Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Sulama Aralıkları ve Düzeylerinin Salçalık Domatesin Verim ve Kalite Bileşenlerine Etkileri ve Ekonomik Analizi

Yıl 2023, Cilt: 10 Sayı: 1, 129 - 139, 31.05.2023
https://doi.org/10.35193/bseufbd.1188145

Öz

Bu çalışma yarı nemli iklim koşulları altında salçalık domates yetiştiriciliğinde farklı sulama aralıkları ve seviyelerinin; verim, kalite ve net gelir değerleri üzerine etkisini belirlemek amacıyla 2019 yılında yürütülmüştür. Arazi denemeleri tesadüf bloklarında bölünmüş parseller deneme desenine göre gerçekleştirilmiştir. 4 günlük (A) ve 8 günlük (B) sulama aralıkları ana parselleri, A sınıfı buharlaşma kabından ölçülen buharlaşmanın %100 (T1), %80 (T2) ve %60’ının (T3) uygulandığı sulama düzeyi ise alt parselleri belirlemiştir. Sezonluk bitki su tüketimi (ET) değerleri 419 ile 527 mm arasında değişmiştir. Farklı sulama programlarının salçalık domateste meyve verimi, tek meyve ağırlığı, briks ve su verimliliği değerlerine etkileri p<0.01 düzeyinde önemli bulunmuştur. En yüksek meyve verimi değeri 111.65 t ha-1 ile AT1konusundan elde edilmiştir. En yüksek su ve sulama suyu üretkenliği değerleri sırasıyla 22.4 kg m-3 ve 31.4 kg m-3 ile AT2'den, en düşük değerler ise 16.1 kg m-3 ve 26.0 kg m-3 ile BT3konusundan elde edilmiştir. Sezonluk verim tepki faktörü (ky) 1.7 olarak belirlenmiştir. Farklı konulara ait net gelir değerleri 213.49 ile 5557.54 $ ha-1 arasında değişmiş, uygulanan sulama suyunun artmasıyla net gelir yükselmiştir. Çalışma sonuçlarına dayanarak, maksimum meyve verimi ve net gelir elde etmek için AT1konusuönerilmiştir. Sınırlı su kaynaklarına sahip yerlerde, kalite parametreleri ve su ihtiyacı arasında makul bir denge sağlayan AT2konusu da değerlendirilebilir.

