Derleme
BibTex RIS Kaynak Göster

Microbiota and Its Importance In Honey Bees

Yıl 2021, Cilt: 13 Sayı: 1, 23 - 30, 28.07.2021
https://doi.org/10.51458/BSTD.2021.14

Öz

In recent years, research on human and animal health has emerged as a very important microbiota and microbiome. Microbiota; It has important functions in metabolism, immune system, growth and development. In recent years, it has been understood that the microbiota is effective in the protection of bee health in colony losses in honey bees. Season, flora, food sources, age of the individual, duties in the hive, chemicals used in the fight against parasites and pathogens, and many other factors can be effective on the microbiom of honey bees

Kaynakça

  • Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell host & microbe, 23(6), 716–724.
  • Alberoni, D., Gaggìa, F., Baffoni, L., & Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied microbiology and biotechnology, 100(22), 9469–9482.
  • Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), 2939–2951.
  • Anderson, K. E., Sheehan, T. H., Mott, B. M., Maes, P., Snyder, L., Schwan, M. R., Walton, A., Jones, B. M., & Corby-Harris, V. (2013). Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PloS one, 8(12), e83125.
  • Anderson, K. E., Rodrigues, P. A., Mott, B. M., Maes, P., & Corby-Harris, V. (2016). Ecological succession in the honey bee gut: shift in lactobacillus strain dominance during early adult development. Microbial ecology, 71(4), 1008–1019.
  • Anderson, K. E., & Ricigliano, V. A. (2017). Honey bee gut dysbiosis: a novel context of disease ecology. Current opinion in insect science, 22, 125–132.
  • Arredondo, D., Castelli, L., Porrini, M. P., Garrido, P. M., Eguaras, M. J., Zunino, P., & Antúnez, K. (2018). Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Beneficial microbes, 9(2), 279–290.
  • Azambuja, P., Garcia, E. S., & Ratcliffe, N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends in parasitology, 21(12), 568–572.
  • Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718–15723.
  • Belkaid, Y., & Harrison, O. J. (2017). Homeostatic ımmunity and the microbiota. Immunity, 46(4), 562–576.
  • Bleau, N., Bouslama, S., Giovenazzo, P., & Derome, N. (2020). Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms, 8(8), 1146.
  • Bonilla-Rosso, G., & Engel, P. (2018). Functional roles and metabolic niches in the honey bee gut microbiota. Current opinion in microbiology, 43, 69–76.
  • Corby-Harris, V., Snyder, L. A., Schwan, M. R., Maes, P., McFrederick, Q. S., & Anderson, K. E. (2014). Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Applied and environmental microbiology, 80(24), 7460–7472.
  • Costa, A., Veca, M., Barberis, M., Tosti, A., Notaro, G., Nava, S., Lazzari, M., Agazzi, M., & Tangorra, F.M. (2019). Heavy metals on honeybees indicate their concentration in the atmosphere a proof of concept. Italian Journal of Animal Science, 18 (1), 309–315.
  • Daisley, B. A., Trinder, M., McDowell, T. W., Welle, H., Dube, J. S., Ali, S. N., Leong, H. S., Sumarah, M. W., & Reid, G. (2017). Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Scientific reports, 7(1), 2703.
  • Daisley, B.A., Pitek, A.P., Chmiel, J.A., Gibbons, S., Chernyshova, A.M., Al, K.F., Faragalla, K.M., Burton, J.P., Thompson, G.J., & Reid, G. (2020). Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Communations Biology, 3, 534.
  • Diaz, T., Del-Val, E., Ayala, R., & Larsen, J. (2019). Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods. Pest management science, 75(3), 835–843.
  • Dong, Z. X., Li, H. Y., Chen, Y. F., Wang, F., Deng, X. Y., Lin, L. B., Zhang, Q. L., Li, J. L., & Guo, J. (2020). Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiology Research, 231, 126370.
  • Egert, M., & Simmering, R. (2016). The microbiota of the human skin. Advances in experimental medicine and biology, 902, 61–81.
  • Engel, P., & Moran, N. A. (2013a). Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut microbes, 4(1), 60–65.
  • Engel, P., & Moran, N. A. (2013b). The gut microbiota of insects - diversity in structure and function. FEMS microbiology reviews, 37(5), 699–735.
  • Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G. J., Zou, Z., & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect molecular biology, 15(5), 645–656.
  • Foligne, B., Nutten, S., Grangette, C., Dennin, V., Goudercourt, D., Poiret, S., Dewulf, J., Brassart, D., Mercenier, A., & Pot, B. (2007). Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World journal of gastroenterology, 13(2), 236–243.
