and Biochemistry, 151, 124-131.
  • Raghuwanshi, R., & Prasad, J. K. (2018). Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. Root Biology 1st ed. Springer, Cham.
  • Penrose, D. M., & Glick, B. R. (2001). Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Canadian Journal of Microbiology, 47, 368-372.
  • Wright, B., Rowse, H. R., & Whipps, J. M. (2003). Application of beneficial microorganisms to seeds during drum priming. Biocontrol Science and Technology, 13(6), 599-614.
  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., & Von-Wettstein, D. (2005). The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386-13391.
  • Paparella, S., Araujo, S. S., Rossi, G., Wijayasinghe, M., Corbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34, 1281-1293.
  • Çakmakçı, R., Erman, M., Kotan, R., Çığ, F., Karagöz, K., & Sezen, M. (2010). Growth promotion and yield enhacement of sugar beet and wheat by application of plant growth-promoting rhizobacteria. In: Proceedings of the International Conference on Organic Agriculture in Scope of Environmental Problems, 3-7 February, Famagusta, 204-208.
  • Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, K. & Sezen, M. (2010). Van Gölü havzasında nizole edilen azot fikseri ve fosfat çözücü bakterilerin buğday ve şeker pancarında büyüme ve verim özelikleri üzerine etkiler. Türkiye IV. Organik Tarım Sempozyumu, 28 Haziran-1 Temmuz, Erzurum, 326-330.
  • Glick, B. R. (2020). Beneficial Plant-Bacterial Interactions 2nd ed. Springer Nature Switzerland, Cham. https://doi.org/10.1007/978-3-319-13921-0
  • Forti, C., Ottobrino, V., Bassolino, L., Toppino, L., Rotino, G. L., Pagano, A., Macovei, A., & Balestrazzi, A. 2020. Molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds. Horticulture Research, 7, 87.
  • Nawaz, H., Hussain, N., Jamil, M., Yasmeen, A., Bukhari, S. A. H., Aurangzaib, M., & Usman, M. (2020). Seed biopriming mitigates terminal drought stress at reproductive stage of maize by enhancing gas exchange attributes and nutrient uptake. Turkish Journal of Agriculture and Forestry, 44, 250-261.
  • Singh, S., Singh, U. B., Triverdi, M., Sahu, P. K., Paul, S., Paul, D., & Saxena, A. K. (2020). Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. International Journal of Environmental Research and Public Health, 17(1), 253.
  • Paul, S., & Rakshit, A. (2021). Effect of seed bio-priming with Trichoderma viride strain BHU-2953 for enhancing soil phosphorus solubilization and uptake in soybean (Glycine max). Journal of Soil Science and Plant Nutrition, 21, 1041-1052.
  • Peixoto da Silva, M. B., Silva, V. N., & Vieira, L. C. (2021). Biopriming of sweet pepper and tomato seeds with Ascophyllum nodosum. RevistaFacultad Nacional de Agronomia, 74(1), 9423-9430.
  • Perez-Garcia, F., Pita, J. M., Gonzalez-Benito, M. E., & Iriondo, J. M. (1995). Effects of light, temperature and seed priming on germination of celery seeds (Apium graveolens L.). International Seed Testing Association, 23(2), 377-383.
  • Elkoca, E. (2007). Priming: Ekim öncesi tohum uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 38(1), 113-120.
  • Yari, L., Aghaalikani, M., & Khazaei, F. (2010). Effect of seed priming duration and temperature on seed germination behavior of bread wheat (Triticum aestivum L.). ARPN Journal of Agricultural and Biological Science, 5(1), 1-6.
  • Popovic, V., Ljubicic, N., Kostic, M., Radulovic, M., Blagojevic, D., Ugrenovic, V., Popovic, D., & Ivosevic, B. (2020). Genotype × environment interaction for wheat yield traits suitable for selection in different seed priming conditions. Plants, 9(12), 1804.
  • Schmidt, E. L., & Belser, L. W. (1982). Nitrifying bacteria, in methods of soil analysis part 2. Chemical and Microbiological Processes 1st ed. ASA, Wisconsin.
  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya, 17, 362-370.
  • Li, Z., Chang, S., Lin, L., Li, Y., & An, Q. (2011). A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Letters in Applied Microbiology, 53, 178-185.
  • Vaikuntapu, P. R., Dutta, S., Samudrala, R. B., & Rao, V. R. V. N. (2014). Preferential promotion of Lycopersicon esculentum (tomato) growth by plant growth promoting bacteria associated with tomato. Indian Journal of Microbiology, 54, 403-412.
  • Miller, C. S., Handley, K. M., Wrighton, K. C., Frischkorn, K. R., Thomas, B. C., & Banfield, J. F. (2013). Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PloS one, 8(2), e56018.
  • Sonkurt, M., & Çığ, F. (2019). The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17(2), 3877-3896.
  • Ceritoglu, M., Ceritoglu, F., Erman, M., & Bektas, H. (2020). Root system variation of pulse crops at early vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2182-2197.
