Derleme
BibTex RIS Kaynak Göster

Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains

Yıl 2024, , 283 - 287, 15.11.2024
https://doi.org/10.19127/bshealthscience.1551540

Öz

In the presented work, the literature data on the influence of various environmental factors were analyzed on the formation of silver nanoparticles by yeast strains. According to literature information and our obtained results, it was determined that the optimal conditions for the synthesis of silver nanoparticles by the yeast strain Saccharomyces ellipsoideus BSU-XR1 were on the 21st day of incubation, on 4-6 days of incubation in different strains of Saccharomyces cerevisiae, and between 2-10 days in Candida strains. The optimal amount of wet biomass was between 8 and 10 g for Candida strains and 10 g for Saccharomyces strains. The temperature limit for Saccharomyces was observed at 25-35 °C, and for Candida at 25-37 °C. For strains, synthesis of silver nanoparticles was optimal in the pH range of 4-10, and pH range of 7 for Candida strains. Depending on the concentration of AgNO3 (silver nitrate), salt, the optimal synthesis of silver nanoparticles occurred at concentrations of 0.5 and 1 mM for Saccharomyces, and 1 mM for Candida. The optimal incubation conditions for both types of strains were under dark environment.

Kaynakça

  • Abd El- Aziz ARM, Al-Othman MR, Saleh A. Alsohaibani SA, Mahmoud MA, Sayed SRM. 2012. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus niger isolated from Saudi Arabia (strain KSU – 12). Digest J Nanomat Biostruct, 7(4): 1491.
  • Azadaliyeva SF, Jafarov MM, Agamaliyev ZA, Eyvazova QI, Ganbarov XQ. 2018. The effect of incubation period on the formation of silver nanoparticles by Saccharomyces ellipsoideus BSU – XR1 yeast strain. Scient Works Inst Microbiol ANAS, 6(1): 42.
  • Azadaliyeva SF, Ganbarov KG, Jafarov MM, Huseynova SI. 2021. Influence of biomass quantity on the formation of silver nanoparticles by saccharomyces ellipsoideus BSU-XR1. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и Технические Науки, 5: 7-11.
  • Баранова ЕК, Мулюкин АЛ, Козлова АН. 2005. Взаимодействие ионов и кластеров серебра в водных и водно-органических растворах с клетками Candida utilis и Saccharomyces cerevisiae. Современные наукоемкие технологии, 6(5): 33-37.
  • Bhainsa KC, D'Souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B.: Biointerfaces, 48(2): 190.
  • Bozkurt HC, Jafarov MM, Seyidova KQ. 2017. Formation of silver nanoparticles in the culture liquid of Candida guillermondii BSU-217 yeast strain. Scient Works Inst Microbiol ANAS, 15(1): 214.
  • Chauhan R, Reddy A, Abraham J. 2014. Biosynthesis and antimicrobial potential of silver and zinc oxide nanoparticles using Candida diversa strain JA1. Der Pahrma Chemica, 6(3): 39.
  • Ganbarov KHG, Musayev EM, Ahmadov IS, Ramazanov MA, Eyvazova GZ, Agamaliyev A. 2014. The concentration effect of the formation of silver nanoparticles by the mold fungus Aspergillus niger BDU A4. J Biotechnol, 185: 28.
  • Ganbarov KHG, Agayeva NA, Ramazanov MA, Abdulhamidova SM, Agamaliyev ZA, Eyvazova GM. 2016. Extracellular formation of silver nanoparticles by the cell filtrate of Actinomyces sp. NSX-333. Int J Res Stud Biosci, 4(11): 1.
  • Ganbarov KHG, Jafarov MM, Azadaliyeva SF, Huseynova SI, Eyvazova GI. 2018. Effect of temperature on the formation of silver nanoparticles by Saccharomyces ellipsoideus BSU – XR1 yeast strain. International Scientific Conference on Current Problems of Modern Natural and Economic Sciences, Ganja, Azerbaijan, pp: 293-299.
  • Ganbarov KHG, Jafarov MM, Huseynova SÝ. 2019. The impact of temperature on synthesis of silver nanoparticles by Candida macedoniensis BDU-MI44. Sci Educ Soc Bull Scient Conf Tambov, 9-2(49): 2.
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D. 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surface Biol Biointerf, 74: 328.
  • Guangquan L, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K. 2012. Fungus - mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci, 13(1): 466.
  • Hassan A, Mansour M, Mahmoud H. 2013. Biosynthesis of silver nanoparticles by Candida albicans and its antifungal activity on some fungal pathogens. New York Sci J, 6(3): 27.
  • Hasanova S, Guliyeva SM, Kelbiyeva SA, Suleymanova G, Babayeva RF, Ganbarov K. 2017. The study of morphological and cultural properties of Actinomycetes forming silver nanoparticles. Advances in Biology and Earth Sciences, 2(2): 168.
