Araştırma Makalesi
BibTex RIS Kaynak Göster

Derin Öğrenme Modellerinin Testi için Ortak Platform Tasarımı

Yıl 2025, Cilt: 12 Sayı: 2, 693 - 709, 30.11.2025
https://doi.org/10.35193/bseufbd.1732011

Öz

Bu araştırmanın amacı, kullanıcıların herhangi bir yazılım bilgisine ihtiyaç duymaksızın farklı derin öğrenme modellerini mobil cihazlar üzerinden test edebilecekleri bir uygulama geliştirmektir. Geliştirilen platform, Flutter yazılım çatısı kullanılarak hazırlanmış olup, TensorFlow Lite (TFLite) formatındaki modellerin çeşitli veri kümeleri ile denenmesini mümkün kılmaktadır. Uygulamanın temel işlevi, DeepLabV3, MobileNet ve YOLOv2 gibi yaygın kullanılan derin öğrenme mimarilerini destekleyerek model doğruluğu, işlem süresi ve bellek kullanımı gibi performans ölçütlerine dair kullanıcıya geri bildirim sunmaktır. Böylece, yalnızca belirli modellerle sınırlı kalan mevcut uygulamaların aksine, daha genel ve genişletilebilir bir yapı önerilmektedir. Çift platform desteği (Android ve iOS), sade kullanıcı arayüzü ve kolay kullanılabilirlik özellikleri sayesinde teknik bilgisi sınırlı kullanıcılar için erişilebilir bir çözüm sunulmaktadır. Elde edilen bulgular, geliştirilen platformun model test süreçlerini demokratikleştirerek derin öğrenme teknolojilerinin daha geniş kullanıcı gruplarına ulaşmasında etkili olabileceğini göstermektedir. Gelecek çalışmalarda, PyTorch ve ONNX formatlarının entegrasyonu, bulut tabanlı veri işleme sistemleriyle uyumluluk ve mobil donanım sınırlamalarına yönelik optimizasyon çalışmaları hedeflenmektedir.

Kaynakça

  • Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58–65.
  • Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M. L., Chen, S. C., & Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5), 1–36.
  • Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavaf, N., & Fox, E. A. (2020). Natural language processing advancements by deep learning: A survey. arXiv preprint, arXiv:2003.01200.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
  • Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
  • Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in batch-normalized models. Advances in Neural Information Processing Systems, 30.
  • Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems, 27.
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252.
  • Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379.
  • Karar, M. E., Abd Elaziz, M., Abdelwahab, A., & Elsheikh, A. H. (2021). A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60(5), 4423–4432.
  • Ngugi, L. C., Abdelwahab, M., & Abo-Zahhad, M. (2020). Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Computers and Electronics in Agriculture, 178, 105788.
  • Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application. Journal of Medical Systems, 46(11), 79.
  • Gencturk, B., Cinar, A., Taspinar, Y., & Sahin, C. (2024). Detection of hazelnut varieties and development of mobile application with CNN data fusion feature reduction-based models. European Food Research and Technology, 250(1), 97–110.
  • Awasthi, N., Paul, A., Kumar, S., Kumar, M., Kaur, T., & Sethi, N. (2021). Mini-COVIDNet: Efficient lightweight deep neural network for ultrasound-based point-of-care detection of COVID-19. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(6), 2023–2037.
  • Chen, Y., Li, C., & Cheng, L. (2020). Deep learning on mobile and embedded devices: State-of-the-art, challenges, and future directions. ACM Computing Surveys (CSUR), 53(4), 1–37.
  • Loyani, L., & Machuve, D. (2021). A deep learning-based mobile application for segmenting Tuta absoluta’s damage on tomato plants. Engineering, Technology & Applied Science Research, 11(5), 7730–7737.
  • Ahmed, R. T., & Reddy, P. V. G. D. (2021). Development of a deep learning model for plant disease detection on mobile devices. AgriEngineering, 3(1), 32–45.
  • Kimeu, J. M., Kisangiri, M., Mbelwa, H., & Leo, J. (2024). Deep learning-based mobile application for the enhancement of pneumonia medical imaging analysis: A case-study of West-Meru Hospital. Informatics in Medicine Unlocked, 50, 101582.
  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA.
  • Hebb, D. O. (2005). The Organization of Behavior: A Neuropsychological Theory. Psychology Press, New York, NY.
  • Crevier, D. (1993). AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York, NY.
  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12–12.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
  • Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065.
  • Chen, L., Zhang, Y., & Li, H. (2021). Review of image classification algorithms based on convolutional neural networks. Remote Sensing, 13(22), 4712.
  • Padilla, R., Netto, S. L., & Da Silva, E. A. (2020). A survey on performance metrics for object-detection algorithms. International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE.
  • Mo, Y., Lin, Y., & Zhou, J. (2022). Review of the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing, 493, 626–646.
  • Ustundag, M. T., Gunes, E., & Bahçivan, E. (2017). Turkish adaptation of digital literacy scale and investigating pre-service science teachers' digital literacy. Journal of Education and Future, 12, 1–17.
  • Wang, J., Li, Z., & Liu, W. (2021). Deep 3D human pose estimation: A review. Computer Vision and Image Understanding, 210, 103225.
  • Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493.
  • García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. Springer, Cham.
  • Cateni, S., Colla, V., & Vannucci, M. (2012). Variable selection and feature extraction through artificial intelligence techniques. Multivariate Analysis in Management, Engineering and the Science, 6, 103–118.
  • Kärkkäinen, T. (2014). On cross-validation for MLP model evaluation. Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, S+SSPR 2014, Joensuu, Finland, August 20–22, 2014, Proceedings. Springer.
  • Mathew, A., Amudha, P., & Sivakumari, S. (2021). Deep learning techniques: An overview. Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2020. Springer, 599–608.
  • Khalid, S., Khalil, T., & Nasreen, S. (2020). Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Network Open, 3(3), e201664.
  • Lu, J., Tan, L., & Jiang, H. (2021). Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture, 11(8), 707.
  • Sameen, M. I., Pradhan, B., & Lee, S. (2020). Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena, 186, 104249.
  • Gunda, N. S. K., Gautam, S. H., & Mitra, S. K. (2019). Artificial intelligence based mobile application for water quality monitoring. Journal of The Electrochemical Society, 166(9), B3031.
  • Sánchez-Morales, L. N., López-Juárez, I., Muñoz-Arteaga, J., & Estrada, M. (2020). Generating educational mobile applications using UIDPs identified by artificial intelligence techniques. Computer Standards & Interfaces, 70, 103407.
  • Tashildar, A., Pandey, P., & Deshmukh, V. (2020). Application development using Flutter. International Research Journal of Modernization in Engineering Technology and Science, 2(8), 1262–1266.
  • Saabith, A. S., & Vinothra, T. (2020). Flutter-based mobile applications: A review. International Journal of Advanced Computer Science and Applications, 11(9).