  • Al-ansari, F., & Ksiksi, T. (2021). A quantitative assessment of germination parameters: The case of Crotalaria Persica and Tephrosia Apollinea. The Open Environmental Research Journal, 9, 13-21.
  • Ellis, R. H., & Roberts, E. H. (1981). The quantification of aging and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
  • AOSA. (1983). Seed Vigor Testing Handbook. Association of Official Seed Analysts, Ithaca, New York, USA.
  • Noorhosseini, S. A., Jokar, N. K., & Damalas, C. A. (2018). Improving seed germination and early growth of garden cress (Lepidium sativum) and Basil (Ocimum basilicum) with hydro-priming. Journal of Plant Growth Regulation, 37, 323-334.
  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13, 630-633.
  • Forti, C., Shankar, A., Singh, A., Valestrazzi, A., Prasad, V., & Macovei, A. (2020). Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes, 11(3), 242.
  • Nawaz, H., Hussain, N., Ahmed, N., Rehman, H., & Alam, J. (2021). Efficiency of seed bio-priming technique for healthy mung bean productivity under terminal drought stress. Journal of Integrative Agriculture, 20(1), 87-99.
  • Afifi, M. H., Manal, F. M., & Gomaa, A. M. (2003). Efficiency of applying biofertilizers to maize crop under different levels of mineral fertilizers. Annals of Agricultural Science Moshtohor Journal, 41(4), 1411-1420.
  • Fathollahy, S., & Mozaffari, A. (2020). Investigation the effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on antioxidant enzymes activity of seedling and germination indices of two wheat cultivar under salt stress conditions. Iranian Journal of Seed Science and Technology, 9(1), 27-44.
  • Panuccio, M. R., Chaabani, S., Roula, R., & Muscolo, A. (2018). Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency. Plant Physiology and Biochemistry, 132, 465-474.
  • Kumari, P., Meena, M., Gupta, P., Dubey, M. K., Nath, G., & Upadhyay, R. S. (2018). Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatalysis and Agricultural Biotechnology, 16, 163-171.
  • Arif, M., Jan, M. T., Khan, N. U., Khan, A., Khan, M. J., & Munir, I. (2010). Effect of seed priming on growth parameters of soybean. Pakistan Journal of Botany, 42(4), 2803-2812.
  • Monalisa, S. P., Beura, J. K., Tarai, R. K., & Naik, M. (2017). Seed quality enhancement through biopriming in common bean (Phaseolus vulgaris. L). Journal of Applied and Natural Science, 9(3), 1740-1743.
  • Meshram, S., & Sarma, B. (2017). Comparative analysis of effects of seed biopriming on growth and development in different Pulses: Pea, lentil, red gram and chickpea. International Journal of Current Microbiology and Applied Sciences, 6(10), 2944-2950.
  • Darabi, F., Hatami, A., Zarea, M. A., & Naseri, R. (2016). Investigation of important morphological traits and grain yield of lentil under shading and bio-priming. Iranian Journal of Pulses Research, 7(1), 145-160.
  • Pankaj, K., Deepa, K., Birendra, P., Srinivas, P., & Rejendra, P. (2016). Effect of seed bio-priming on seed quality parameters of lentil under mid Himalayas. Journal of Hill Agriculture, 7(2), 195-200.
  • Yadav, S. K., Dave, A., Sarkar, A., Singh, H. B., & Sarma, B. K. (2013). Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. International Journal of Agriculture, Environment & Biotechnology, 6(2), 255-259.
  • Ahmad, M. A., Zahir, Z. A., Arghar, H. N., & Arshad, M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of Microbiology, 62, 1321-1330.
  • Siddiqui, Z. A., Baghel, G., & Akhtar, M. S. (2007). Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World Journal of Microbiology and Biotechnology, 23, 435-441.
  • Kumar, R., & Chandra, K. (2008). Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae strain competition and symbiotic performance in lentil. World Journal of Agricultural Sciences, 4(3), 297-301.
  • Soughir, M., Aymen, E. M., & Cherif, H. (2012). Effect of NaCl priming duration and concentration on germination behavior of fenugreek. Albanian Journal of Agricultural Sciences, 4(11), 193-198.
  • Ghasemi-Golezani, K., Jabbarpour-Bonyadi, Z., Shafagh-Kolvanagh, J., & Nikpour-Rasdabad, N. (2013). Effects of water Stress and hydro-priming duration on field performance of lentil. International Journal of Farming and Allied Sciences, 2(21), 922-925.
  • Musa, M., Singh, A., & Lawal, A. A. (2014). Influence of priming duration on the performance of amaranths (Amaranthus cruentus L.) in Sokoto semiarid zone of Nigeria. Hindawi Publishing Corporation International Journal of Agronomy, Article ID: 475953, 1-4.
  • Kokila, M., & Bhaskaran, M. (2016). Standardization of Azospirillum concentration and duration of biopriming for rice and vigor improvement. International Journal of Agricultural Sciences, 12(2), 283-287.