  • Honary S, Barabadi H, Gharaei E, Naghibi F. 2017. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropic J. Pharm. Res, 12(1): 7.
  • Jafarov MM, Azadaliyeva SF. Huseynova SI, Babayeva IT, Eyvazova GI. 2020. Influence of environmental acidity (pH) on the production of silver nanoparticles by the yeast strain Saccharomyces ellipsoideus BSU-XR1. Actual problems of modern natural sciences. International Scientific Conference, Ganja:, Azerbaijan, pp: 123-127.
  • Джафаров ММ, Азадалиевa СФ, Гусейновa СИ, Бабаевa ИТ. 2021 «Cинтез наночастиц серебра дрожжевыми грибами Saccharomyces ellipsoideus BDU – XR1 в светлой и темной среде»// Современная наука: актуальные проблемы теории и практики. Серия «Естественные и технические науки» 11: 67.
  • Джафаров ММ, Сеидова КГ, Бозкурт Ганбаров, Х. Г и др. 2016. Выбор оптимальной питательной среды для получения биомассы штамма дрожжевого гриба Candida guilliermondii BDU-217 / Перспективы развития науки, образования и общества. По материалам Международной научно-практической конференции, – Тамбов: 5: 45
  • Джафаров ММ, Гусейнова СИ, Эйвазова Ганбаров Х Г и др. 2017. Влияние температуры на образование серебряных наночастиц штаммом дрожжевого гриба Candida guilliermondii BDU-217 / Сборник научных трудов по материалам ХI международной научной конференции «Научный диалог: Вопросы медицины», – Санкт-Петербург: 4.
  • Kaler A, Jain S, Banerjee UC. 2013. Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis. BioMed Res Int, 2013: 1.
  • Khudaverdi G, Ganbarov MM, Jafarov S, Huseynova İ, Shoaib M, Alkishiyeva KS. 2013. Extracellular biosynthesis of Ag nanoparticles by commercial Baker's yeast. Adv Mater Res, 785: 370.
  • Mare AD, Ciurea CN, Man A, Mareș M, Toma F, Berța L, Tanase C. 2015. Silver colloidal nanoparticles antifungal effect against Candida albicans and Candida glabrata adhered cells and biofilms. Biofouling, 27(7): 71.
  • Mousavi SMAA, Mirhosseini SA, Panahi MRS, Hosseini HM. 2020. Characterization of biosynthesized silver nanoparticles using Lactobacillus rhamnosus GG and its in vitro assessment against colorectal cancer cells. Probiotics Antimicrob Proteins, 12(2): 740.
  • Prakasham RS, Buddana SK, Yannam SK, Girija SG. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res, 12: 161.
  • Punjabi K, Yedurkar S, Doshi S, Deshapnde S, Vaidyaeevan S. 2012. Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Ind J Biotech, (11): 72.
  • Ревина АА, Джафаров MM, Гусейнова СИ, Азадалиева СФ. 2005. Некоторые особенности воздействия кластерного серебра на дрожжевые клетки Candida utilis. Электронный журнал «Исследовано в России», 139: 1403.
  • Roy K, Sarkar C, Ghosh C. 2014. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci, 10(8): 953.
  • Saminathan K. 2015. Biosynthesis of silver nanoparticles from dental caries causing fungi Candida albicans. Int J Curr Microbiol Appl Sci, 4(3): 1084.
  • Varquez R, Avalos M, Castro E. 2014. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PloS One, 9(10): 870.

Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains

Yıl 2024, , 283 - 287, 15.11.2024
https://doi.org/10.19127/bshealthscience.1551540

Öz

In the presented work, the literature data on the influence of various environmental factors were analyzed on the formation of silver nanoparticles by yeast strains. According to literature information and our obtained results, it was determined that the optimal conditions for the synthesis of silver nanoparticles by the yeast strain Saccharomyces ellipsoideus BSU-XR1 were on the 21st day of incubation, on 4-6 days of incubation in different strains of Saccharomyces cerevisiae, and between 2-10 days in Candida strains. The optimal amount of wet biomass was between 8 and 10 g for Candida strains and 10 g for Saccharomyces strains. The temperature limit for Saccharomyces was observed at 25-35 °C, and for Candida at 25-37 °C. For strains, synthesis of silver nanoparticles was optimal in the pH range of 4-10, and pH range of 7 for Candida strains. Depending on the concentration of AgNO3 (silver nitrate), salt, the optimal synthesis of silver nanoparticles occurred at concentrations of 0.5 and 1 mM for Saccharomyces, and 1 mM for Candida. The optimal incubation conditions for both types of strains were under dark environment.