Kaynakça

  • Çay, A., & Aykas, E. (2012). Sanayi tipi domates üretiminde farklı toprak işleme ve dikim tekniklerinin ekonomik karşılaştırılması. Tarım Makinaları Bilimi Dergisi, 8(4), 401-409.
  • FAO. (2022). Stats of Food and Agriculture Organization of the United Nations.http://www.fao.org/faostat/en/
  • Keskin, G., & Gül, U. (2004). Domates. Tarımsal Ekonomi Araştırma Enstitüsü, Bakış.
  • Türkiye İstatistik Kurumu. (2022). Bitkisel Üretim İstatistikleri https://tuikweb.tuik.gov.tr/PreTablo.do?alt_id=1001 (10.07.202).
  • Kaya, C., Kirkin, F., & Esin, Y. (2013). Ticari Domates Salçalarının Fiziksel ve Kimyasal Özellikleri. Academic Food Journal/Akademik Gıda, 11(2).
  • Alkan, Ç., & Konukcu, F. (2022). Determination of the Effect of Climate Change on Wheat Yield in the Porsuk Creek Watershed. ISPEC Journal of Agricultural Sciences, 6(2), 318-330.
  • Qadir, M., Boers, T. M., Schubert, S., Ghafoor, A., & Murtaza, G. (2003). Agricultural water management in water-starved countries: challenges and opportunities. Agricultural water management, 62(3), 165-185.
  • Cai, X. (2008). Water stress, water transfer and social equity in Northern China—Implications for policy reforms. Journal of Environmental Management, 87(1), 14-25.
  • Ertek, A., & Kanber, R. (2000). Pamukta uygun sulama dozu ve aralığının pan-evaporasyon yöntemiyle belirlenmesi.Turk J Agric, 24, 293–300.
  • Haynes, R. J. (1985). Principles of fertilizer use for trickle irrigated crops. Fertilizer research, 6(3), 235-255.
  • Helyes, L., Lugasi, A., & Pék, Z. (2012). Effect of irrigation on processing tomato yield and antioxidant components. Turkish Journal of Agriculture and Forestry, 36, 702–709.
  • Yazgan, S., Değirmenci, & H., Demirtaş, Ç. (2000). Bursa Koşullarında Sanayi Domatesi Su Verim İlişkilerinin Belirlenmesi Üzerine Bir Araştırma, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 13(1), 1-9.
  • Ertek, A., Erdal, I., Yılmaz, H.I., & Şenyiğit, U. (2012). Water and nitrogen application levels for the optimum tomato yield and water use efficiency. J. Agric. Sci. Technology, 14, 889-902.
  • Kuşçu, H., Turhan, A., & Demir, A.O. (2014). The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agricultural Water Management, 133, 92-103.
  • Sun, Q., Wang, Y., Chen, G., Yang, H., & Du, T. (2018). Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane. Agricultural Water Management, 203, 430-437.
  • Vural, H., Özzambak, E., Eser, B., Eşiyok, B., Yoltaş, T., & Duman, I. (1993). Üstün verim ve teknolojik özelliklere sahip sanayi domatesi çeşitlerinin belirlenmesi. Sanayi Domatesi Üretimini Geliştirme Projesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 1, 18.
  • Yavuz, M.Y., Yildirim, M., Camoglu, G., & Erken, O. (2007). Effect of different irrigation levels on yield, water use efficiency and some quality parameters on tomato. The Philippine Agricultural Scientist, 90(4), 283-288.
  • Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562-571.
  • Patanè, C., Tringali, S., & Sortino, O. (2011). Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae, 129(4), 590-596.
  • Kamal, A. M., & El-Shazly, M.M. (2013). Maximizing the productivity and water use efficiency of tomato plants (Lycopersicon esculentum Mill.) cultivated in the new reclaimed lands using different irrigation water quantities and some water saving substances. Journal of Plant Production, 4(9), 1399-1416.
  • Kuşçu, H., Turhan, A., Ozmen, N., Aydinol, P., & Demir, A.O. (2014). Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato. Horticulture, Environment, and Biotechnology, 55(2), 103-114.
  • Cetin, O., & Bilgel, L. (2002). Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management, 54(1), 1-15.
  • Garrity, P.D., Watts, D.G., Sullivan, C.Y., & Gilley, J.R. (1982). Moisture Deficits and Grain Sorghum Performance: Evapotranspiration-Yield Relationships.Agron. J., 74, 815-820.
  • James, L.G. (1988). Principles of farm irrigation systems design. New York, USA, 543 pp.
  • Patanè, C., & Cosentino, S. L. (2010). Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural water management, 97(1), 131-138.
  • Bos, M.G. (1980). Irrigation efficiencies at crop production level. ICID Bull, 29(2), 18–25.
  • Tarı, A.F., & Sapmaz, M. (2017). Farklı sulama düzeylerinin serada yetiştirilen domatesin verim ve kalitesine etkisi. Toprak Su Dergisi, 6(2), 11-17.
  • Stewart, J. I. (1976). Water production functions and predicted irrigation programs for principal crops as required for water resources planning and increased water use efficiency. PB-US National Technical Information Service (USA). no. 258051.
