Tuğla, Kiremit ve Mermer Atığı Tozları ile Üretilen Jeopolimer Harçların Özellikleri
Yıl 2022,
Cilt: 9 Sayı: 2, 918 - 930, 31.12.2022
Mehmet Uğur Toprak
,
Ahmet Ferdi Şenol
,
Nazım Çağatay Demiral
,
Cenk Karakurt
Öz
Bu çalışmada çevre kirliliğini azaltmak amacı ile pişmiş kil (tuğla, kiremit) ve mermer atığı tozları jeopolimer harç üretiminde hammadde olarak kullanılmıştır. Bu amaçla, jeopolimer harçların taze ve sertleşmiş özelliklerine hammadde kullanım oranının ve kür sıcaklığının (60 ve 80 ℃) etkileri incelenmiştir. Pişmiş kil tozu (%50) ve mermer tozu (%50) beraber kullanılarak hazırlanan jeopolimer harç, %100 kil tozu ile üretilene göre %40 fazla yayılma göstermiştir. Jeopolimer harçların 7 günlük basınç dayanımları, 28 günlük dayanımlarının yaklaşık %90’ına ulaşmıştır. En yüksek basınç dayanımı (28,50 MPa), %100 pişmiş kil tozu kullanılarak üretilen ve 80 ℃’ de kür uygulanan 28 günlük jeopolimer harçlarda görülmüştür.
Destekleyen Kurum
Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü
Proje Numarası
2021-02.BŞEÜ.03-02
Teşekkür
Yapılan bu çalışma, 2021-02.BŞEÜ.03-02 numaralı proje kapsamında yapılmış olup yazarlar desteğinden ötürü Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür eder.
Kaynakça
- Chen, C., Habert, G., Bouzidi, Y., & Jullien, A. (2010) Environmental impact of cement production: Detail of the processes and cement plant variability evaluation. J. Clean. Prod., 18, 478-485.
- Gao, T., Shen, L., Shen, M., Liu, L., Chen, F., & Gao, L. (2017). Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020. Renewable and sustainable energy reviews, 74, 522-537.
- Zawrah, M. F., Sadek, H. E. H., Ngida, R. E., Sawan, S. A., & El-Kheshen, A. A. (2022). Effect of low-rate firing on physico-mechanical properties of unfoamed and foamed geopolymers prepared from waste clays. Ceramics International, 48(8), 11330-11337.
- Podolsky, Z., Liu, J., Dinh, H., Doh, J. H., Guerrieri, M., & Fragomeni, S. (2021). State of the art on the application of waste materials in geopolymer concrete. Case Studies in Construction Materials, 15, e00637.
- Khalil, M. G., Elgabbas, F., El-Feky, M. S., & El-Shafie, H. (2020). Performance of geopolymer mortar cured under ambient temperature. Construction and Building Materials, 242, 118090.
- Poloju, K. K., & Srinivasu, K. (2021). Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Materials Today: Proceedings, 42, 962-968.
- Hardjito, D. (2005). Studies of fly ash-based geopolymer concrete (Doctoral dissertation, Curtin University).
- Hu, W., Nie, Q., Huang, B., Shu, X., & He, Q. (2018). Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production, 186, 799-806.
- Cong, P., & Cheng, Y. (2021). Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 283-314.
- Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106.
- Hwang, C. L., Yehualaw, M. D., Vo, D. H., Huynh, T. P., & Largo, A. (2019). Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature. Construction and Building Materials, 223, 657-667.
- Hebhoub, H., Aoun, H., Belachia, M., Houari, H., & Ghorbel, E. (2011). Use of waste marble aggregates in concrete. Construction and Building Materials, 25(3), 1167-1171.
- Li, L. G., Huang, Z. H., Tan, Y. P., Kwan, A. K. H., & Chen, H. Y. (2019). Recycling of marble dust as paste replacement for improving strength, microstructure and eco-friendliness of mortar. Journal of Cleaner Production, 210, 55-65.
- Gencel, O., Özel, C., Köksal, F., Erdoğmuş, E., Martínez-Barrera, G., & Brostow, W. (2012). Atık mermer ile yapılan beton parke taşlarının özellikleri. Temiz üretim dergisi, 21 (1), 62-70.
- Aliabdo, A. A., Abd Elmoaty, M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and building materials, 50, 28-41.
- Tekin, I. (2016). Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607-617.
- Coppola, B., Palmero, P., Montanaro, L., & Tulliani, J. M. (2020). Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society, 40(11), 3776-3787.
- Tekin, İ., Gençel, O., Gholampour, A., Oren, O. H., Koksal, F., & Ozbakkaloglu, T. (2020). Recycling zeolitic tuff and marble waste in the production of eco-friendly geopolymer concretes. Journal of Cleaner Production, 268, 122298.
- Ahmad, M., & Rashid, K. (2022). Novel approach to synthesize clay-based geopolymer brick: Optimizing molding pressure and precursors’ proportioning. Construction and Building Materials, 322, 126472.
- Munir, M. J., Kazmi, S. M. S., & Wu, Y. F. (2017). Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: A sustainable approach. Construction and Building Materials, 154, 590-599.