Determination of Optimum PGPB-Priming Protocol on Germination and Seedling Growth in Lentil

Yıl 2022, Cilt: 9 Sayı: 1, 62 - 70, 30.06.2022
https://doi.org/10.35193/bseufbd.991736

Öz

Plant growth promoting bacterias (PGPBs) can be described as bacterial strains increasing water and nutrient uptake, gaining nitrogen and phosphorus to plants by biological nitrogen fixation and phosphate mineralization, promoting plant growth and enabling to improve the tolerance to stress factors due to mechanisms as secretion of various phytohormones, vitamins and growth regulators, restriction of ethylene synthesis with ACC deaminase activity, decreasing of pathogen damage by the secret of antibiotic and fungicidal compounds. This study was carried out in a laboratory of Field crops in Siirt University under controlled conditions. The 2 original bacterial strains (KF3B and KF63C) and 5 different priming times (control, 1, 2, 4 and 6 h) were applied on the Fırat-87 lentil variety. The study was laid out in a completely randomized design with 3 replications. It was aimed with this study that investigating effects based on bacterial biodiversity and priming time on germination characteristics and seedling growth in lentils. According to results, biodiversity-induced differences were observed in germination percentage, seedling fresh weight, seedling dry weight, seedling length and seedling vigor index while priming time significantly affected all investigated parameters except for germination percentage. However, the interaction of strains and priming times did not lead to any significant differences in traits. In conclusion, microbial diversity and priming time have a critical role on successful of the priming technique. Optimum priming time for lentils was determined as 4 hours. Besides, the strain of KF63C had a noteworthy stimulative effect on especially seedling growth in the experiment.