  • Greiner, T., & Bäckhed, F. (2011). Effects of the gut microbiota on obesity and glucose homeostasis. Trends in endocrinology and metabolism: TEM, 22(4), 117–123.
  • Harris, J. W., & Woodring, J. (1992). Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. Journal of Insect Physiology, 38 (1), 29–35.
  • Hilgarth, M., Redwitz, J., Ehrmann, M. A., Vogel, R. F., & Jakob, F. (2021). Bombella favorum sp. nov. and Bombella mellum sp. nov., two novel species isolated from the honeycombs of Apis mellifera. International journal of systematic and evolutionary microbiology, 71(2), 10.1099/ijsem.0.004633.
  • Ihle, K. E., Baker, N. A., & Amdam, G. V. (2014). Insulin-like peptide response to nutritional input in honey bee workers. Journal of insect physiology, 69, 49–55.
  • Iorizzo, M., Pannella, G., Lombardi, S. J., Ganassi, S., Testa, B., Succi, M., Sorrentino, E., Petrarca, S., De Cristofaro, A., Coppola, R., & Tremonte, P. (2020a). Inter- and ıntra-species diversity of lactic acid bacteria in Apis mellifera ligustica Colonies. Microorganisms, 8(10), 1578.
  • Iorizzo, M., Lombardi, S. J., Ganassi, S., Testa, B., Ianiro, M., Letizia, F., Succi, M., Tremonte, P., Vergalito, F., Cozzolino, A., Sorrentino, E., Coppola, R., Petrarca, S., Mancini, M., & Cristofaro, A. (2020b). Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics (Basel, Switzerland), 9(5), 262.
  • Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World journal of gastroenterology, 21(29), 8787–8803.
  • Jing, T. Z., Qi, F.H., & Wang, Z.Y (2020). Most dominant roles of insect gut bacteria: Digestion. detoxification or essential nutrient provision? Microbiome, 8(1), 38.
  • Jones, J. C., Fruciano, C., Hildebrand, F., Al Toufalilia, H., Balfour, N. J., Bork, P., Engel, P., Ratnieks, F. L., & Hughes, W. O. (2017). Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and evolution, 8(1), 441–451.
  • Kešnerová, L., Moritz, R., & Engel, P. (2016). Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. International journal of systematic and evolutionary microbiology, 66(1), 414–421.
  • Kešnerová, L., Mars, R., Ellegaard, K. M., Troilo, M., Sauer, U., & Engel, P. (2017). Disentangling metabolic functions of bacteria in the honey bee gut. PLoS biology, 15(12), e2003467.
  • Kešnerová, L., Emery, O., Troilo, M., Liberti, J., Erkosar, B., & Engel, P. (2020). Gut microbiota structure differs between honeybees in winter and summer. The ISME journal, 14(3), 801–814.
  • Kishino, S., Takeuchi, M., Park, S. B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., & Yokozeki, K. (2013). Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17808–17813.
  • Kwong, W. K., & Moran, N. A. (2016a). Gut microbial communities of social bees. Nature reviews. Microbiology, 14(6), 374–384.
  • Kwong, W. K., & Moran, N. A. (2016b). Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees. International journal of systematic and evolutionary microbiology, 66(3), 1323–1329.
  • Kwong, W. K., Mancenido, A. L., & Moran, N. A. (2017). Immune system stimulation by the native gut microbiota of honey bees. Royal Society open science, 4(2), 170003.
  • Kwong, W. K., Steele, M. I., & Moran, N. A. (2018). Genome sequences of Apibacter spp., gut symbionts of Asian honey bees. Genome biology and evolution, 10(4), 1174–1179.
  • LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in biotechnology, 24(2), 160–168.
  • Leger, L., & McFrederick, Q. S. (2020). The gut-brain-microbiome axis in bumble bees. Insects, 11(8), 517.
  • Li, J. H., Evans, J. D., Li, W. F., Zhao, Y. Z., DeGrandi-Hoffman, G., Huang, S. K., Li, Z. G., Hamilton, M., & Chen, Y. P. (2017). New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. PloS one, 12(11), e0187505.
  • Liberti, J., & Engel, P. (2020). The gut microbiota - brain axis of insects. Current opinion in insect science, 39, 6–13.
  • Maragkoudakis, P. A., Chingwaru, W., Gradisnik, L., Tsakalidou, E., & Cencic, A. (2010). Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. International journal of food microbiology, 141 Suppl 1, S91–S97.