- TS EN 12390-1. (2021). Beton-Sertleşmiş Beton Deneyleri Bölüm 1: Deney Numunesi ve Kalıplarının Şekil, Boyut ve Diğer Özellikleri, Türk Standartları Enstitüsü, Ankara.
- TS EN 12350-5. (2019). Beton – Taze beton deneyleri - Bölüm 5: Yayılma tablası deneyi, Türk Standartları Enstitüsü, Ankara.
- TS EN 772-4. (2000). Kagir Birimler, deney metotları- Bölüm 4: Tabii taş kâgir birimlerin toplam ve görünen porozitesi ile boşluksuz ve boşluklu birim hacim kütlesinin tayini, Türk Standartları Enstitüsü, Ankara.
- TS EN 12504-4. (2021). Yapılarda beton deneyleri - Bölüm 4: Ultrasonik atımlı dalga hızının tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 196-1.(2016). Çimento test yöntemleri-Bölüm 1: Dayanımın belirlenmesi,TürkStandartlarıEnstitüsü, Ankara.
- Yamanel, K., Durak, U., İlkentapar, S., Atabey, İ. İ., Karahan, O., & Duran, C. (2019). Influence of waste marble powder as a replacement of cement on the properties of mortar. Revista de la Construcción. Journal of Construction, 18(2), 290-300.
- Binici, H. & O. Aksogan (2018). Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate. Journal of Building Engineering. 19, 109-121.
- Tammam, Y., Uysal, M., & Canpolat, O. (2022). Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar. European Journal of Environmental and Civil Engineering, 26(12), 5877-5900.
- Thakur, A. K., Pappu, A., & Thakur, V. K. (2019). Synthesis and characterization of new class of geopolymer hybrid composite materials from industrial wastes. Journal of Cleaner Production, 230, 11-20.
- Kabirova, A., Uysal, M., Hüsem, M., Aygörmez, Y., Dehghanpour, H., Pul, S., & Canpolat, O. (2022). Physical and mechanical properties of metakaolin-based geopolymer mortars containing various waste powders. European Journal of Environmental and Civil Engineering, 1-20.
- Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and building materials. 24(7), 1176-1183.
- Ulugöl, H., Kul, A., Yıldırım, G., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280, 124358.
- Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science, 99, 144-148.
Properties of Geopolymer Mortars Produced with Brick, Tile and Marble Waste Powders
Yıl 2022,
Cilt: 9 Sayı: 2, 918 - 930, 31.12.2022
Mehmet Uğur Toprak
,
Ahmet Ferdi Şenol
,
Nazım Çağatay Demiral
,
Cenk Karakurt
Öz
In this study, baked clay (brick, tile) and marble waste powders were used as raw materials in the production of geopolymer mortar in order to reduce environmental pollution. The effect of the amount of baked clay and marble powder used and the curing temperature (60 and 80 ℃) on the work ability, physical, and mechanical properties of geopolymer mortars were investigated. Geopolymer mortar prepared by using baked clay powder (50%) and marble powder (50%) showed 40% more flow than that produced with 100% clay powder. The 7-day compressive strength of geopolymer mortars has reached approximately 90% of their 28-day strength. The highest compressive strength (28.50 MPa) was observed for 28-day geopolymer mortars produced with 100% baked clay powder and cured at 80°C.
Proje Numarası
2021-02.BŞEÜ.03-02
Kaynakça
- Chen, C., Habert, G., Bouzidi, Y., & Jullien, A. (2010) Environmental impact of cement production: Detail of the processes and cement plant variability evaluation. J. Clean. Prod., 18, 478-485.
- Gao, T., Shen, L., Shen, M., Liu, L., Chen, F., & Gao, L. (2017). Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020. Renewable and sustainable energy reviews, 74, 522-537.
- Zawrah, M. F., Sadek, H. E. H., Ngida, R. E., Sawan, S. A., & El-Kheshen, A. A. (2022). Effect of low-rate firing on physico-mechanical properties of unfoamed and foamed geopolymers prepared from waste clays. Ceramics International, 48(8), 11330-11337.
- Podolsky, Z., Liu, J., Dinh, H., Doh, J. H., Guerrieri, M., & Fragomeni, S. (2021). State of the art on the application of waste materials in geopolymer concrete. Case Studies in Construction Materials, 15, e00637.
- Khalil, M. G., Elgabbas, F., El-Feky, M. S., & El-Shafie, H. (2020). Performance of geopolymer mortar cured under ambient temperature. Construction and Building Materials, 242, 118090.
- Poloju, K. K., & Srinivasu, K. (2021). Impact of GGBS and strength ratio on mechanical properties of geopolymer concrete under ambient curing and oven curing. Materials Today: Proceedings, 42, 962-968.
- Hardjito, D. (2005). Studies of fly ash-based geopolymer concrete (Doctoral dissertation, Curtin University).
- Hu, W., Nie, Q., Huang, B., Shu, X., & He, Q. (2018). Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. Journal of Cleaner Production, 186, 799-806.
- Cong, P., & Cheng, Y. (2021). Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 283-314.