Designing a Common Platform for Testing Deep Learning Models

Yıl 2025, Cilt: 12 Sayı: 2, 693 - 709, 30.11.2025
https://doi.org/10.35193/bseufbd.1732011

Öz

The aim of this study is to develop a mobile application that enables users to test various deep learning models on mobile devices without requiring any programming knowledge. The platform was developed using the Flutter framework and allows for the testing of models in TensorFlow Lite (TFLite) format with different datasets. The core functionality of the application includes supporting commonly used deep learning architectures, such as DeepLabV3, MobileNet, and YOLOv2, while providing feedback on performance metrics, such as accuracy, processing time, and memory usage. Unlike existing applications that are often limited to specific models, the proposed platform offers a generalized and extensible structure. With its cross-platform compatibility (Android and iOS), user-friendly interface, and ease of use, the application provides an accessible solution for users with limited technical background. The findings indicate that the platform can contribute to democratizing the model testing process and facilitating broader access to deep learning technologies. Future work will focus on extending compatibility to other model formats, such as PyTorch and ONNX, integrating with cloud-based processing systems, and optimizing performance for mobile hardware limitations.

Kaynakça

  • Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58–65.
  • Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M. L., Chen, S. C., & Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5), 1–36.
  • Torfi, A., Shirvani, R. A., Keneshloo, Y., Tavaf, N., & Fox, E. A. (2020). Natural language processing advancements by deep learning: A survey. arXiv preprint, arXiv:2003.01200.
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
  • Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
  • Ioffe, S. (2017). Batch renormalization: Towards reducing minibatch dependence in batch-normalized models. Advances in Neural Information Processing Systems, 30.
  • Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How transferable are features in deep neural networks? Advances in Neural Information Processing Systems, 27.
  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252.
  • Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379.
  • Karar, M. E., Abd Elaziz, M., Abdelwahab, A., & Elsheikh, A. H. (2021). A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60(5), 4423–4432.
  • Ngugi, L. C., Abdelwahab, M., & Abo-Zahhad, M. (2020). Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Computers and Electronics in Agriculture, 178, 105788.
  • Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application. Journal of Medical Systems, 46(11), 79.
  • Gencturk, B., Cinar, A., Taspinar, Y., & Sahin, C. (2024). Detection of hazelnut varieties and development of mobile application with CNN data fusion feature reduction-based models. European Food Research and Technology, 250(1), 97–110.
  • Awasthi, N., Paul, A., Kumar, S., Kumar, M., Kaur, T., & Sethi, N. (2021). Mini-COVIDNet: Efficient lightweight deep neural network for ultrasound-based point-of-care detection of COVID-19. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(6), 2023–2037.
  • Chen, Y., Li, C., & Cheng, L. (2020). Deep learning on mobile and embedded devices: State-of-the-art, challenges, and future directions. ACM Computing Surveys (CSUR), 53(4), 1–37.
  • Loyani, L., & Machuve, D. (2021). A deep learning-based mobile application for segmenting Tuta absoluta’s damage on tomato plants. Engineering, Technology & Applied Science Research, 11(5), 7730–7737.
  • Ahmed, R. T., & Reddy, P. V. G. D. (2021). Development of a deep learning model for plant disease detection on mobile devices. AgriEngineering, 3(1), 32–45.
