Derleme
BibTex RIS Kaynak Göster

Types of Biomaterials and Biocompatible Metallic Elements

Yıl 2022, Cilt: 9 Sayı: 2, 1179 - 1195, 31.12.2022
https://doi.org/10.35193/bseufbd.1165914

Öz

The biomedical applications of macro, micro and nanomaterials are increasing more and more every year due to their similarity to various cell receptors, ligands, structural proteins and genetic materials. Among the diverse biomaterials, metallic-based implant materials can ensure scaffolds for the great tissue/bone/organ fixing needed to save and prolong human life. This review will highlight the latest developments in metallic bioimplants and provide an overview of biocompatible metallic elements

Kaynakça

  • Arsiwala A., Desai P. and Patravale V. (2014). Recent advances in micro/nanoscale biomedical implants. Journal of Controlled Release. 189, 25-45.
  • Lu W., Wei Z., Gu Z.-Y., Liu T.-F., Park J., Park J., Tian J., Zhang M., Zhang Q. and Gentle III T. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews. 43(16), 5561-5593.
  • Park J. B. and Lakes R. S. (2007). Composites as biomaterials. Biomaterials. 207-224.
  • Almasry M. G. (2016). Ortopedik İmplantlarin Hasta Vücuduna Biraktiği Atiklar Ve Alerjik Etkileri. Fen Bilimleri Enstitüsü.
  • Boretos J. W., Eden M. and Fung Y. (1985). Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects.
  • Bruck S. Blood compatibility of synthetic polymers—An introduction. (1974): Charles C Thomas Springfield.
  • Chandran K. B. Cardiovascular biomechanics. (1992). New York University Press.
  • McGivney B. A., McGettigan P. A., Browne J. A., Evans A. C., Fonseca R. G., Loftus B. J., Lohan A., MacHugh D. E., Murphy B. A. and Katz L. M. (2010). Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC genomics. 11(1), 1-17.
  • Hildebrand H. F. (2013). Biomaterials–a history of 7000 years. BioNanoMaterials. 14(3-4), 119-133.
  • Dharmaretnam M., Ahamed R., Devika F. and Niomi T. The Seven Sisters and the Four Eggs. (2001): Loris.
  • Ping D. (2014). Review on ω phase in body-centered cubic metals and alloys. Acta Metallurgica Sinica (English letters). 27(1), 1-11.
  • Hench L. L. (1982). Biomaterials, an interfacial approach. Biophysics and bioengineering series. 4, 62-86.
  • Balci E., Dagdelen F., Qader I. N. and Kok M. (2021). Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus. 136(2), 1-13.
  • Balcı E. and Dagdelen F. (2022). Thermal, Structural Properties and Potential Dynamic Corrosion Study of Ti-27Ni-21Nb-2Ta SMA. Iranian Journal of Science and Technology, Transactions A: Science. 46(1), 353-359.
  • Hill D. Design engineering of biomaterials for medical devices. (1998).
  • Kawahara H., Mımura Y., Õki M., Kubo K., Soeda Y. and Nomura Y., editors. Institute of Clinical Materials, Osaka and Asahi University, School of Dentistry. Oral Implantology and Biomaterials: Proceedings of the 3rd International Congress of Implantology and Biomaterials in Stomatology, Osaka, April 27-29, 1988; 1989: Elsevier Science Limited
  • King P. H. and Fries R. C. Design of biomedical devices and systems. (2003). Marcel Dekker New York-Basel.
  • Knight S. R., Aujla R. and Biswas S. P. (2011). Total Hip Arthroplasty-over 100 years of operative history. Orthopedic reviews. 3(2).
  • Teo A. J., Mishra A., Park I., Kim Y.-J., Park W.-T. and Yoon Y.-J. (2016). Polymeric biomaterials for medical implants and devices. ACS Biomaterials Science & Engineering. 2(4), 454-472.
  • Wong J. Y. and Bronzino J. D. Biomaterials. (2007). CRC press.
  • Bai L., Gong C., Chen X., Sun Y., Zhang J., Cai L., Zhu S. and Xie S. Q. (2019). Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications. Metals. 9(9), 1004.
  • Park J. B. and Lakes R. S. (2007). Metallic implant materials. Biomaterials. 99-137.
  • Wnek G. E. and Bowlin G. L. Encyclopedia of biomaterials and biomedical engineering. (2008). CRC Press.
  • Höland W., Schweiger M., Watzke R., Peschke A. and Kappert H. (2008). Ceramics as biomaterials for dental restoration. Expert review of medical devices. 5(6), 729-745.
  • Schnitman P. A. (1990). Dental implants: State of the art, state of the science. International journal of technology assessment in health care. 6(4), 528-544.
  • Gebelein C. and Koblitz F. Biomedical and dental applications of polymers. (2013). Springer Science & Business Media.
  • O'brien W. J. (2002). Dental materials and their selection, 2002. Quintessence.
  • Ariga K., Minami K., Ebara M. and Nakanishi J. (2016). What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polymer Journal. 48(4), 371-389.
  • Heli H. and Rahi A. (2016). Synthesis and applications of nanoflowers. Recent patents on nanotechnology. 10(2), 86-115.