  • Martinson, V. G., Danforth, B. N., Minckley, R. L., Rueppel, O., Tingek, S., & Moran, N. A. (2011). A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20 (3), 619-628.
  • Martinson, V. G., Moy, J., & Moran, N. A. (2012). Establishment of characteristic gut bacteria during development of the honeybee worker. Applied and environmental microbiology, 78(8), 2830–2840.
  • Milani, C., Duranti, S., Mangifesta, M., Lugli, G. A., Turroni, F., Mancabelli, L., Viappiani, A., Anzalone, R., Alessandri, G., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2018). Phylotype-level profiling of lactobacilli in highly complex environments by means of an ınternal transcribed spacer-based metagenomic approach. Applied and environmental microbiology, 84(14), e00706-18.
  • Mollet, J. C., Leroux, C., Dardelle, F., & Lehner, A. (2013). Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants (Basel, Switzerland), 2(1), 107–147.
  • Molloy, M. J., Bouladoux, N., & Belkaid, Y. (2012). Intestinal microbiota: shaping local and systemic immune responses. Seminars in immunology, 24(1), 58–66.
  • Moran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PloS one, 7(4), e36393.
  • Motta, E., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10305–10310.
  • Mutlu, E. A., Comba, I. Y., Cho, T., Engen, P. A., Yazıcı, C., Soberanes, S., Hamanaka, R. B., Niğdelioğlu, R., Meliton, A. Y., Ghio, A. J., Budinger, G., & Mutlu, G. M. (2018). Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environmental pollution (Barking, Essex: 1987), 240, 817–830. Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. Olofsson, T. C., Alsterfjord, M., Nilson, B., Butler, È., & Vásquez, A. (2014). Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. International journal of systematic and evolutionary microbiology, 64(Pt 9), 3109–3119.
  • Pachila, A., Ptaszynska, A.A., Wicha, M., Olenska, E., & Małek, W. (2017). Fascinating fructophilic lactic acid bacteria associated with various fructose-rich niches. Annales Universitatis Mariae Curie Sklodowska Med, 72, S41–S50.
  • Pascale, A., Marchesi, N., Marelli, C., Coppola, A., Luzi, L., Govoni, S., Giustina, A., Gagliardi, A., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F., & Schippa, S. (2018). Rebuilding the gut microbiota ecosystem. International journal of environmental research and public health, 15(8), 1679.
  • Peghaire, E., Moné, A., Delbac, F., Debroas, D., Chaucheyras-Durand, F., & El Alaoui, H. (2020). A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. Pesticide biochemistry and physiology, 163, 138–146.
  • Pernice, M., Simpson, S. J., & Ponton, F. (2014). Towards an integrated understanding of gut microbiota using insects as model systems. Journal of insect physiology, 69, 12–18.
  • Piccart, K., Vásquez, A., Piepers, S., De Vliegher, S., & Olofsson, T. C. (2016). Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. Journal of dairy science, 99(4), 2940–2944.
  • Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of Acquisition of the gut microbiota of the honey bee Apis mellifera. Applied and environmental microbiology, 80(23), 7378–7387.
  • Purchiaroni, F., Tortora, A., Gabrielli, M., Bertucci, F., Gigante, G., Ianiro, G., Ojetti, V., Scarpellini, E., & Gasbarrini, A. (2013). The role of intestinal microbiota and the immune system. European review for medical and pharmacological sciences, 17(3), 323–333.
  • Raymann, K., Motta, E., Girard, C., Riddington, I. M., Dinser, J. A., & Moran, N. A. (2018a). Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Applied and environmental microbiology, 84(13), e00545-18.
  • Raymann, K., Bobay, L. M., & Moran, N. A. (2018b). Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Molecular ecology, 27(8), 2057–2066.
  • Rothman, J. A., Leger, L., Kirkwood, J. S., & McFrederick, Q. S. (2019). Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Applied and environmental microbiology, 85(21), e01411-19.
  • Rouzé, R., Moné, A., Delbac, F., Belzunces, L., & Blot, N. (2019). The honeybee gut microbiota ıs altered after chronic exposure to different families of ınsecticides and ınfection by Nosema ceranae. Microbes and environments, 34(3), 226–233. Schroeder, B. O., & Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature medicine, 22(10), 1079–1089.
  • Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological reviews, 90(3), 859–904.