Kaynakça

  • Abd El- Aziz ARM, Al-Othman MR, Saleh A. Alsohaibani SA, Mahmoud MA, Sayed SRM. 2012. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus niger isolated from Saudi Arabia (strain KSU – 12). Digest J Nanomat Biostruct, 7(4): 1491.
  • Azadaliyeva SF, Jafarov MM, Agamaliyev ZA, Eyvazova QI, Ganbarov XQ. 2018. The effect of incubation period on the formation of silver nanoparticles by Saccharomyces ellipsoideus BSU – XR1 yeast strain. Scient Works Inst Microbiol ANAS, 6(1): 42.
  • Azadaliyeva SF, Ganbarov KG, Jafarov MM, Huseynova SI. 2021. Influence of biomass quantity on the formation of silver nanoparticles by saccharomyces ellipsoideus BSU-XR1. Современная наука: актуальные проблемы теории и практики. Серия: Естественные и Технические Науки, 5: 7-11.
  • Баранова ЕК, Мулюкин АЛ, Козлова АН. 2005. Взаимодействие ионов и кластеров серебра в водных и водно-органических растворах с клетками Candida utilis и Saccharomyces cerevisiae. Современные наукоемкие технологии, 6(5): 33-37.
  • Bhainsa KC, D'Souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B.: Biointerfaces, 48(2): 190.
  • Bozkurt HC, Jafarov MM, Seyidova KQ. 2017. Formation of silver nanoparticles in the culture liquid of Candida guillermondii BSU-217 yeast strain. Scient Works Inst Microbiol ANAS, 15(1): 214.
  • Chauhan R, Reddy A, Abraham J. 2014. Biosynthesis and antimicrobial potential of silver and zinc oxide nanoparticles using Candida diversa strain JA1. Der Pahrma Chemica, 6(3): 39.
  • Ganbarov KHG, Musayev EM, Ahmadov IS, Ramazanov MA, Eyvazova GZ, Agamaliyev A. 2014. The concentration effect of the formation of silver nanoparticles by the mold fungus Aspergillus niger BDU A4. J Biotechnol, 185: 28.
  • Ganbarov KHG, Agayeva NA, Ramazanov MA, Abdulhamidova SM, Agamaliyev ZA, Eyvazova GM. 2016. Extracellular formation of silver nanoparticles by the cell filtrate of Actinomyces sp. NSX-333. Int J Res Stud Biosci, 4(11): 1.
  • Ganbarov KHG, Jafarov MM, Azadaliyeva SF, Huseynova SI, Eyvazova GI. 2018. Effect of temperature on the formation of silver nanoparticles by Saccharomyces ellipsoideus BSU – XR1 yeast strain. International Scientific Conference on Current Problems of Modern Natural and Economic Sciences, Ganja, Azerbaijan, pp: 293-299.
  • Ganbarov KHG, Jafarov MM, Huseynova SÝ. 2019. The impact of temperature on synthesis of silver nanoparticles by Candida macedoniensis BDU-MI44. Sci Educ Soc Bull Scient Conf Tambov, 9-2(49): 2.
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D. 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surface Biol Biointerf, 74: 328.
  • Guangquan L, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K. 2012. Fungus - mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci, 13(1): 466.
  • Hassan A, Mansour M, Mahmoud H. 2013. Biosynthesis of silver nanoparticles by Candida albicans and its antifungal activity on some fungal pathogens. New York Sci J, 6(3): 27.
  • Hasanova S, Guliyeva SM, Kelbiyeva SA, Suleymanova G, Babayeva RF, Ganbarov K. 2017. The study of morphological and cultural properties of Actinomycetes forming silver nanoparticles. Advances in Biology and Earth Sciences, 2(2): 168.
  • Honary S, Barabadi H, Gharaei E, Naghibi F. 2017. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropic J. Pharm. Res, 12(1): 7.
  • Jafarov MM, Azadaliyeva SF. Huseynova SI, Babayeva IT, Eyvazova GI. 2020. Influence of environmental acidity (pH) on the production of silver nanoparticles by the yeast strain Saccharomyces ellipsoideus BSU-XR1. Actual problems of modern natural sciences. International Scientific Conference, Ganja:, Azerbaijan, pp: 123-127.
  • Джафаров ММ, Азадалиевa СФ, Гусейновa СИ, Бабаевa ИТ. 2021 «Cинтез наночастиц серебра дрожжевыми грибами Saccharomyces ellipsoideus BDU – XR1 в светлой и темной среде»// Современная наука: актуальные проблемы теории и практики. Серия «Естественные и технические науки» 11: 67.
  • Джафаров ММ, Сеидова КГ, Бозкурт Ганбаров, Х. Г и др. 2016. Выбор оптимальной питательной среды для получения биомассы штамма дрожжевого гриба Candida guilliermondii BDU-217 / Перспективы развития науки, образования и общества. По материалам Международной научно-практической конференции, – Тамбов: 5: 45
  • Джафаров ММ, Гусейнова СИ, Эйвазова Ганбаров Х Г и др. 2017. Влияние температуры на образование серебряных наночастиц штаммом дрожжевого гриба Candida guilliermondii BDU-217 / Сборник научных трудов по материалам ХI международной научной конференции «Научный диалог: Вопросы медицины», – Санкт-Петербург: 4.
  • Kaler A, Jain S, Banerjee UC. 2013. Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis. BioMed Res Int, 2013: 1.
  • Khudaverdi G, Ganbarov MM, Jafarov S, Huseynova İ, Shoaib M, Alkishiyeva KS. 2013. Extracellular biosynthesis of Ag nanoparticles by commercial Baker's yeast. Adv Mater Res, 785: 370.
  • Mare AD, Ciurea CN, Man A, Mareș M, Toma F, Berța L, Tanase C. 2015. Silver colloidal nanoparticles antifungal effect against Candida albicans and Candida glabrata adhered cells and biofilms. Biofouling, 27(7): 71.
  • Mousavi SMAA, Mirhosseini SA, Panahi MRS, Hosseini HM. 2020. Characterization of biosynthesized silver nanoparticles using Lactobacillus rhamnosus GG and its in vitro assessment against colorectal cancer cells. Probiotics Antimicrob Proteins, 12(2): 740.
  • Prakasham RS, Buddana SK, Yannam SK, Girija SG. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res, 12: 161.
  • Punjabi K, Yedurkar S, Doshi S, Deshapnde S, Vaidyaeevan S. 2012. Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Ind J Biotech, (11): 72.
  • Ревина АА, Джафаров MM, Гусейнова СИ, Азадалиева СФ. 2005. Некоторые особенности воздействия кластерного серебра на дрожжевые клетки Candida utilis. Электронный журнал «Исследовано в России», 139: 1403.
  • Roy K, Sarkar C, Ghosh C. 2014. Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci, 10(8): 953.
  • Saminathan K. 2015. Biosynthesis of silver nanoparticles from dental caries causing fungi Candida albicans. Int J Curr Microbiol Appl Sci, 4(3): 1084.
  • Varquez R, Avalos M, Castro E. 2014. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PloS One, 9(10): 870.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Mikrobiyoloji
Bölüm Derleme
Yazarlar