  • Jain S., Jain A. P., Jain S., Gupta O. N. and Vaidya A. (2013). Nanotechnology: An emerging area in the field of dentistry. J Dent Sci. 10, 1-9.
  • Balasundaram G., Storey D. M. and Webster T. J. (2014). Novel nano-rough polymers for cartilage tissue engineering. International journal of nanomedicine. 9, 1845.
  • Ige O. O., Umoru L. E. and Aribo S. (2012). Natural products: a minefield of biomaterials. International Scholarly Research Notices. 2012.
  • Katz E. and Willner I. (2004). Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition. 43(45), 6042-6108.
  • He H., Wu Y., He N. and Deng Y. (2015). The latest progress of on-site pathogens detection techniques and instruments based on nucleic acid. Journal of Nanoscience and Nanotechnology. 15(9), 6342-6356.
  • Gupta S. K., Kizilbash S. H. and Muanza T. M. Targeted Therapies For Glioblastoma: A Critical Appraisal.
  • Zhao C., Rehman F. U., Jiang H., Selke M., Wang X. and Liu C.-Y. (2016). Titanium dioxide-tetra sulphonatophenyl porphyrin nanocomposites for target cellular bio-imaging and treatment of rheumatoid arthritis. Science China Chemistry. 59(5), 637-642.
  • Yao C. and Webster T. J. (2006). Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology. 6(9-10), 2682-2692.
  • Bhat S. V. (2002). Overview of biomaterials. Biomaterials. Springer; p. 1-11.
  • Mathew M., Runa M., Laurent M., Jacobs J., Rocha L. and Wimmer M. (2011). Tribocorrosion behavior of CoCrMo alloy for hip prosthesis as a function of loads: a comparison between two testing systems. Wear. 271(9-10), 1210-1219.
  • Black J. (1992). Allergic foreign-body response in biological performance of materials. Fundamentals of biocompatibility. New York: Dekker.
  • Pasinli A. (2004). Biyomedikal uygulamalarda kullanılan biyomalzemeler. Makine Teknolojileri Elektronik Dergisi. 4(4), 25-34.
  • Hench L. L. and Andersson Ö. (1993). Bioactive glasses. An introduction to bioceramics. World Scientific; p. 41-62.
  • Güven Ş. (2014). Biyouyumluluk ve biyomalzemelerin seçimi. Mühendislik Bilimleri ve Tasarım Dergisi. 2(3), 303-311.
  • Ercan E. (2014). Nikelce zengin niti şekil hatırlamalı alaşımın oksidasyon davranışının incelenmesi/Investigation of oxidation behavior at ni-rich niti shape memory alloy. Fen Bilimleri Enstitüsü, Fırat Üniversitesi.
  • Williams D. (1990). An introduction to medical and dental materials. Concise Encyclopedia of Medical & Dental Materials. 2nd Edtion, The MIT Press, Cambridge.
  • Lane W. A. (1895). Some remarks on the treatment of fractures. British medical journal. 1(1790), 861.
  • Lambtte A. (1909). Technique et indication des prothèses dans le traitement des fractures. Presse med. 17, 321.
  • Sherman W. (1912). Vanadium steel bone plates and screws. Surg Gynecol Obstet. 14, 629-634.
  • Chen Q. and Thouas G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 87, 1-57.
  • Savıngy P. and Gırovd E. (2002). Metallic Biomaterials. Kungl Tekniska Högskolan. 11-15.
  • Smith D. C. (1993). Dental implants: materials and design considerations. International Journal of Prosthodontics. 6(2).
  • Parr G. R., Gardner L. K. and Toth R. W. (1985). Titanium: the mystery metal of implant dentistry. Dental materials aspects. The Journal of prosthetic dentistry. 54(3), 410-414.
  • Variola F., Brunski J. B., Orsini G., de Oliveira P. T., Wazen R. and Nanci A. (2011). Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 3(2), 335-353.
  • Çakır A. (1995). İnsan vücudunda kullanılan metalik implantların dünü ve bugünü. 8th. Internatıonal Metallurgy and Materials Congrees. 1131, 1137.
  • Brooks A., Clayton C., Doss K. and Lu Y. (1986). On the role of Cr in the passivity of stainless steel. Journal of the Electrochemical Society. 133(12), 2459.
  • Navarro M., Michiardi A., Castano O. and Planell J. (2008). Biomaterials in orthopaedics. Journal of the royal society interface. 5(27), 1137-1158.
  • Agarwal G. C., Berman B. M. and Stark L. (1969). A lumped parameter model of the cerebrospinal fluid system. IEEE Transactions on Biomedical Engineering. (1), 45-53.
  • Şimşek İ. (2017). Toz Metalurjisi İle Üretilen Titanyum Alaşımı Biyomalzemelerin Korozyon ve Aşınma Davranışlarının İncelenmesi. Doktora Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük, 30-44.
  • Biesiekierski A., Wang J., Gepreel M. A.-H. and Wen C. (2012). A new look at biomedical Ti-based shape memory alloys. Acta biomaterialia. 8(5), 1661-1669.
  • Pramanik S., Agarwal A. K. and Rai K. (2005). Chronology of total hip joint replacement and materials development. Trends in Biomaterials & Artificial Organs. 19(1), 15-26.