  • Serna-Cock, L., Rojas-Dorado, M., Ordoñez-Artunduaga, D., García-Salazar, A., García-González, E., & Aguilar, C. N. (2019). Crude extracts of metabolites from co-cultures of lactic acid bacteria are highly antagonists of Listeria monocytogenes. Heliyon, 5(9), e02448.
  • Shi,W., Syrenne, R., Sun, J.-Z., & Yuan, J.S. (2010). Molecular approaches to study the insect gut symbiotic microbiota at the “omics” age. Insect Science, 17, 199–219.
  • Silva, M.S., Rabadzhiev, Y., Renon Eller, M., Iliev, I., Ivanova, I., & Santana, W.C. (2017). Microorganisms in honey. Honey analysis, S233–S258.
  • Sommer, F., & Bäckhed, F. (2013). The gut microbiota--masters of host development and physiology. Nature reviews. Microbiology, 11(4), 227–238.
  • Subotic, S., Boddicker, A. M., Nguyen, V. M., Rivers, J., Briles, C. E., & Mosier, A. C. (2019). Honey bee microbiome associated with different hive and sample types over a honey production season. PloS one, 14(11), e0223834.
  • Tola, Y. H., Waweru, J. W., Hurst, G., Slippers, B., & Paredes, J. C. (2020). Characterization of the Kenyan honey bee (Apis mellifera) gut microbiota: a first look at tropical and sub-saharan African bee associated microbiomes. Microorganisms, 8(11), 1721.
  • Valentini, M., Piermattei, A., Di Sante, G., Migliara, G., Delogu, G., & Ria, F. (2014). Immunomodulation by gut microbiota: role of toll-like receptor expressed by t cells. Journal of immunology research, 2014, 586939.
  • Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS one, 7(3), e33188.
  • Vergnolle, N. (2016). Protease inhibition as new therapeutic strategy for GI diseases. Gut, 65(7), 1215–1224.
  • Vernier, C.L., Chin, I.M., Adu-Oppong, B., Krupp, J.J., Levine, J., Dantas, G., & Ben-Shahar, Y. (2020). The gut microbiome defines social group membership in honey bee colonies. Sciences Advances, 6 (42), eabd3431.
  • Wang, H., Liu, C., Liu, Z., Wang, Y., Ma, L., & Xu, B. (2020).The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiology, 20 (1), 61.
  • Wang, X., Zhong, Z., Chen, X., Hong, Z., Lin, W., Mu, X., Hu, X., & Zheng, H. (2021). High-fat diets with differential fatty acids ınduce obesity and perturb gut microbiota in honey bee. International journal of molecular sciences, 22(2), 834.
  • Westfall, S., Lomis, N., & Prakash, S. (2018). Longevity extension in Drosophila through gut-brain communication. Scientific Reports, 8, 8362.
  • Wu, M., Sugimura, Y., Iwata, K., Takaya, N., Takamatsu, D., Kobayashi, M., Taylor, D., Kimura, K., & Yoshiyama, M. (2014). Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. Journal of insect science (Online), 14, 129.
  • Wu, Y., Zheng, Y., Chen, Y., Wang, S., Chen, Y., Hu, F., & Zheng, H. (2020). Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microbial Biotechnology, 13(4), 1201–1212.
  • Yiu, J. H., Dorweiler, B., & Woo, C. W. (2017). Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. Journal of molecular medicine (Berlin, Germany), 95(1), 13–20.
  • Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4775–4780.
  • Zheng, H., Steele, M. I., Leonard, S. P., Motta, E., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab animal, 47(11), 317–325.
  • Zhu, L., Qi, S., Xue, X., Niu, X., & Wu, L. (2020). Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.). Environmental pollution (Barking, Essex : 1987), 258, 113671.
Yıl 2021, Cilt: 13 Sayı: 1, 23 - 30, 28.07.2021
https://doi.org/10.51458/BSTD.2021.14

Öz

Kaynakça

  • Agus, A., Planchais, J., & Sokol, H. (2018). Gut microbiota regulation of tryptophan metabolism in health and disease. Cell host & microbe, 23(6), 716–724.
  • Alberoni, D., Gaggìa, F., Baffoni, L., & Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied microbiology and biotechnology, 100(22), 9469–9482.
  • Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied microbiology and biotechnology, 100(7), 2939–2951.
  • Anderson, K. E., Sheehan, T. H., Mott, B. M., Maes, P., Snyder, L., Schwan, M. R., Walton, A., Jones, B. M., & Corby-Harris, V. (2013). Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PloS one, 8(12), e83125.