- Reig, L., Tashima, M. M., Borrachero, M. V., Monzó, J., Cheeseman, C. R., & Payá, J. (2013). Properties and microstructure of alkali-activated red clay brick waste. Construction and Building Materials, 43, 98-106.
- Hwang, C. L., Yehualaw, M. D., Vo, D. H., Huynh, T. P., & Largo, A. (2019). Performance evaluation of alkali activated mortar containing high volume of waste brick powder blended with ground granulated blast furnace slag cured at ambient temperature. Construction and Building Materials, 223, 657-667.
- Hebhoub, H., Aoun, H., Belachia, M., Houari, H., & Ghorbel, E. (2011). Use of waste marble aggregates in concrete. Construction and Building Materials, 25(3), 1167-1171.
- Li, L. G., Huang, Z. H., Tan, Y. P., Kwan, A. K. H., & Chen, H. Y. (2019). Recycling of marble dust as paste replacement for improving strength, microstructure and eco-friendliness of mortar. Journal of Cleaner Production, 210, 55-65.
- Gencel, O., Özel, C., Köksal, F., Erdoğmuş, E., Martínez-Barrera, G., & Brostow, W. (2012). Atık mermer ile yapılan beton parke taşlarının özellikleri. Temiz üretim dergisi, 21 (1), 62-70.
- Aliabdo, A. A., Abd Elmoaty, M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and building materials, 50, 28-41.
- Tekin, I. (2016). Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes. Construction and Building Materials, 127, 607-617.
- Coppola, B., Palmero, P., Montanaro, L., & Tulliani, J. M. (2020). Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society, 40(11), 3776-3787.
- Tekin, İ., Gençel, O., Gholampour, A., Oren, O. H., Koksal, F., & Ozbakkaloglu, T. (2020). Recycling zeolitic tuff and marble waste in the production of eco-friendly geopolymer concretes. Journal of Cleaner Production, 268, 122298.
- Ahmad, M., & Rashid, K. (2022). Novel approach to synthesize clay-based geopolymer brick: Optimizing molding pressure and precursors’ proportioning. Construction and Building Materials, 322, 126472.
- Munir, M. J., Kazmi, S. M. S., & Wu, Y. F. (2017). Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: A sustainable approach. Construction and Building Materials, 154, 590-599.
- TS EN 12390-1. (2021). Beton-Sertleşmiş Beton Deneyleri Bölüm 1: Deney Numunesi ve Kalıplarının Şekil, Boyut ve Diğer Özellikleri, Türk Standartları Enstitüsü, Ankara.
- TS EN 12350-5. (2019). Beton – Taze beton deneyleri - Bölüm 5: Yayılma tablası deneyi, Türk Standartları Enstitüsü, Ankara.
- TS EN 772-4. (2000). Kagir Birimler, deney metotları- Bölüm 4: Tabii taş kâgir birimlerin toplam ve görünen porozitesi ile boşluksuz ve boşluklu birim hacim kütlesinin tayini, Türk Standartları Enstitüsü, Ankara.
- TS EN 12504-4. (2021). Yapılarda beton deneyleri - Bölüm 4: Ultrasonik atımlı dalga hızının tayini. Türk Standartları Enstitüsü, Ankara.
- TS EN 196-1.(2016). Çimento test yöntemleri-Bölüm 1: Dayanımın belirlenmesi,TürkStandartlarıEnstitüsü, Ankara.
- Yamanel, K., Durak, U., İlkentapar, S., Atabey, İ. İ., Karahan, O., & Duran, C. (2019). Influence of waste marble powder as a replacement of cement on the properties of mortar. Revista de la Construcción. Journal of Construction, 18(2), 290-300.
- Binici, H. & O. Aksogan (2018). Durability of concrete made with natural granular granite, silica sand and powders of waste marble and basalt as fine aggregate. Journal of Building Engineering. 19, 109-121.
- Tammam, Y., Uysal, M., & Canpolat, O. (2022). Effects of alternative ecological fillers on the mechanical, durability, and microstructure of fly ash-based geopolymer mortar. European Journal of Environmental and Civil Engineering, 26(12), 5877-5900.
- Thakur, A. K., Pappu, A., & Thakur, V. K. (2019). Synthesis and characterization of new class of geopolymer hybrid composite materials from industrial wastes. Journal of Cleaner Production, 230, 11-20.
- Kabirova, A., Uysal, M., Hüsem, M., Aygörmez, Y., Dehghanpour, H., Pul, S., & Canpolat, O. (2022). Physical and mechanical properties of metakaolin-based geopolymer mortars containing various waste powders. European Journal of Environmental and Civil Engineering, 1-20.
- Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and building materials. 24(7), 1176-1183.
- Ulugöl, H., Kul, A., Yıldırım, G., Şahmaran, M., Aldemir, A., Figueira, D., & Ashour, A. (2021). Mechanical and microstructural characterization of geopolymers from assorted construction and demolition waste-based masonry and glass. Journal of Cleaner Production, 280, 124358.
- Mo, B. H., Zhu, H., Cui, X. M., He, Y., & Gong, S. Y. (2014). Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied clay science, 99, 144-148.