  • Van Noort R. (1987). Titanium: the implant material of today. Journal of Materials Science. 22(11), 3801-3811.
  • Duan K. and Wang R. (2006). Surface modifications of bone implants through wet chemistry. Journal of Materials Chemistry. 16(24), 2309-2321.
  • Davis J. (2003). Materials for medical devices. ASM Handbook Series.
  • Evans E. and Thomas I. (1986). The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. Biomaterials. 7(1), 25-29.
  • Zhu D., Cockerill I., Su Y., Zhang Z., Fu J., Lee K.-W., Ma J., Okpokwasili C., Tang L. and Zheng Y. (2019). Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS applied materials & interfaces. 11(7), 6809-6819.
  • Bowen P. K., Drelich J. and Goldman J. (2013). Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials. 25(18), 2577-2582.
  • Bowen P. K., Guillory II R. J., Shearier E. R., Seitz J.-M., Drelich J., Bocks M., Zhao F. and Goldman J. (2015). Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials Science and Engineering: C. 56, 467-472.
  • Guillory R. J., Bowen P. K., Hopkins S. P., Shearier E. R., Earley E. J., Gillette A. A., Aghion E., Bocks M., Drelich J. W. and Goldman J. (2016). Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants. ACS Biomaterials Science & Engineering. 2(12), 2355-2364.
  • Ma J., Zhao N. and Zhu D. (2015). Endothelial cellular responses to biodegradable metal zinc. ACS Biomaterials Science & Engineering. 1(11), 1174-1182.
  • Ma J., Zhao N. and Zhu D. (2016). Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Scientific reports. 6(1), 1-10.
  • Shearier E. R., Bowen P. K., He W., Drelich A., Drelich J., Goldman J. and Zhao F. (2016). In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomaterials Science & Engineering. 2(4), 634-642.
  • Li H., Xie X., Zheng Y., Cong Y., Zhou F., Qiu K., Wang X., Chen S., Huang L. and Tian L. (2015). Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific reports. 5(1), 1-14.
  • Li H., Zheng Y. and Qin L. (2014). Progress of biodegradable metals. Progress in natural science: materials international. 24(5), 414-422.
  • Zheng Y. F., Gu X. N. and Witte F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports. 77, 1-34.
  • Feyerabend F., Fischer J., Holtz J., Witte F., Willumeit R., Drücker H., Vogt C. and Hort N. (2010). Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta biomaterialia. 6(5), 1834-1842.
  • Zeng R., Dietzel W., Witte F., Hort N. and Blawert C. (2008). Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials. 10(8), B3-B14.
  • Bobyn J., Stackpool G., Hacking S., Tanzer M. and Krygier J. (1999). Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. The Journal of bone and joint surgery. British volume. 81(5), 907-914.
  • Balci E. and Dagdelen F. (2022). The comparison of TiNiNbTa and TiNiNbV SMAs in terms of corrosion behavior, microhardness, thermal and structural properties. Journal of Thermal Analysis and Calorimetry. 1-7.
  • Dagdelen F., Balci E., Qader I., Aydogdu Y. and Saydam S. (2021). Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys. Physics of Metals and Metallography. 122(14), 1572-1580.
  • Balci E., Dagdelen F., Qader I. N. and Kok M. (2021). Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus. 136(2), 145.
  • Dalstra M., Denes G. and Melsen B. (2000). Titanium‐niobium, a new finishing wire alloy. Clinical orthodontics and research. 3(1), 6-14.
  • Xu J., Weng X.-J., Wang X., Huang J.-Z., Zhang C., Muhammad H., Ma X. and Liao Q.-D. (2013). Potential use of porous titanium–niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. PloS one. 8(11), e79289.
  • Dagdelen F. and Aydogdu Y. (2019). Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. Journal of Thermal Analysis and Calorimetry. 136(2), 637-642.
  • Dagdelen F., Balci E., Qader I., Ozen E., Kok M., Kanca M., Abdullah S. and Mohammed S. (2020). Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM Journal of the Minerals Metals and Materials Society. 72(4), 1664-1672.
  • Osathanon T., Bespinyowong K., Arksornnukit M., Takahashi H. and Pavasant P. (2006). Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells. Journal of Materials Science: Materials in Medicine. 17(7), 619-625.
  • Zreiqat H., Ramaswamy Y., Wu C., Paschalidis A., Lu Z., James B., Birke O., McDonald M., Little D. and Dunstan C. R. (2010). The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials. 31(12), 3175-3184.
  • Zhao D., Witte F., Lu F., Wang J., Li J. and Qin L. (2017). Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials. 112, 287-302.
  • Yu W., Zhao H., Ding Z., Zhang Z., Sun B., Shen J., Chen S., Zhang B., Yang K. and Liu M. (2017). In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration B Biointerfaces.