  • Doorenbos, J., & Kassam, A.H. (1979). Yield Response to Water. United Nations FAO. Publication no. 33, Rome.
  • Barker, R., Dawe, D., & Inocencio, A. (2003). Economics of water productivity in managing water for agriculture.Water productivity in agriculture: limits and opportunities for improvement. CABI Publishing, UK, 332-339.
  • Kadyampakeni, D. M., Kazombo-Phiri, S., Mati, B., & Fandika, I. R. (2014). Impacts of small-scale water management interventions on crop yield, water use and productivity in two agro-ecologies of Malawi. Agricultural Sciences, 5, 454-465.
  • Çelebi, M. (2014). The effect of water stress on tomato under different emitter discharges and semi-arid climate condition. Bulgarian Journal of Agricultural Science, 20(5), 1151-1157.
  • Çamoğlu, G., Demirel, K., Akçal, A., & Genç, L. (2019). Su stresinin sofralık domatesin verimi ve fizyolojik özellikleri üzerine etkileri. Bursa Uludag Üniv. Ziraat Fak. Derg., 33(1), 15-30.
  • Xiukang, W., & Yingying, X. (2016). Evaluation of the effect of irrigation and fertilization by drip fertigation on tomato yield and water use efficiency in greenhouse. International Journal of Agronomy, 3961903.
  • Karaer, M., Kuscu, H., & Gultas, H.T. (2021). The Effect of Different Irrigation Levels and Mulch Application On Some Quality Criteria in Table Tomatoes (Lycopersicon esculentum mill.). Applied ecology and environmental research, 18(4), 5437-5447.
  • Aşık, M., & Kuşçu, H. (2021). Hasat Öncesi Sulamayı Sonlandırma Zamanının Damla Yöntemiyle Sulanan Salçalık Domatesin Verim ve Kalitesi Üzerine Etkisi. Toprak Su Dergisi, 10(1), 51-59.
  • Özbahçe, A., & Tarı, A.F. (2009). Farklı Damlatıcı Aralıklarının ve Sulama Düzeylerinin Salçalık Domatesin Verim ve Kalite Bileşenleri Üzerine Etkisi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 2, 63-70.
  • Çömlekçioğlu, N., & Şimşek, M. (2014). Yüksek sıcaklık koşullarında ve farklı su seviyesinde gibberellik asidin (GA3) sanayi domatesinde meyve tutumuna etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 24(3), 270-279.
  • Zhang, H., Xiong, Y., Huang, G., Xu, X., & Huang, Q. (2017). Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the hetao irrigation district. Agricultural Water Management, 179, 205-214.
  • Biswas, S. K., Akanda, A. R., Rahman, M. S., & Hossain, M. A. (2016). Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant, Soil and Environment, 61(3), 97-102.
  • Lopez, J., Ballesteros, R., Ruiz, R., & Ciruelos, A. (2001). Influence on tomato yield and brix of an irrigation cut-off fifteen days before the predicted harvest date in southwestern Spain. Acta Horticulturae, 542, 117-125.
  • Nas, Y., Duman, İ., & Ul, M.A. (2017). Farklı toprak tiplerinde yetiştirilen sanayi domatesinde son sulama uygulamalarının verim ve meyve kalite özelliklerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 54(2), 223-230.
  • Giuliani, M.M., Nardella, E., Gagliardi, A., & Gatta, G. (2017). Deficit irrigation and partial root-zone drying techniques in processing tomato cultivated under Mediterranean climate conditions. Sustainability, 9(12), 21-97.
  • Turhan, A., Özmen, N., Serbeci, M.S., & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Hort. Sci., 4, 142–149.
  • Atikmen, N.Ç., & Kütük, C. (2014). Sakarya Akgöl organik toprağının domates bitkisinin kalite parametreleri üzerine etkisi. Trakya University Journal of Natural Sciences, 15(2), 89-94.
  • Gatta, G., Giuliani, M.M., Monteleone, M., Nardella, E., & De Caro, A. (2007). Deficitirrigation scheduling inprocessing tomato. Water Saving in Mediterranean Agricultureand Future Research Needs, CIHEAM, Bari, 277–289.
  • Hanson, B., & May, D. (2004). Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural water management, 68(1), 1-17.
  • Engindeniz, S. (2007). Economic analysis of processing tomato growing: the case study of Torbali, west Turkey. Spanish journal of agricultural research, 5(1), 7-15.
  • Karadaş, K. K., & Güler, F. (2021). Iğdır İlinde Domates Üretim Maliyetinin Belirlenmesi. Journal of the Institute of Science and Technology, 11(3), 2350-2356.
  • Suleiman, N. J., Mani, J. R., Hudu, M. I., Baba, D., & Yusuf, M. (2019). Cost-Benefıt Analysis of Tomato Production Among Small-scale Farmers in Kano River İrrigation Project Area of Kano State, Nigeria. Journal of Agripreneurship and Sustainable Development, 2(1), 39-46.