  • Anderson, K. E., Rodrigues, P. A., Mott, B. M., Maes, P., & Corby-Harris, V. (2016). Ecological succession in the honey bee gut: shift in lactobacillus strain dominance during early adult development. Microbial ecology, 71(4), 1008–1019.
  • Anderson, K. E., & Ricigliano, V. A. (2017). Honey bee gut dysbiosis: a novel context of disease ecology. Current opinion in insect science, 22, 125–132.
  • Arredondo, D., Castelli, L., Porrini, M. P., Garrido, P. M., Eguaras, M. J., Zunino, P., & Antúnez, K. (2018). Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Beneficial microbes, 9(2), 279–290.
  • Azambuja, P., Garcia, E. S., & Ratcliffe, N. A. (2005). Gut microbiota and parasite transmission by insect vectors. Trends in parasitology, 21(12), 568–572.
  • Bäckhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718–15723.
  • Belkaid, Y., & Harrison, O. J. (2017). Homeostatic ımmunity and the microbiota. Immunity, 46(4), 562–576.
  • Bleau, N., Bouslama, S., Giovenazzo, P., & Derome, N. (2020). Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms, 8(8), 1146.
  • Bonilla-Rosso, G., & Engel, P. (2018). Functional roles and metabolic niches in the honey bee gut microbiota. Current opinion in microbiology, 43, 69–76.
  • Corby-Harris, V., Snyder, L. A., Schwan, M. R., Maes, P., McFrederick, Q. S., & Anderson, K. E. (2014). Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Applied and environmental microbiology, 80(24), 7460–7472.
  • Costa, A., Veca, M., Barberis, M., Tosti, A., Notaro, G., Nava, S., Lazzari, M., Agazzi, M., & Tangorra, F.M. (2019). Heavy metals on honeybees indicate their concentration in the atmosphere a proof of concept. Italian Journal of Animal Science, 18 (1), 309–315.
  • Daisley, B. A., Trinder, M., McDowell, T. W., Welle, H., Dube, J. S., Ali, S. N., Leong, H. S., Sumarah, M. W., & Reid, G. (2017). Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Scientific reports, 7(1), 2703.
  • Daisley, B.A., Pitek, A.P., Chmiel, J.A., Gibbons, S., Chernyshova, A.M., Al, K.F., Faragalla, K.M., Burton, J.P., Thompson, G.J., & Reid, G. (2020). Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Communations Biology, 3, 534.
  • Diaz, T., Del-Val, E., Ayala, R., & Larsen, J. (2019). Alterations in honey bee gut microorganisms caused by Nosema spp. and pest control methods. Pest management science, 75(3), 835–843.
  • Dong, Z. X., Li, H. Y., Chen, Y. F., Wang, F., Deng, X. Y., Lin, L. B., Zhang, Q. L., Li, J. L., & Guo, J. (2020). Colonization of the gut microbiota of honey bee (Apis mellifera) workers at different developmental stages. Microbiology Research, 231, 126370.
  • Egert, M., & Simmering, R. (2016). The microbiota of the human skin. Advances in experimental medicine and biology, 902, 61–81.
  • Engel, P., & Moran, N. A. (2013a). Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut microbes, 4(1), 60–65.
  • Engel, P., & Moran, N. A. (2013b). The gut microbiota of insects - diversity in structure and function. FEMS microbiology reviews, 37(5), 699–735.
  • Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G. J., Zou, Z., & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect molecular biology, 15(5), 645–656.
  • Foligne, B., Nutten, S., Grangette, C., Dennin, V., Goudercourt, D., Poiret, S., Dewulf, J., Brassart, D., Mercenier, A., & Pot, B. (2007). Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World journal of gastroenterology, 13(2), 236–243.
  • Greiner, T., & Bäckhed, F. (2011). Effects of the gut microbiota on obesity and glucose homeostasis. Trends in endocrinology and metabolism: TEM, 22(4), 117–123.
  • Harris, J. W., & Woodring, J. (1992). Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. Journal of Insect Physiology, 38 (1), 29–35.
  • Hilgarth, M., Redwitz, J., Ehrmann, M. A., Vogel, R. F., & Jakob, F. (2021). Bombella favorum sp. nov. and Bombella mellum sp. nov., two novel species isolated from the honeycombs of Apis mellifera. International journal of systematic and evolutionary microbiology, 71(2), 10.1099/ijsem.0.004633.
  • Ihle, K. E., Baker, N. A., & Amdam, G. V. (2014). Insulin-like peptide response to nutritional input in honey bee workers. Journal of insect physiology, 69, 49–55.