  • Angrisani N., Reifenrath J., Zimmermann F., Eifler R., Meyer-Lindenberg A., Vano-Herrera K. and Vogt C. (2016). Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta biomaterialia. 44, 355-365.
  • Kuhlmann J., Bartsch I., Willbold E., Schuchardt S., Holz O., Hort N., Höche D., Heineman W. R. and Witte F. (2013). Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta biomaterialia. 9(10), 8714-8721.
  • Chen Y., Xu Z., Smith C. and Sankar J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia. 10(11), 4561-4573.
  • Li H. and Zheng Y. (2016). Recent advances in bulk metallic glasses for biomedical applications. Acta biomaterialia. 36, 1-20.
  • Davis T., Bichler L., D'Elia F. and Hort N. (2018). Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy. Journal of Alloys and Compounds. 759, 70-79.
  • Wu H., Wu G. and Chu P. K. (2016). Effects of cerium ion implantation on the corrosion behavior of magnesium in different biological media. Surface and Coatings Technology. 306, 6-10.
  • Li K., Wang B., Yan B. and Lu W. (2013). Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment. Journal of Biomaterials Applications. 28(3), 375-384.
  • Liu P., Pan X., Yang W., Cai K. and Chen Y. (2012). Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation. Materials Letters. 75, 118-121.
  • Witte F. (2010). The history of biodegradable magnesium implants: a review. Acta biomaterialia. 6(5), 1680-1692.
  • Coulthard P., Esposito M., Slater M., Worthington H. and Kay E. (2003). Prevention. Part 5: Preventive strategies for patients requiring osseointegrated oral implant treatment. British dental journal. 195(4), 187-194.
  • Hua N., Huang L., Wang J., Cao Y., He W., Pang S. and Zhang T. (2012). Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study. Journal of Non-Crystalline Solids. 358(12-13), 1599-1604.
  • Black J. Biological performance of materials: fundamentals of biocompatibility. (2005). Crc Press.
  • Ong K. L., Lovald S. and Black J. Orthopaedic biomaterials in research and practice. (2014). CRC press.
  • Yilmaz Y., Avcı B. and Demirören H. (2019). Biyomalzeme Sektöründe Kullanılan Titanyum ve Alaşımları.
  • Yalcin B. M. and Karahan T. F. (2007). Effects of a couple communication program on marital adjustment. The Journal of the American Board of Family Medicine. 20(1), 36-44.
  • Akdaş Y. F. (2006). Termal Oksidasyon Yöntemi İle Cp-ti Ve Ti6al4v Alaşımının Yüzey Modifikasyonu. Fen Bilimleri Enstitüsü.
  • Williams D. F., Cahn R. W. and Bever M. B. Concise encyclopedia of medical & dental materials. (1990).
  • Lütjering G. and Williams J. C. Titanium matrix composites. (2007). Springer.
  • Karal Z. Biyouyumlu metallerden lazer ablasyon yöntemiyle nanoparçacık üretimi ve karakterizasyonu. Fen Bilimleri Enstitüsü.
  • Kasuga T., Kondo H. and Nogami M. (2002). Apatite formation on TiO2 in simulated body fluid. Journal of Crystal Growth. 235(1-4), 235-240.
  • Wang X.-X., Yan W., Hayakawa S., Tsuru K. and Osaka A. (2003). Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 24(25), 4631-4637.
  • Park J. and Lakes R. S. Biomaterials: an introduction. (2007). Springer Science & Business Media.
  • Campbell F. C. Phase diagrams: understanding the basics. (2012). ASM international.
  • Shi X., Yang H., Mao H., Li Y., Zhang J. and Yin X. (2018). Effect of plastic deformation of V nanowires on the transformation characteristics of NiTiV alloys. Materials Science and Engineering: A. 735, 162-165.
  • Collings E. (1984). The physical metallurgy of titanium alloys. Metals Park Ohio. 3.
  • Marcus P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158.
  • Kırkıl Ş. (2014). At kestanesi kabuklarından kimyasal aktivasyon yöntemi ile elde edilen aktif karbonlara gümüş adsorpsiyonu.
  • Karakaya F. (2021). Yeşil sentez yöntemiyle Ruscus aculeatus L. bitkisi kullanılarak gümüş nanopartiküllerin sentezi ve antibiyofilm, antimikrobiyal, antikanser aktivitelerinin incelenmesi. Bartın Üniversitesi, Fen Bilimleri Enstitüsü.
  • Karaköse E. and Keskin M. (2015). Effect of microstructural evolution and elevated temperature on the mechanical properties of Ni–Cr–Mo alloys. Journal of Alloys and Compounds. 619, 82-90.
  • Tur K. (2009). Biomaterials and tissue engineering for regenerative repair of articular cartilage defects. Archives of Rheumatology. 24(4), 206-217.
  • Yamamoto A., Honma R. and Sumita M. (1998). Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials. 39(2), 331-340.
  • Bronzino J. D. and Peterson D. R. The biomedical engineering handbook: Four volume set. (2018). CRC press.

Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler

Yıl 2022, Cilt: 9 Sayı: 2, 1179 - 1195, 31.12.2022
https://doi.org/10.35193/bseufbd.1165914

Öz

Makro, mikro ve nano boyutta olan bazı malzemelerin biyomedikal uygulamaları; çeşitli hücre reseptörlerine, metallere bağlanan bir iyon veya moleküllere, yapısal proteinlere ve genetik malzemelere benzerlikleri nedeniyle her yıl katlanarak kullanımları artmaktadır. Çeşitli biyomalzemeler arasında, metalik esaslı implant malzemeleri, insanın hayatını kurtarmak ve uzatmak için ihtiyaç duyulan mükemmel doku/kemik/organ onarımı için yapı iskeleleri görevi sağlayabilir. Bu derleme, metalik biyoimplantlardaki son gelişmeleri vurgulayacak ve biyouyumlu metalik elementler hakkında genel bilgiler sunacaktır.

Kaynakça

  • Arsiwala A., Desai P. and Patravale V. (2014). Recent advances in micro/nanoscale biomedical implants. Journal of Controlled Release. 189, 25-45.
  • Lu W., Wei Z., Gu Z.-Y., Liu T.-F., Park J., Park J., Tian J., Zhang M., Zhang Q. and Gentle III T. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews. 43(16), 5561-5593.
  • Park J. B. and Lakes R. S. (2007). Composites as biomaterials. Biomaterials. 207-224.
  • Almasry M. G. (2016). Ortopedik İmplantlarin Hasta Vücuduna Biraktiği Atiklar Ve Alerjik Etkileri. Fen Bilimleri Enstitüsü.
  • Boretos J. W., Eden M. and Fung Y. (1985). Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects.
  • Bruck S. Blood compatibility of synthetic polymers—An introduction. (1974): Charles C Thomas Springfield.
  • Chandran K. B. Cardiovascular biomechanics. (1992). New York University Press.
  • McGivney B. A., McGettigan P. A., Browne J. A., Evans A. C., Fonseca R. G., Loftus B. J., Lohan A., MacHugh D. E., Murphy B. A. and Katz L. M. (2010). Characterization of the equine skeletal muscle transcriptome identifies novel functional responses to exercise training. BMC genomics. 11(1), 1-17.
  • Hildebrand H. F. (2013). Biomaterials–a history of 7000 years. BioNanoMaterials. 14(3-4), 119-133.
  • Dharmaretnam M., Ahamed R., Devika F. and Niomi T. The Seven Sisters and the Four Eggs. (2001): Loris.
  • Ping D. (2014). Review on ω phase in body-centered cubic metals and alloys. Acta Metallurgica Sinica (English letters). 27(1), 1-11.
  • Hench L. L. (1982). Biomaterials, an interfacial approach. Biophysics and bioengineering series. 4, 62-86.
  • Balci E., Dagdelen F., Qader I. N. and Kok M. (2021). Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus. 136(2), 1-13.
  • Balcı E. and Dagdelen F. (2022). Thermal, Structural Properties and Potential Dynamic Corrosion Study of Ti-27Ni-21Nb-2Ta SMA. Iranian Journal of Science and Technology, Transactions A: Science. 46(1), 353-359.
  • Hill D. Design engineering of biomaterials for medical devices. (1998).
  • Kawahara H., Mımura Y., Õki M., Kubo K., Soeda Y. and Nomura Y., editors. Institute of Clinical Materials, Osaka and Asahi University, School of Dentistry. Oral Implantology and Biomaterials: Proceedings of the 3rd International Congress of Implantology and Biomaterials in Stomatology, Osaka, April 27-29, 1988; 1989: Elsevier Science Limited
  • King P. H. and Fries R. C. Design of biomedical devices and systems. (2003). Marcel Dekker New York-Basel.
  • Knight S. R., Aujla R. and Biswas S. P. (2011). Total Hip Arthroplasty-over 100 years of operative history. Orthopedic reviews. 3(2).
  • Teo A. J., Mishra A., Park I., Kim Y.-J., Park W.-T. and Yoon Y.-J. (2016). Polymeric biomaterials for medical implants and devices. ACS Biomaterials Science & Engineering. 2(4), 454-472.
  • Wong J. Y. and Bronzino J. D. Biomaterials. (2007). CRC press.
  • Bai L., Gong C., Chen X., Sun Y., Zhang J., Cai L., Zhu S. and Xie S. Q. (2019). Additive manufacturing of customized metallic orthopedic implants: Materials, structures, and surface modifications. Metals. 9(9), 1004.
  • Park J. B. and Lakes R. S. (2007). Metallic implant materials. Biomaterials. 99-137.
  • Wnek G. E. and Bowlin G. L. Encyclopedia of biomaterials and biomedical engineering. (2008). CRC Press.
  • Höland W., Schweiger M., Watzke R., Peschke A. and Kappert H. (2008). Ceramics as biomaterials for dental restoration. Expert review of medical devices. 5(6), 729-745.
  • Schnitman P. A. (1990). Dental implants: State of the art, state of the science. International journal of technology assessment in health care. 6(4), 528-544.
  • Gebelein C. and Koblitz F. Biomedical and dental applications of polymers. (2013). Springer Science & Business Media.
  • O'brien W. J. (2002). Dental materials and their selection, 2002. Quintessence.
  • Ariga K., Minami K., Ebara M. and Nakanishi J. (2016). What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polymer Journal. 48(4), 371-389.
  • Heli H. and Rahi A. (2016). Synthesis and applications of nanoflowers. Recent patents on nanotechnology. 10(2), 86-115.