Effects of Different Irrigation Intervals and Irrigation Levels on Yield and Quality Components of Processing Tomatoes and Economical Analysis

Yıl 2023, Cilt: 10 Sayı: 1, 129 - 139, 31.05.2023
https://doi.org/10.35193/bseufbd.1188145

Öz

This study was carried out to determine the effects of different irrigation intervals (II) and irrigation levels (IL) on yield, quality and net income values of processing tomato cultivation in a sub-humid climatic zone in 2019. A split-plot randomized complete block design with three replicates was used for the field experiments. The II4-days (A) and 8-days (B) were determined as main-plot factor and different IL were established according to 100% (T1), 80% (T2) and 60% (T3) of the cumulative evaporation occurring in the Class A pan were determined as the sub-plot factor. Seasonal crop evapotranspiration (ET) values varied between 419 and 527 mm. The effects of different irrigation strategies on fruit yield, average fruit weight, brix and water productivity values of processing tomato were significant at the p<0.01 level. The greatest fruit yield was obtained in AT1 treatment with 111.65 t ha-1. The highest water and irrigation water productivity values were obtained from AT2 as 22.4 kg m-3 and 31.4 kg m-3 and the lowest values from BT3 treatment as 16.1 kg m-3 and 26.0 kg m-3 respectively. The yield response factor (ky) was determined as 1.7 for the growing season. The net income values of different treatments ranged from 213.49 to 5557.54 $ ha-1 and the net income increased with the augmentation inthe irrigation water applied. Based on the study results, AT1 treatment was recommended to obtain maximum fruit yield and net income. However, in locations with limited water resources, AT2 treatment which provides a reasonable balance between quality components and water requirements can also be evaluated.