Kaynakça

  • FAO. (2019). Lentil production. Available from: http://www.faostat.fao.org/beta/en/#data/OA > (Accessed at: 10.08.2021).
  • Reddy, P. P. (2012). Bio-priming of seeds. Recent advances in crop protection 1st ed. Springer, New Delhi.
  • Prajapati, R., Kataria, S., & Jain, M. (2020). Seed priming for alleviation of heavy metal toxicity in plants: An overview. Plant Science Today, 7(3), 308-313.
  • Kumar, A., Droby, S., White, J. F., Singh, V. K., Singh, S. K., Zhimo, V. Y., & Biasi, A. (2020). Endophytes and seed priming: agricultural applications and future prospects. Microbial Endophytes: Functional Biology and Applications. Elsevier Inc., Switzerland.
  • Ceritoglu, M., & Erman, M. (2021). Effect of silicon priming treatments on germination and some agronomic traits in lentil. 3. International African Conference on Current Studies, 27-28 February, Abomey-Calavi, Benin, 436-444.
  • Sita, K., & Kumar, V. (2020). Role of gamma aminobutyric acid (GABA) against abiotic stress tolerance in legumes: A review. Plant Physiology Reports, 25(4), 654-663.
  • Ceritoglu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. International Journal of Agriculture and Wildlife Science, 6(3), 582-591.
  • Açıkbaş, S., & Özyazıcı, M. A. (2021). Silisyum tohum ön uygulamasının tuz stresine maruzbırakılan yem bezelyesi [Pisum sativum ssp. Arvense L. (Poir.)]’nin çimlenme gelişimine etkisi. Middle East International Conference on contemporary Scientific Studies-V, 27-28 March, Ankara, 148-158.
  • Hasanuzzaman, M., & Fotopoulos, V. (2019). Priming and Pretreatment of Seeds and Seedlings 1st ed. https://doi.org/10.1007/978-981-13-8625-1
  • Ahammed, G. J., Gantait, S., Mitra, M., Yang, Y., & Li, X. (2020). Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiology and Biochemistry, 151, 124-131.
  • Raghuwanshi, R., & Prasad, J. K. (2018). Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. Root Biology 1st ed. Springer, Cham.
  • Penrose, D. M., & Glick, B. R. (2001). Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Canadian Journal of Microbiology, 47, 368-372.
  • Wright, B., Rowse, H. R., & Whipps, J. M. (2003). Application of beneficial microorganisms to seeds during drum priming. Biocontrol Science and Technology, 13(6), 599-614.
  • Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., & Von-Wettstein, D. (2005). The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386-13391.
  • Paparella, S., Araujo, S. S., Rossi, G., Wijayasinghe, M., Corbonera, D., & Balestrazzi, A. (2015). Seed priming: State of the art and new perspectives. Plant Cell Reports, 34, 1281-1293.
  • Çakmakçı, R., Erman, M., Kotan, R., Çığ, F., Karagöz, K., & Sezen, M. (2010). Growth promotion and yield enhacement of sugar beet and wheat by application of plant growth-promoting rhizobacteria. In: Proceedings of the International Conference on Organic Agriculture in Scope of Environmental Problems, 3-7 February, Famagusta, 204-208.
  • Erman, M., Kotan, R., Çakmakçı, R., Çığ, F., Karagöz, K. & Sezen, M. (2010). Van Gölü havzasında nizole edilen azot fikseri ve fosfat çözücü bakterilerin buğday ve şeker pancarında büyüme ve verim özelikleri üzerine etkiler. Türkiye IV. Organik Tarım Sempozyumu, 28 Haziran-1 Temmuz, Erzurum, 326-330.
  • Glick, B. R. (2020). Beneficial Plant-Bacterial Interactions 2nd ed. Springer Nature Switzerland, Cham. https://doi.org/10.1007/978-3-319-13921-0
  • Forti, C., Ottobrino, V., Bassolino, L., Toppino, L., Rotino, G. L., Pagano, A., Macovei, A., & Balestrazzi, A. 2020. Molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds. Horticulture Research, 7, 87.
  • Nawaz, H., Hussain, N., Jamil, M., Yasmeen, A., Bukhari, S. A. H., Aurangzaib, M., & Usman, M. (2020). Seed biopriming mitigates terminal drought stress at reproductive stage of maize by enhancing gas exchange attributes and nutrient uptake. Turkish Journal of Agriculture and Forestry, 44, 250-261.