  • Jain S., Jain A. P., Jain S., Gupta O. N. and Vaidya A. (2013). Nanotechnology: An emerging area in the field of dentistry. J Dent Sci. 10, 1-9.
  • Balasundaram G., Storey D. M. and Webster T. J. (2014). Novel nano-rough polymers for cartilage tissue engineering. International journal of nanomedicine. 9, 1845.
  • Ige O. O., Umoru L. E. and Aribo S. (2012). Natural products: a minefield of biomaterials. International Scholarly Research Notices. 2012.
  • Katz E. and Willner I. (2004). Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition. 43(45), 6042-6108.
  • He H., Wu Y., He N. and Deng Y. (2015). The latest progress of on-site pathogens detection techniques and instruments based on nucleic acid. Journal of Nanoscience and Nanotechnology. 15(9), 6342-6356.
  • Gupta S. K., Kizilbash S. H. and Muanza T. M. Targeted Therapies For Glioblastoma: A Critical Appraisal.
  • Zhao C., Rehman F. U., Jiang H., Selke M., Wang X. and Liu C.-Y. (2016). Titanium dioxide-tetra sulphonatophenyl porphyrin nanocomposites for target cellular bio-imaging and treatment of rheumatoid arthritis. Science China Chemistry. 59(5), 637-642.
  • Yao C. and Webster T. J. (2006). Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology. 6(9-10), 2682-2692.
  • Bhat S. V. (2002). Overview of biomaterials. Biomaterials. Springer; p. 1-11.
  • Mathew M., Runa M., Laurent M., Jacobs J., Rocha L. and Wimmer M. (2011). Tribocorrosion behavior of CoCrMo alloy for hip prosthesis as a function of loads: a comparison between two testing systems. Wear. 271(9-10), 1210-1219.
  • Black J. (1992). Allergic foreign-body response in biological performance of materials. Fundamentals of biocompatibility. New York: Dekker.
  • Pasinli A. (2004). Biyomedikal uygulamalarda kullanılan biyomalzemeler. Makine Teknolojileri Elektronik Dergisi. 4(4), 25-34.
  • Hench L. L. and Andersson Ö. (1993). Bioactive glasses. An introduction to bioceramics. World Scientific; p. 41-62.
  • Güven Ş. (2014). Biyouyumluluk ve biyomalzemelerin seçimi. Mühendislik Bilimleri ve Tasarım Dergisi. 2(3), 303-311.
  • Ercan E. (2014). Nikelce zengin niti şekil hatırlamalı alaşımın oksidasyon davranışının incelenmesi/Investigation of oxidation behavior at ni-rich niti shape memory alloy. Fen Bilimleri Enstitüsü, Fırat Üniversitesi.
  • Williams D. (1990). An introduction to medical and dental materials. Concise Encyclopedia of Medical & Dental Materials. 2nd Edtion, The MIT Press, Cambridge.
  • Lane W. A. (1895). Some remarks on the treatment of fractures. British medical journal. 1(1790), 861.
  • Lambtte A. (1909). Technique et indication des prothèses dans le traitement des fractures. Presse med. 17, 321.
  • Sherman W. (1912). Vanadium steel bone plates and screws. Surg Gynecol Obstet. 14, 629-634.
  • Chen Q. and Thouas G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 87, 1-57.
  • Savıngy P. and Gırovd E. (2002). Metallic Biomaterials. Kungl Tekniska Högskolan. 11-15.
  • Smith D. C. (1993). Dental implants: materials and design considerations. International Journal of Prosthodontics. 6(2).
  • Parr G. R., Gardner L. K. and Toth R. W. (1985). Titanium: the mystery metal of implant dentistry. Dental materials aspects. The Journal of prosthetic dentistry. 54(3), 410-414.
  • Variola F., Brunski J. B., Orsini G., de Oliveira P. T., Wazen R. and Nanci A. (2011). Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 3(2), 335-353.
  • Çakır A. (1995). İnsan vücudunda kullanılan metalik implantların dünü ve bugünü. 8th. Internatıonal Metallurgy and Materials Congrees. 1131, 1137.
  • Brooks A., Clayton C., Doss K. and Lu Y. (1986). On the role of Cr in the passivity of stainless steel. Journal of the Electrochemical Society. 133(12), 2459.
  • Navarro M., Michiardi A., Castano O. and Planell J. (2008). Biomaterials in orthopaedics. Journal of the royal society interface. 5(27), 1137-1158.
  • Agarwal G. C., Berman B. M. and Stark L. (1969). A lumped parameter model of the cerebrospinal fluid system. IEEE Transactions on Biomedical Engineering. (1), 45-53.
  • Şimşek İ. (2017). Toz Metalurjisi İle Üretilen Titanyum Alaşımı Biyomalzemelerin Korozyon ve Aşınma Davranışlarının İncelenmesi. Doktora Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, Karabük, 30-44.
  • Biesiekierski A., Wang J., Gepreel M. A.-H. and Wen C. (2012). A new look at biomedical Ti-based shape memory alloys. Acta biomaterialia. 8(5), 1661-1669.
  • Pramanik S., Agarwal A. K. and Rai K. (2005). Chronology of total hip joint replacement and materials development. Trends in Biomaterials & Artificial Organs. 19(1), 15-26.
  • Van Noort R. (1987). Titanium: the implant material of today. Journal of Materials Science. 22(11), 3801-3811.
  • Duan K. and Wang R. (2006). Surface modifications of bone implants through wet chemistry. Journal of Materials Chemistry. 16(24), 2309-2321.
  • Davis J. (2003). Materials for medical devices. ASM Handbook Series.