Mirmusa M. Jafarov Bu kişi benim

Ergin Kariptaş 0000-0001-6513-9589

Kamala S. Alkishiyeva Bu kişi benim

Yayımlanma Tarihi 15 Kasım 2024
Gönderilme Tarihi 17 Eylül 2024
Kabul Tarihi 25 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA M. Jafarov, M., Kariptaş, E., & S. Alkishiyeva, K. (2024). Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains. Black Sea Journal of Health Science, 7(6), 283-287. https://doi.org/10.19127/bshealthscience.1551540
AMA M. Jafarov M, Kariptaş E, S. Alkishiyeva K. Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains. BSJ Health Sci. Kasım 2024;7(6):283-287. doi:10.19127/bshealthscience.1551540
Chicago M. Jafarov, Mirmusa, Ergin Kariptaş, ve Kamala S. Alkishiyeva. “Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains”. Black Sea Journal of Health Science 7, sy. 6 (Kasım 2024): 283-87. https://doi.org/10.19127/bshealthscience.1551540.
EndNote M. Jafarov M, Kariptaş E, S. Alkishiyeva K (01 Kasım 2024) Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains. Black Sea Journal of Health Science 7 6 283–287.
IEEE M. M. Jafarov, E. Kariptaş, ve K. S. Alkishiyeva, “Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains”, BSJ Health Sci., c. 7, sy. 6, ss. 283–287, 2024, doi: 10.19127/bshealthscience.1551540.
ISNAD M. Jafarov, Mirmusa vd. “Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains”. Black Sea Journal of Health Science 7/6 (Kasım 2024), 283-287. https://doi.org/10.19127/bshealthscience.1551540.
JAMA M. Jafarov M, Kariptaş E, S. Alkishiyeva K. Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains. BSJ Health Sci. 2024;7:283–287.
MLA M. Jafarov, Mirmusa vd. “Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains”. Black Sea Journal of Health Science, c. 7, sy. 6, 2024, ss. 283-7, doi:10.19127/bshealthscience.1551540.
Vancouver M. Jafarov M, Kariptaş E, S. Alkishiyeva K. Effect of Environmental Factors on The Production of Silver Nanoparticles by Yeast Strains. BSJ Health Sci. 2024;7(6):283-7.