  • Iorizzo, M., Pannella, G., Lombardi, S. J., Ganassi, S., Testa, B., Succi, M., Sorrentino, E., Petrarca, S., De Cristofaro, A., Coppola, R., & Tremonte, P. (2020a). Inter- and ıntra-species diversity of lactic acid bacteria in Apis mellifera ligustica Colonies. Microorganisms, 8(10), 1578.
  • Iorizzo, M., Lombardi, S. J., Ganassi, S., Testa, B., Ianiro, M., Letizia, F., Succi, M., Tremonte, P., Vergalito, F., Cozzolino, A., Sorrentino, E., Coppola, R., Petrarca, S., Mancini, M., & Cristofaro, A. (2020b). Antagonistic Activity against Ascosphaera apis and Functional Properties of Lactobacillus kunkeei Strains. Antibiotics (Basel, Switzerland), 9(5), 262.
  • Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Nageshwar Reddy, D. (2015). Role of the normal gut microbiota. World journal of gastroenterology, 21(29), 8787–8803.
  • Jing, T. Z., Qi, F.H., & Wang, Z.Y (2020). Most dominant roles of insect gut bacteria: Digestion. detoxification or essential nutrient provision? Microbiome, 8(1), 38.
  • Jones, J. C., Fruciano, C., Hildebrand, F., Al Toufalilia, H., Balfour, N. J., Bork, P., Engel, P., Ratnieks, F. L., & Hughes, W. O. (2017). Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and evolution, 8(1), 441–451.
  • Kešnerová, L., Moritz, R., & Engel, P. (2016). Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. International journal of systematic and evolutionary microbiology, 66(1), 414–421.
  • Kešnerová, L., Mars, R., Ellegaard, K. M., Troilo, M., Sauer, U., & Engel, P. (2017). Disentangling metabolic functions of bacteria in the honey bee gut. PLoS biology, 15(12), e2003467.
  • Kešnerová, L., Emery, O., Troilo, M., Liberti, J., Erkosar, B., & Engel, P. (2020). Gut microbiota structure differs between honeybees in winter and summer. The ISME journal, 14(3), 801–814.
  • Kishino, S., Takeuchi, M., Park, S. B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., & Yokozeki, K. (2013). Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17808–17813.
  • Kwong, W. K., & Moran, N. A. (2016a). Gut microbial communities of social bees. Nature reviews. Microbiology, 14(6), 374–384.
  • Kwong, W. K., & Moran, N. A. (2016b). Apibacter adventoris gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from honey bees. International journal of systematic and evolutionary microbiology, 66(3), 1323–1329.
  • Kwong, W. K., Mancenido, A. L., & Moran, N. A. (2017). Immune system stimulation by the native gut microbiota of honey bees. Royal Society open science, 4(2), 170003.
  • Kwong, W. K., Steele, M. I., & Moran, N. A. (2018). Genome sequences of Apibacter spp., gut symbionts of Asian honey bees. Genome biology and evolution, 10(4), 1174–1179.
  • LeBlanc, J. G., Milani, C., de Giori, G. S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current opinion in biotechnology, 24(2), 160–168.
  • Leger, L., & McFrederick, Q. S. (2020). The gut-brain-microbiome axis in bumble bees. Insects, 11(8), 517.
  • Li, J. H., Evans, J. D., Li, W. F., Zhao, Y. Z., DeGrandi-Hoffman, G., Huang, S. K., Li, Z. G., Hamilton, M., & Chen, Y. P. (2017). New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. PloS one, 12(11), e0187505.
  • Liberti, J., & Engel, P. (2020). The gut microbiota - brain axis of insects. Current opinion in insect science, 39, 6–13.
  • Maragkoudakis, P. A., Chingwaru, W., Gradisnik, L., Tsakalidou, E., & Cencic, A. (2010). Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. International journal of food microbiology, 141 Suppl 1, S91–S97.
  • Martinson, V. G., Danforth, B. N., Minckley, R. L., Rueppel, O., Tingek, S., & Moran, N. A. (2011). A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20 (3), 619-628.
  • Martinson, V. G., Moy, J., & Moran, N. A. (2012). Establishment of characteristic gut bacteria during development of the honeybee worker. Applied and environmental microbiology, 78(8), 2830–2840.
  • Milani, C., Duranti, S., Mangifesta, M., Lugli, G. A., Turroni, F., Mancabelli, L., Viappiani, A., Anzalone, R., Alessandri, G., Ossiprandi, M. C., van Sinderen, D., & Ventura, M. (2018). Phylotype-level profiling of lactobacilli in highly complex environments by means of an ınternal transcribed spacer-based metagenomic approach. Applied and environmental microbiology, 84(14), e00706-18.