  • Evans E. and Thomas I. (1986). The in vitro toxicity of cobalt-chrome-molybdenum alloy and its constituent metals. Biomaterials. 7(1), 25-29.
  • Zhu D., Cockerill I., Su Y., Zhang Z., Fu J., Lee K.-W., Ma J., Okpokwasili C., Tang L. and Zheng Y. (2019). Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS applied materials & interfaces. 11(7), 6809-6819.
  • Bowen P. K., Drelich J. and Goldman J. (2013). Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Advanced Materials. 25(18), 2577-2582.
  • Bowen P. K., Guillory II R. J., Shearier E. R., Seitz J.-M., Drelich J., Bocks M., Zhao F. and Goldman J. (2015). Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Materials Science and Engineering: C. 56, 467-472.
  • Guillory R. J., Bowen P. K., Hopkins S. P., Shearier E. R., Earley E. J., Gillette A. A., Aghion E., Bocks M., Drelich J. W. and Goldman J. (2016). Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants. ACS Biomaterials Science & Engineering. 2(12), 2355-2364.
  • Ma J., Zhao N. and Zhu D. (2015). Endothelial cellular responses to biodegradable metal zinc. ACS Biomaterials Science & Engineering. 1(11), 1174-1182.
  • Ma J., Zhao N. and Zhu D. (2016). Bioabsorbable zinc ion induced biphasic cellular responses in vascular smooth muscle cells. Scientific reports. 6(1), 1-10.
  • Shearier E. R., Bowen P. K., He W., Drelich A., Drelich J., Goldman J. and Zhao F. (2016). In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomaterials Science & Engineering. 2(4), 634-642.
  • Li H., Xie X., Zheng Y., Cong Y., Zhou F., Qiu K., Wang X., Chen S., Huang L. and Tian L. (2015). Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific reports. 5(1), 1-14.
  • Li H., Zheng Y. and Qin L. (2014). Progress of biodegradable metals. Progress in natural science: materials international. 24(5), 414-422.
  • Zheng Y. F., Gu X. N. and Witte F. (2014). Biodegradable metals. Materials Science and Engineering: R: Reports. 77, 1-34.
  • Feyerabend F., Fischer J., Holtz J., Witte F., Willumeit R., Drücker H., Vogt C. and Hort N. (2010). Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta biomaterialia. 6(5), 1834-1842.
  • Zeng R., Dietzel W., Witte F., Hort N. and Blawert C. (2008). Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials. 10(8), B3-B14.
  • Bobyn J., Stackpool G., Hacking S., Tanzer M. and Krygier J. (1999). Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. The Journal of bone and joint surgery. British volume. 81(5), 907-914.
  • Balci E. and Dagdelen F. (2022). The comparison of TiNiNbTa and TiNiNbV SMAs in terms of corrosion behavior, microhardness, thermal and structural properties. Journal of Thermal Analysis and Calorimetry. 1-7.
  • Dagdelen F., Balci E., Qader I., Aydogdu Y. and Saydam S. (2021). Effects of Substituting Nb with Ta on Microstructure and Thermal Properties of Novel Biocompatible TiNiNbTa Shape Memory Alloys. Physics of Metals and Metallography. 122(14), 1572-1580.
  • Balci E., Dagdelen F., Qader I. N. and Kok M. (2021). Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA. The European Physical Journal Plus. 136(2), 145.
  • Dalstra M., Denes G. and Melsen B. (2000). Titanium‐niobium, a new finishing wire alloy. Clinical orthodontics and research. 3(1), 6-14.
  • Xu J., Weng X.-J., Wang X., Huang J.-Z., Zhang C., Muhammad H., Ma X. and Liao Q.-D. (2013). Potential use of porous titanium–niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. PloS one. 8(11), e79289.
  • Dagdelen F. and Aydogdu Y. (2019). Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs. Journal of Thermal Analysis and Calorimetry. 136(2), 637-642.
  • Dagdelen F., Balci E., Qader I., Ozen E., Kok M., Kanca M., Abdullah S. and Mohammed S. (2020). Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys. JOM Journal of the Minerals Metals and Materials Society. 72(4), 1664-1672.
  • Osathanon T., Bespinyowong K., Arksornnukit M., Takahashi H. and Pavasant P. (2006). Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells. Journal of Materials Science: Materials in Medicine. 17(7), 619-625.
  • Zreiqat H., Ramaswamy Y., Wu C., Paschalidis A., Lu Z., James B., Birke O., McDonald M., Little D. and Dunstan C. R. (2010). The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials. 31(12), 3175-3184.
  • Zhao D., Witte F., Lu F., Wang J., Li J. and Qin L. (2017). Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials. 112, 287-302.
  • Yu W., Zhao H., Ding Z., Zhang Z., Sun B., Shen J., Chen S., Zhang B., Yang K. and Liu M. (2017). In vitro and in vivo evaluation of MgF2 coated AZ31 magnesium alloy porous scaffolds for bone regeneration B Biointerfaces.
  • Angrisani N., Reifenrath J., Zimmermann F., Eifler R., Meyer-Lindenberg A., Vano-Herrera K. and Vogt C. (2016). Biocompatibility and degradation of LAE442-based magnesium alloys after implantation of up to 3.5 years in a rabbit model. Acta biomaterialia. 44, 355-365.