Kaynakça

  • Çay, A., & Aykas, E. (2012). Sanayi tipi domates üretiminde farklı toprak işleme ve dikim tekniklerinin ekonomik karşılaştırılması. Tarım Makinaları Bilimi Dergisi, 8(4), 401-409.
  • FAO. (2022). Stats of Food and Agriculture Organization of the United Nations.http://www.fao.org/faostat/en/
  • Keskin, G., & Gül, U. (2004). Domates. Tarımsal Ekonomi Araştırma Enstitüsü, Bakış.
  • Türkiye İstatistik Kurumu. (2022). Bitkisel Üretim İstatistikleri https://tuikweb.tuik.gov.tr/PreTablo.do?alt_id=1001 (10.07.202).
  • Kaya, C., Kirkin, F., & Esin, Y. (2013). Ticari Domates Salçalarının Fiziksel ve Kimyasal Özellikleri. Academic Food Journal/Akademik Gıda, 11(2).
  • Alkan, Ç., & Konukcu, F. (2022). Determination of the Effect of Climate Change on Wheat Yield in the Porsuk Creek Watershed. ISPEC Journal of Agricultural Sciences, 6(2), 318-330.
  • Qadir, M., Boers, T. M., Schubert, S., Ghafoor, A., & Murtaza, G. (2003). Agricultural water management in water-starved countries: challenges and opportunities. Agricultural water management, 62(3), 165-185.
  • Cai, X. (2008). Water stress, water transfer and social equity in Northern China—Implications for policy reforms. Journal of Environmental Management, 87(1), 14-25.
  • Ertek, A., & Kanber, R. (2000). Pamukta uygun sulama dozu ve aralığının pan-evaporasyon yöntemiyle belirlenmesi.Turk J Agric, 24, 293–300.
  • Haynes, R. J. (1985). Principles of fertilizer use for trickle irrigated crops. Fertilizer research, 6(3), 235-255.
  • Helyes, L., Lugasi, A., & Pék, Z. (2012). Effect of irrigation on processing tomato yield and antioxidant components. Turkish Journal of Agriculture and Forestry, 36, 702–709.
  • Yazgan, S., Değirmenci, & H., Demirtaş, Ç. (2000). Bursa Koşullarında Sanayi Domatesi Su Verim İlişkilerinin Belirlenmesi Üzerine Bir Araştırma, Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 13(1), 1-9.
  • Ertek, A., Erdal, I., Yılmaz, H.I., & Şenyiğit, U. (2012). Water and nitrogen application levels for the optimum tomato yield and water use efficiency. J. Agric. Sci. Technology, 14, 889-902.
  • Kuşçu, H., Turhan, A., & Demir, A.O. (2014). The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agricultural Water Management, 133, 92-103.
  • Sun, Q., Wang, Y., Chen, G., Yang, H., & Du, T. (2018). Water use efficiency was improved at leaf and yield levels of tomato plants by continuous irrigation using semipermeable membrane. Agricultural Water Management, 203, 430-437.
  • Vural, H., Özzambak, E., Eser, B., Eşiyok, B., Yoltaş, T., & Duman, I. (1993). Üstün verim ve teknolojik özelliklere sahip sanayi domatesi çeşitlerinin belirlenmesi. Sanayi Domatesi Üretimini Geliştirme Projesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 1, 18.
  • Yavuz, M.Y., Yildirim, M., Camoglu, G., & Erken, O. (2007). Effect of different irrigation levels on yield, water use efficiency and some quality parameters on tomato. The Philippine Agricultural Scientist, 90(4), 283-288.
  • Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562-571.
  • Patanè, C., Tringali, S., & Sortino, O. (2011). Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae, 129(4), 590-596.
  • Kamal, A. M., & El-Shazly, M.M. (2013). Maximizing the productivity and water use efficiency of tomato plants (Lycopersicon esculentum Mill.) cultivated in the new reclaimed lands using different irrigation water quantities and some water saving substances. Journal of Plant Production, 4(9), 1399-1416.
  • Kuşçu, H., Turhan, A., Ozmen, N., Aydinol, P., & Demir, A.O. (2014). Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato. Horticulture, Environment, and Biotechnology, 55(2), 103-114.
  • Cetin, O., & Bilgel, L. (2002). Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management, 54(1), 1-15.
  • Garrity, P.D., Watts, D.G., Sullivan, C.Y., & Gilley, J.R. (1982). Moisture Deficits and Grain Sorghum Performance: Evapotranspiration-Yield Relationships.Agron. J., 74, 815-820.
  • James, L.G. (1988). Principles of farm irrigation systems design. New York, USA, 543 pp.
  • Patanè, C., & Cosentino, S. L. (2010). Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural water management, 97(1), 131-138.
  • Bos, M.G. (1980). Irrigation efficiencies at crop production level. ICID Bull, 29(2), 18–25.
  • Tarı, A.F., & Sapmaz, M. (2017). Farklı sulama düzeylerinin serada yetiştirilen domatesin verim ve kalitesine etkisi. Toprak Su Dergisi, 6(2), 11-17.
  • Stewart, J. I. (1976). Water production functions and predicted irrigation programs for principal crops as required for water resources planning and increased water use efficiency. PB-US National Technical Information Service (USA). no. 258051.
  • Doorenbos, J., & Kassam, A.H. (1979). Yield Response to Water. United Nations FAO. Publication no. 33, Rome.
  • Barker, R., Dawe, D., & Inocencio, A. (2003). Economics of water productivity in managing water for agriculture.Water productivity in agriculture: limits and opportunities for improvement. CABI Publishing, UK, 332-339.