  • Kimeu, J. M., Kisangiri, M., Mbelwa, H., & Leo, J. (2024). Deep learning-based mobile application for the enhancement of pneumonia medical imaging analysis: A case-study of West-Meru Hospital. Informatics in Medicine Unlocked, 50, 101582.
  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA.
  • Hebb, D. O. (2005). The Organization of Behavior: A Neuropsychological Theory. Psychology Press, New York, NY.
  • Crevier, D. (1993). AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York, NY.
  • McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12–12.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
  • Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065.
  • Chen, L., Zhang, Y., & Li, H. (2021). Review of image classification algorithms based on convolutional neural networks. Remote Sensing, 13(22), 4712.
  • Padilla, R., Netto, S. L., & Da Silva, E. A. (2020). A survey on performance metrics for object-detection algorithms. International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE.
  • Mo, Y., Lin, Y., & Zhou, J. (2022). Review of the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing, 493, 626–646.
  • Ustundag, M. T., Gunes, E., & Bahçivan, E. (2017). Turkish adaptation of digital literacy scale and investigating pre-service science teachers' digital literacy. Journal of Education and Future, 12, 1–17.
  • Wang, J., Li, Z., & Liu, W. (2021). Deep 3D human pose estimation: A review. Computer Vision and Image Understanding, 210, 103225.
  • Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493.
  • García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. Springer, Cham.
  • Cateni, S., Colla, V., & Vannucci, M. (2012). Variable selection and feature extraction through artificial intelligence techniques. Multivariate Analysis in Management, Engineering and the Science, 6, 103–118.
  • Kärkkäinen, T. (2014). On cross-validation for MLP model evaluation. Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, S+SSPR 2014, Joensuu, Finland, August 20–22, 2014, Proceedings. Springer.
  • Mathew, A., Amudha, P., & Sivakumari, S. (2021). Deep learning techniques: An overview. Advanced Machine Learning Technologies and Applications: Proceedings of AMLTA 2020. Springer, 599–608.
  • Khalid, S., Khalil, T., & Nasreen, S. (2020). Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Network Open, 3(3), e201664.
  • Lu, J., Tan, L., & Jiang, H. (2021). Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture, 11(8), 707.
  • Sameen, M. I., Pradhan, B., & Lee, S. (2020). Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena, 186, 104249.
  • Gunda, N. S. K., Gautam, S. H., & Mitra, S. K. (2019). Artificial intelligence based mobile application for water quality monitoring. Journal of The Electrochemical Society, 166(9), B3031.
  • Sánchez-Morales, L. N., López-Juárez, I., Muñoz-Arteaga, J., & Estrada, M. (2020). Generating educational mobile applications using UIDPs identified by artificial intelligence techniques. Computer Standards & Interfaces, 70, 103407.
  • Tashildar, A., Pandey, P., & Deshmukh, V. (2020). Application development using Flutter. International Research Journal of Modernization in Engineering Technology and Science, 2(8), 1262–1266.
  • Saabith, A. S., & Vinothra, T. (2020). Flutter-based mobile applications: A review. International Journal of Advanced Computer Science and Applications, 11(9).
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yazılım Testi, Doğrulama ve Validasyon
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Kuru 0000-0003-3362-3725

Hatice Küpeli 0009-0005-2872-5841

Kerim Kürşat Çevik 0000-0002-2921-506X

Yayımlanma Tarihi 30 Kasım 2025
Gönderilme Tarihi 1 Temmuz 2025
Kabul Tarihi 15 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 2

Kaynak Göster

APA Kuru, İ., Küpeli, H., & Çevik, K. K. (2025). Derin Öğrenme Modellerinin Testi için Ortak Platform Tasarımı. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 12(2), 693-709. https://doi.org/10.35193/bseufbd.1732011