  • Kuhlmann J., Bartsch I., Willbold E., Schuchardt S., Holz O., Hort N., Höche D., Heineman W. R. and Witte F. (2013). Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta biomaterialia. 9(10), 8714-8721.
  • Chen Y., Xu Z., Smith C. and Sankar J. (2014). Recent advances on the development of magnesium alloys for biodegradable implants. Acta biomaterialia. 10(11), 4561-4573.
  • Li H. and Zheng Y. (2016). Recent advances in bulk metallic glasses for biomedical applications. Acta biomaterialia. 36, 1-20.
  • Davis T., Bichler L., D'Elia F. and Hort N. (2018). Effect of TiBor on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy. Journal of Alloys and Compounds. 759, 70-79.
  • Wu H., Wu G. and Chu P. K. (2016). Effects of cerium ion implantation on the corrosion behavior of magnesium in different biological media. Surface and Coatings Technology. 306, 6-10.
  • Li K., Wang B., Yan B. and Lu W. (2013). Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment. Journal of Biomaterials Applications. 28(3), 375-384.
  • Liu P., Pan X., Yang W., Cai K. and Chen Y. (2012). Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation. Materials Letters. 75, 118-121.
  • Witte F. (2010). The history of biodegradable magnesium implants: a review. Acta biomaterialia. 6(5), 1680-1692.
  • Coulthard P., Esposito M., Slater M., Worthington H. and Kay E. (2003). Prevention. Part 5: Preventive strategies for patients requiring osseointegrated oral implant treatment. British dental journal. 195(4), 187-194.
  • Hua N., Huang L., Wang J., Cao Y., He W., Pang S. and Zhang T. (2012). Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study. Journal of Non-Crystalline Solids. 358(12-13), 1599-1604.
  • Black J. Biological performance of materials: fundamentals of biocompatibility. (2005). Crc Press.
  • Ong K. L., Lovald S. and Black J. Orthopaedic biomaterials in research and practice. (2014). CRC press.
  • Yilmaz Y., Avcı B. and Demirören H. (2019). Biyomalzeme Sektöründe Kullanılan Titanyum ve Alaşımları.
  • Yalcin B. M. and Karahan T. F. (2007). Effects of a couple communication program on marital adjustment. The Journal of the American Board of Family Medicine. 20(1), 36-44.
  • Akdaş Y. F. (2006). Termal Oksidasyon Yöntemi İle Cp-ti Ve Ti6al4v Alaşımının Yüzey Modifikasyonu. Fen Bilimleri Enstitüsü.
  • Williams D. F., Cahn R. W. and Bever M. B. Concise encyclopedia of medical & dental materials. (1990).
  • Lütjering G. and Williams J. C. Titanium matrix composites. (2007). Springer.
  • Karal Z. Biyouyumlu metallerden lazer ablasyon yöntemiyle nanoparçacık üretimi ve karakterizasyonu. Fen Bilimleri Enstitüsü.
  • Kasuga T., Kondo H. and Nogami M. (2002). Apatite formation on TiO2 in simulated body fluid. Journal of Crystal Growth. 235(1-4), 235-240.
  • Wang X.-X., Yan W., Hayakawa S., Tsuru K. and Osaka A. (2003). Apatite deposition on thermally and anodically oxidized titanium surfaces in a simulated body fluid. Biomaterials. 24(25), 4631-4637.
  • Park J. and Lakes R. S. Biomaterials: an introduction. (2007). Springer Science & Business Media.
  • Campbell F. C. Phase diagrams: understanding the basics. (2012). ASM international.
  • Shi X., Yang H., Mao H., Li Y., Zhang J. and Yin X. (2018). Effect of plastic deformation of V nanowires on the transformation characteristics of NiTiV alloys. Materials Science and Engineering: A. 735, 162-165.
  • Collings E. (1984). The physical metallurgy of titanium alloys. Metals Park Ohio. 3.
  • Marcus P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158.
  • Kırkıl Ş. (2014). At kestanesi kabuklarından kimyasal aktivasyon yöntemi ile elde edilen aktif karbonlara gümüş adsorpsiyonu.
  • Karakaya F. (2021). Yeşil sentez yöntemiyle Ruscus aculeatus L. bitkisi kullanılarak gümüş nanopartiküllerin sentezi ve antibiyofilm, antimikrobiyal, antikanser aktivitelerinin incelenmesi. Bartın Üniversitesi, Fen Bilimleri Enstitüsü.
  • Karaköse E. and Keskin M. (2015). Effect of microstructural evolution and elevated temperature on the mechanical properties of Ni–Cr–Mo alloys. Journal of Alloys and Compounds. 619, 82-90.
  • Tur K. (2009). Biomaterials and tissue engineering for regenerative repair of articular cartilage defects. Archives of Rheumatology. 24(4), 206-217.
  • Yamamoto A., Honma R. and Sumita M. (1998). Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials. 39(2), 331-340.
  • Bronzino J. D. and Peterson D. R. The biomedical engineering handbook: Four volume set. (2018). CRC press.
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Esra Balci 0000-0003-0127-7602

Fethi Dağdelen 0000-0001-9849-590X

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 23 Ağustos 2022
Kabul Tarihi 22 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 9 Sayı: 2

Kaynak Göster

APA Balci, E., & Dağdelen, F. (2022). Biyomalzeme Türleri ve Biyouyumlu Metalik Elementler. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(2), 1179-1195. https://doi.org/10.35193/bseufbd.1165914