  • Singh, S., Singh, U. B., Triverdi, M., Sahu, P. K., Paul, S., Paul, D., & Saxena, A. K. (2020). Seed biopriming with salt-tolerant endophytic Pseudomonas geniculata-modulated biochemical responses provide ecological fitness in maize (Zea mays L.) grown in saline sodic soil. International Journal of Environmental Research and Public Health, 17(1), 253.
  • Paul, S., & Rakshit, A. (2021). Effect of seed bio-priming with Trichoderma viride strain BHU-2953 for enhancing soil phosphorus solubilization and uptake in soybean (Glycine max). Journal of Soil Science and Plant Nutrition, 21, 1041-1052.
  • Peixoto da Silva, M. B., Silva, V. N., & Vieira, L. C. (2021). Biopriming of sweet pepper and tomato seeds with Ascophyllum nodosum. RevistaFacultad Nacional de Agronomia, 74(1), 9423-9430.
  • Perez-Garcia, F., Pita, J. M., Gonzalez-Benito, M. E., & Iriondo, J. M. (1995). Effects of light, temperature and seed priming on germination of celery seeds (Apium graveolens L.). International Seed Testing Association, 23(2), 377-383.
  • Elkoca, E. (2007). Priming: Ekim öncesi tohum uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 38(1), 113-120.
  • Yari, L., Aghaalikani, M., & Khazaei, F. (2010). Effect of seed priming duration and temperature on seed germination behavior of bread wheat (Triticum aestivum L.). ARPN Journal of Agricultural and Biological Science, 5(1), 1-6.
  • Popovic, V., Ljubicic, N., Kostic, M., Radulovic, M., Blagojevic, D., Ugrenovic, V., Popovic, D., & Ivosevic, B. (2020). Genotype × environment interaction for wheat yield traits suitable for selection in different seed priming conditions. Plants, 9(12), 1804.
  • Schmidt, E. L., & Belser, L. W. (1982). Nitrifying bacteria, in methods of soil analysis part 2. Chemical and Microbiological Processes 1st ed. ASA, Wisconsin.
  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya, 17, 362-370.
  • Li, Z., Chang, S., Lin, L., Li, Y., & An, Q. (2011). A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Letters in Applied Microbiology, 53, 178-185.
  • Vaikuntapu, P. R., Dutta, S., Samudrala, R. B., & Rao, V. R. V. N. (2014). Preferential promotion of Lycopersicon esculentum (tomato) growth by plant growth promoting bacteria associated with tomato. Indian Journal of Microbiology, 54, 403-412.
  • Miller, C. S., Handley, K. M., Wrighton, K. C., Frischkorn, K. R., Thomas, B. C., & Banfield, J. F. (2013). Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PloS one, 8(2), e56018.
  • Sonkurt, M., & Çığ, F. (2019). The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17(2), 3877-3896.
  • Ceritoglu, M., Ceritoglu, F., Erman, M., & Bektas, H. (2020). Root system variation of pulse crops at early vegetative stage. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2182-2197.
  • Al-ansari, F., & Ksiksi, T. (2021). A quantitative assessment of germination parameters: The case of Crotalaria Persica and Tephrosia Apollinea. The Open Environmental Research Journal, 9, 13-21.
  • Ellis, R. H., & Roberts, E. H. (1981). The quantification of aging and survival in orthodox seeds. Seed Science and Technology, 9, 373-409.
  • AOSA. (1983). Seed Vigor Testing Handbook. Association of Official Seed Analysts, Ithaca, New York, USA.
  • Noorhosseini, S. A., Jokar, N. K., & Damalas, C. A. (2018). Improving seed germination and early growth of garden cress (Lepidium sativum) and Basil (Ocimum basilicum) with hydro-priming. Journal of Plant Growth Regulation, 37, 323-334.
  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13, 630-633.
  • Forti, C., Shankar, A., Singh, A., Valestrazzi, A., Prasad, V., & Macovei, A. (2020). Hydropriming and biopriming improve Medicago truncatula seed germination and upregulate DNA repair and antioxidant genes. Genes, 11(3), 242.
  • Nawaz, H., Hussain, N., Ahmed, N., Rehman, H., & Alam, J. (2021). Efficiency of seed bio-priming technique for healthy mung bean productivity under terminal drought stress. Journal of Integrative Agriculture, 20(1), 87-99.
  • Afifi, M. H., Manal, F. M., & Gomaa, A. M. (2003). Efficiency of applying biofertilizers to maize crop under different levels of mineral fertilizers. Annals of Agricultural Science Moshtohor Journal, 41(4), 1411-1420.