  • Mollet, J. C., Leroux, C., Dardelle, F., & Lehner, A. (2013). Cell wall composition, biosynthesis and remodeling during pollen tube growth. Plants (Basel, Switzerland), 2(1), 107–147.
  • Molloy, M. J., Bouladoux, N., & Belkaid, Y. (2012). Intestinal microbiota: shaping local and systemic immune responses. Seminars in immunology, 24(1), 58–66.
  • Moran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PloS one, 7(4), e36393.
  • Motta, E., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10305–10310.
  • Mutlu, E. A., Comba, I. Y., Cho, T., Engen, P. A., Yazıcı, C., Soberanes, S., Hamanaka, R. B., Niğdelioğlu, R., Meliton, A. Y., Ghio, A. J., Budinger, G., & Mutlu, G. M. (2018). Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environmental pollution (Barking, Essex: 1987), 240, 817–830. Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. Olofsson, T. C., Alsterfjord, M., Nilson, B., Butler, È., & Vásquez, A. (2014). Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. International journal of systematic and evolutionary microbiology, 64(Pt 9), 3109–3119.
  • Pachila, A., Ptaszynska, A.A., Wicha, M., Olenska, E., & Małek, W. (2017). Fascinating fructophilic lactic acid bacteria associated with various fructose-rich niches. Annales Universitatis Mariae Curie Sklodowska Med, 72, S41–S50.
  • Pascale, A., Marchesi, N., Marelli, C., Coppola, A., Luzi, L., Govoni, S., Giustina, A., Gagliardi, A., Totino, V., Cacciotti, F., Iebba, V., Neroni, B., Bonfiglio, G., Trancassini, M., Passariello, C., Pantanella, F., & Schippa, S. (2018). Rebuilding the gut microbiota ecosystem. International journal of environmental research and public health, 15(8), 1679.
  • Peghaire, E., Moné, A., Delbac, F., Debroas, D., Chaucheyras-Durand, F., & El Alaoui, H. (2020). A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects. Pesticide biochemistry and physiology, 163, 138–146.
  • Pernice, M., Simpson, S. J., & Ponton, F. (2014). Towards an integrated understanding of gut microbiota using insects as model systems. Journal of insect physiology, 69, 12–18.
  • Piccart, K., Vásquez, A., Piepers, S., De Vliegher, S., & Olofsson, T. C. (2016). Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens. Journal of dairy science, 99(4), 2940–2944.
  • Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of Acquisition of the gut microbiota of the honey bee Apis mellifera. Applied and environmental microbiology, 80(23), 7378–7387.
  • Purchiaroni, F., Tortora, A., Gabrielli, M., Bertucci, F., Gigante, G., Ianiro, G., Ojetti, V., Scarpellini, E., & Gasbarrini, A. (2013). The role of intestinal microbiota and the immune system. European review for medical and pharmacological sciences, 17(3), 323–333.
  • Raymann, K., Motta, E., Girard, C., Riddington, I. M., Dinser, J. A., & Moran, N. A. (2018a). Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome. Applied and environmental microbiology, 84(13), e00545-18.
  • Raymann, K., Bobay, L. M., & Moran, N. A. (2018b). Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome. Molecular ecology, 27(8), 2057–2066.
  • Rothman, J. A., Leger, L., Kirkwood, J. S., & McFrederick, Q. S. (2019). Cadmium and selenate exposure affects the honey bee microbiome and metabolome, and bee-associated bacteria show potential for bioaccumulation. Applied and environmental microbiology, 85(21), e01411-19.
  • Rouzé, R., Moné, A., Delbac, F., Belzunces, L., & Blot, N. (2019). The honeybee gut microbiota ıs altered after chronic exposure to different families of ınsecticides and ınfection by Nosema ceranae. Microbes and environments, 34(3), 226–233. Schroeder, B. O., & Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature medicine, 22(10), 1079–1089.
  • Sekirov, I., Russell, S. L., Antunes, L. C., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological reviews, 90(3), 859–904.
  • Serna-Cock, L., Rojas-Dorado, M., Ordoñez-Artunduaga, D., García-Salazar, A., García-González, E., & Aguilar, C. N. (2019). Crude extracts of metabolites from co-cultures of lactic acid bacteria are highly antagonists of Listeria monocytogenes. Heliyon, 5(9), e02448.