  • Kadyampakeni, D. M., Kazombo-Phiri, S., Mati, B., & Fandika, I. R. (2014). Impacts of small-scale water management interventions on crop yield, water use and productivity in two agro-ecologies of Malawi. Agricultural Sciences, 5, 454-465.
  • Çelebi, M. (2014). The effect of water stress on tomato under different emitter discharges and semi-arid climate condition. Bulgarian Journal of Agricultural Science, 20(5), 1151-1157.
  • Çamoğlu, G., Demirel, K., Akçal, A., & Genç, L. (2019). Su stresinin sofralık domatesin verimi ve fizyolojik özellikleri üzerine etkileri. Bursa Uludag Üniv. Ziraat Fak. Derg., 33(1), 15-30.
  • Xiukang, W., & Yingying, X. (2016). Evaluation of the effect of irrigation and fertilization by drip fertigation on tomato yield and water use efficiency in greenhouse. International Journal of Agronomy, 3961903.
  • Karaer, M., Kuscu, H., & Gultas, H.T. (2021). The Effect of Different Irrigation Levels and Mulch Application On Some Quality Criteria in Table Tomatoes (Lycopersicon esculentum mill.). Applied ecology and environmental research, 18(4), 5437-5447.
  • Aşık, M., & Kuşçu, H. (2021). Hasat Öncesi Sulamayı Sonlandırma Zamanının Damla Yöntemiyle Sulanan Salçalık Domatesin Verim ve Kalitesi Üzerine Etkisi. Toprak Su Dergisi, 10(1), 51-59.
  • Özbahçe, A., & Tarı, A.F. (2009). Farklı Damlatıcı Aralıklarının ve Sulama Düzeylerinin Salçalık Domatesin Verim ve Kalite Bileşenleri Üzerine Etkisi. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi, 2, 63-70.
  • Çömlekçioğlu, N., & Şimşek, M. (2014). Yüksek sıcaklık koşullarında ve farklı su seviyesinde gibberellik asidin (GA3) sanayi domatesinde meyve tutumuna etkisi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 24(3), 270-279.
  • Zhang, H., Xiong, Y., Huang, G., Xu, X., & Huang, Q. (2017). Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the hetao irrigation district. Agricultural Water Management, 179, 205-214.
  • Biswas, S. K., Akanda, A. R., Rahman, M. S., & Hossain, M. A. (2016). Effect of drip irrigation and mulching on yield, water-use efficiency and economics of tomato. Plant, Soil and Environment, 61(3), 97-102.
  • Lopez, J., Ballesteros, R., Ruiz, R., & Ciruelos, A. (2001). Influence on tomato yield and brix of an irrigation cut-off fifteen days before the predicted harvest date in southwestern Spain. Acta Horticulturae, 542, 117-125.
  • Nas, Y., Duman, İ., & Ul, M.A. (2017). Farklı toprak tiplerinde yetiştirilen sanayi domatesinde son sulama uygulamalarının verim ve meyve kalite özelliklerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 54(2), 223-230.
  • Giuliani, M.M., Nardella, E., Gagliardi, A., & Gatta, G. (2017). Deficit irrigation and partial root-zone drying techniques in processing tomato cultivated under Mediterranean climate conditions. Sustainability, 9(12), 21-97.
  • Turhan, A., Özmen, N., Serbeci, M.S., & Seniz, V. (2011). Effects of grafting on different rootstocks on tomato fruit yield and quality. Hort. Sci., 4, 142–149.
  • Atikmen, N.Ç., & Kütük, C. (2014). Sakarya Akgöl organik toprağının domates bitkisinin kalite parametreleri üzerine etkisi. Trakya University Journal of Natural Sciences, 15(2), 89-94.
  • Gatta, G., Giuliani, M.M., Monteleone, M., Nardella, E., & De Caro, A. (2007). Deficitirrigation scheduling inprocessing tomato. Water Saving in Mediterranean Agricultureand Future Research Needs, CIHEAM, Bari, 277–289.
  • Hanson, B., & May, D. (2004). Effect of subsurface drip irrigation on processing tomato yield, water table depth, soil salinity, and profitability. Agricultural water management, 68(1), 1-17.
  • Engindeniz, S. (2007). Economic analysis of processing tomato growing: the case study of Torbali, west Turkey. Spanish journal of agricultural research, 5(1), 7-15.
  • Karadaş, K. K., & Güler, F. (2021). Iğdır İlinde Domates Üretim Maliyetinin Belirlenmesi. Journal of the Institute of Science and Technology, 11(3), 2350-2356.
  • Suleiman, N. J., Mani, J. R., Hudu, M. I., Baba, D., & Yusuf, M. (2019). Cost-Benefıt Analysis of Tomato Production Among Small-scale Farmers in Kano River İrrigation Project Area of Kano State, Nigeria. Journal of Agripreneurship and Sustainable Development, 2(1), 39-46.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

İlker Elmas 0000-0002-6306-0065

Ali Kaan Yetik 0000-0003-1372-8407

Hayrettin Kuşçu 0000-0001-9600-7685

Yayımlanma Tarihi 31 Mayıs 2023
Gönderilme Tarihi 13 Ekim 2022
Kabul Tarihi 24 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 10 Sayı: 1

Kaynak Göster

APA Elmas, İ., Yetik, A. K., & Kuşçu, H. (2023). Effects of Different Irrigation Intervals and Irrigation Levels on Yield and Quality Components of Processing Tomatoes and Economical Analysis. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 10(1), 129-139. https://doi.org/10.35193/bseufbd.1188145