  • Fathollahy, S., & Mozaffari, A. (2020). Investigation the effect of seed biopriming with plant growth promoting rhizobacteria (PGPR) on antioxidant enzymes activity of seedling and germination indices of two wheat cultivar under salt stress conditions. Iranian Journal of Seed Science and Technology, 9(1), 27-44.
  • Panuccio, M. R., Chaabani, S., Roula, R., & Muscolo, A. (2018). Bio-priming mitigates detrimental effects of salinity on maize improving antioxidant defense and preserving photosynthetic efficiency. Plant Physiology and Biochemistry, 132, 465-474.
  • Kumari, P., Meena, M., Gupta, P., Dubey, M. K., Nath, G., & Upadhyay, R. S. (2018). Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatalysis and Agricultural Biotechnology, 16, 163-171.
  • Arif, M., Jan, M. T., Khan, N. U., Khan, A., Khan, M. J., & Munir, I. (2010). Effect of seed priming on growth parameters of soybean. Pakistan Journal of Botany, 42(4), 2803-2812.
  • Monalisa, S. P., Beura, J. K., Tarai, R. K., & Naik, M. (2017). Seed quality enhancement through biopriming in common bean (Phaseolus vulgaris. L). Journal of Applied and Natural Science, 9(3), 1740-1743.
  • Meshram, S., & Sarma, B. (2017). Comparative analysis of effects of seed biopriming on growth and development in different Pulses: Pea, lentil, red gram and chickpea. International Journal of Current Microbiology and Applied Sciences, 6(10), 2944-2950.
  • Darabi, F., Hatami, A., Zarea, M. A., & Naseri, R. (2016). Investigation of important morphological traits and grain yield of lentil under shading and bio-priming. Iranian Journal of Pulses Research, 7(1), 145-160.
  • Pankaj, K., Deepa, K., Birendra, P., Srinivas, P., & Rejendra, P. (2016). Effect of seed bio-priming on seed quality parameters of lentil under mid Himalayas. Journal of Hill Agriculture, 7(2), 195-200.
  • Yadav, S. K., Dave, A., Sarkar, A., Singh, H. B., & Sarma, B. K. (2013). Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. International Journal of Agriculture, Environment & Biotechnology, 6(2), 255-259.
  • Ahmad, M. A., Zahir, Z. A., Arghar, H. N., & Arshad, M. (2012). The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of Microbiology, 62, 1321-1330.
  • Siddiqui, Z. A., Baghel, G., & Akhtar, M. S. (2007). Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World Journal of Microbiology and Biotechnology, 23, 435-441.
  • Kumar, R., & Chandra, K. (2008). Influence of PGPR and PSB on Rhizobium leguminosarum Bv. viciae strain competition and symbiotic performance in lentil. World Journal of Agricultural Sciences, 4(3), 297-301.
  • Soughir, M., Aymen, E. M., & Cherif, H. (2012). Effect of NaCl priming duration and concentration on germination behavior of fenugreek. Albanian Journal of Agricultural Sciences, 4(11), 193-198.
  • Ghasemi-Golezani, K., Jabbarpour-Bonyadi, Z., Shafagh-Kolvanagh, J., & Nikpour-Rasdabad, N. (2013). Effects of water Stress and hydro-priming duration on field performance of lentil. International Journal of Farming and Allied Sciences, 2(21), 922-925.
  • Musa, M., Singh, A., & Lawal, A. A. (2014). Influence of priming duration on the performance of amaranths (Amaranthus cruentus L.) in Sokoto semiarid zone of Nigeria. Hindawi Publishing Corporation International Journal of Agronomy, Article ID: 475953, 1-4.
  • Kokila, M., & Bhaskaran, M. (2016). Standardization of Azospirillum concentration and duration of biopriming for rice and vigor improvement. International Journal of Agricultural Sciences, 12(2), 283-287.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

Murat Erman 0000-0002-1435-1982

Fatih Çığ 0000-0002-4042-0566

Mustafa Ceritoğlu 0000-0002-4138-4579

Yayımlanma Tarihi 30 Haziran 2022
Gönderilme Tarihi 6 Eylül 2021
Kabul Tarihi 19 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 1

Kaynak Göster

APA Erman, M., Çığ, F., & Ceritoğlu, M. (2022). Determination of Optimum PGPB-Priming Protocol on Germination and Seedling Growth in Lentil. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 62-70. https://doi.org/10.35193/bseufbd.991736