  • Shi,W., Syrenne, R., Sun, J.-Z., & Yuan, J.S. (2010). Molecular approaches to study the insect gut symbiotic microbiota at the “omics” age. Insect Science, 17, 199–219.
  • Silva, M.S., Rabadzhiev, Y., Renon Eller, M., Iliev, I., Ivanova, I., & Santana, W.C. (2017). Microorganisms in honey. Honey analysis, S233–S258.
  • Sommer, F., & Bäckhed, F. (2013). The gut microbiota--masters of host development and physiology. Nature reviews. Microbiology, 11(4), 227–238.
  • Subotic, S., Boddicker, A. M., Nguyen, V. M., Rivers, J., Briles, C. E., & Mosier, A. C. (2019). Honey bee microbiome associated with different hive and sample types over a honey production season. PloS one, 14(11), e0223834.
  • Tola, Y. H., Waweru, J. W., Hurst, G., Slippers, B., & Paredes, J. C. (2020). Characterization of the Kenyan honey bee (Apis mellifera) gut microbiota: a first look at tropical and sub-saharan African bee associated microbiomes. Microorganisms, 8(11), 1721.
  • Valentini, M., Piermattei, A., Di Sante, G., Migliara, G., Delogu, G., & Ria, F. (2014). Immunomodulation by gut microbiota: role of toll-like receptor expressed by t cells. Journal of immunology research, 2014, 586939.
  • Vásquez, A., Forsgren, E., Fries, I., Paxton, R. J., Flaberg, E., Szekely, L., & Olofsson, T. C. (2012). Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PloS one, 7(3), e33188.
  • Vergnolle, N. (2016). Protease inhibition as new therapeutic strategy for GI diseases. Gut, 65(7), 1215–1224.
  • Vernier, C.L., Chin, I.M., Adu-Oppong, B., Krupp, J.J., Levine, J., Dantas, G., & Ben-Shahar, Y. (2020). The gut microbiome defines social group membership in honey bee colonies. Sciences Advances, 6 (42), eabd3431.
  • Wang, H., Liu, C., Liu, Z., Wang, Y., Ma, L., & Xu, B. (2020).The different dietary sugars modulate the composition of the gut microbiota in honeybee during overwintering. BMC Microbiology, 20 (1), 61.
  • Wang, X., Zhong, Z., Chen, X., Hong, Z., Lin, W., Mu, X., Hu, X., & Zheng, H. (2021). High-fat diets with differential fatty acids ınduce obesity and perturb gut microbiota in honey bee. International journal of molecular sciences, 22(2), 834.
  • Westfall, S., Lomis, N., & Prakash, S. (2018). Longevity extension in Drosophila through gut-brain communication. Scientific Reports, 8, 8362.
  • Wu, M., Sugimura, Y., Iwata, K., Takaya, N., Takamatsu, D., Kobayashi, M., Taylor, D., Kimura, K., & Yoshiyama, M. (2014). Inhibitory effect of gut bacteria from the Japanese honey bee, Apis cerana japonica, against Melissococcus plutonius, the causal agent of European foulbrood disease. Journal of insect science (Online), 14, 129.
  • Wu, Y., Zheng, Y., Chen, Y., Wang, S., Chen, Y., Hu, F., & Zheng, H. (2020). Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract. Microbial Biotechnology, 13(4), 1201–1212.
  • Yiu, J. H., Dorweiler, B., & Woo, C. W. (2017). Interaction between gut microbiota and toll-like receptor: from immunity to metabolism. Journal of molecular medicine (Berlin, Germany), 95(1), 13–20.
  • Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences of the United States of America, 114(18), 4775–4780.
  • Zheng, H., Steele, M. I., Leonard, S. P., Motta, E., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab animal, 47(11), 317–325.
  • Zhu, L., Qi, S., Xue, X., Niu, X., & Wu, L. (2020). Nitenpyram disturbs gut microbiota and influences metabolic homeostasis and immunity in honey bee (Apis mellifera L.). Environmental pollution (Barking, Essex : 1987), 258, 113671.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Review
Yazarlar

Ayşe Ebru Borum 0000-0002-6916-8982

Yayımlanma Tarihi 28 Temmuz 2021
Gönderilme Tarihi 14 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 13 Sayı: 1

Kaynak Göster

APA Borum, A. E. (2021). Microbiota and Its Importance In Honey Bees. Bee Studies, 13(1), 23-30. https://doi.org/10.51458/BSTD.2021.14