Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 14 Sayı: 1, 21 - 26, 29.07.2022

Öz

Kaynakça

  • Annoscia, D., Brown, S.P., Di Prisco, G., De Paoli, E., Del Fabbro, S., Frizzera, D., Zanni, V., Galbraith, D.A., Caprio, E., & Grozinger, C.M. (2019). Haemolymph removal by Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, as predicted by Volterra’s model. Proceedings of Biological Sciences, 286, 20190331.
  • Barroso-Arévalo, S., Fernández-Carrión, E., Goyache, J., Molero, F., Puerta, F., & Sánchez-Vizcaíno, J.M. (2019). High load of deformed wing virus and Varroa destructor infestation are related to weakness of honey bee colonies in southern Spain. Frontiers in Microbiology, 10, 1331.https://doi.org/10.3389/fmicb.2019.01331
  • Beaurepaire, A. L., Krieger, K. J., & Moritz, R. F. (2017). Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance. Infection, Genetics and Evolution, 50, 49-54.
  • Botías, C., Martín-Hernández, R., Barrios, L., Meana, A., & Higes, M. (2013). Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Veterinary Research, 44 (25). https://doi.org/10.1186/1297-9716-44-25
  • Calderone, N. W. (2012). Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE; 7(5), e37235.
  • Chatterjee, A. (2021). The effect of honey bee colony efficiency upon crop yield besides farmer benefit. International Journal of Modern Agriculture, 10(2), 1131-1138.
  • Chen, G., Wang, S., Jia, S., Feng, Y., Hu, F., Chen, Y., & Zheng, H. (2021). A new strain of virus discovered in china specific to the parasitic mite Varroa destructor poses a potential threat to honey bees. Viruses, 13(4), 679.
  • Erban, T., Sopko, B., Kadlikova, K., Talacko, P., & Harant, K. (2019). Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Scientific Reports, 9, 9400.
  • Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., Higes, M.,. McMahon, D. P, Martín-Hernández, R., Natsopoulou, M., Paxton, R. J., Tanner, G., Webster, T. C., & Williams, G. R. (2013). "Standard methods for Nosema research." Journal of Apicultural Research, 52 (1), 1-28.
  • Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2020a). Factors Associated with Honey Bee Colony Losses: A Mini-Review. Veterinary Sciences, 7(4), 166. https://doi.org/10.3390/vetsci7040166.
  • Hristov, P., Neov, B., Shumkova, R., & Palova, N. (2020b). Significance of Apoidea as Main Pollinators. Ecological and Economic Impact and Implications for Human Nutrition. Diversity, 12, 280. https://doi.org/10.3390/d12070280.
  • Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41, 353–363. https://doi.org/10.1051/apido/2010017.
  • Lowe, E. B., Groves, R., & Gratton, C. (2021). Impacts of field-edge flower plantings on pollinator conservation and ecosystem service delivery–A meta-analysis. Agriculture, Ecosystems & Environment, 310, 107290
  • OIE (World Organization for Animal Health), (2013). Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 3.2.4., version adapted in May 2013. Also on: www.oie.int.
  • OIE (World Organization for Animal Health), (2021). Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 3.2.7., version adapted in May 2021. Also on: www.oie.int.
  • Neov, B., Georgieva, A., Shumkova, R., Radoslavov, G., & Hristov, P. (2019). Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis mellifera). Diversity, 11(12), 237. https://doi.org/10.3390/d11120237.
  • Oliver, R. (2020). Refining the mite wash: Part 3 dislodgement, precipitation, and separation. American Bee Journal, 160, 1013.
  • Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., & van Engelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792-1801.
  • Roberts, J. M. K., Simbiken, N., Dale, C., Armstrong, J., & Anderson D. L. (2020). Tolerance of Honey Bees to Varroa Mite in the Absence of Deformed Wing Virus. Viruses. 12, 575.
  • Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119.
  • Rubanov, A., Russell, K. A., Rothman, J. A., Nieh, J. C., & McFrederick, Q. S. (2019). Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Scientific reports, 9(1), 1-8.
  • Salkova, D., Gurgulova, K., Takova, S., & Panayotova-Pencheva, M. (2015). Preliminary studies on the spread of Varroa destructor and Nosema spp. in certain areas of Bulgaria. Proceedings of sixth Workshop on experimental models and methods in biomedical research, 6, 106-111.
  • Salkova, D., Gurgulova, K., Takova, S., & Panayotova-Pencheva, М. (2016a). Comparative analysis between field and laboratory diagnosis of nosemosis and varroosis on honeybee. Proceedings of seventh Workshop on experimental models and methods in biomedical research, 7, 79-84.
  • Salkova, D. S., Georgieva. T. E., Gurgulova, K. I., Takova, S. B., Panayotova-Pencheva, M. S., & Movsesyan, S. O. (2016b). Prevalence and distribution of Nosema spp. and Varroa destructor in honeybee colonies in Bulgaria. Труды Центра Паразитологии ИПЭЭ РАН, 49, 151-152.
  • Salkova, D., Shumkova, R., Balkanska, R., Palova, N., Neov, B., Radoslavov, G., & Hristov, P. (2022). Molecular Detection of Nosema spp. in Honey in Bulgaria. Veterinary Sciences, 9, 10. https://doi.org/10.3390/vetsci9010010.
  • Shumkova, R., Balkanska, R., & Hristov, P. (2021). The Herbal Supplements NOZEMAT HERB® and NOZEMAT HERB PLUS®: An Alternative Therapy for N. ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens, 10(2), 234. https://doi.org/10.3390/pathogens10020234.

Detection of Varroa destructor Mite and Nosema spp. in Bee Samples From Bulgaria

Yıl 2022, Cilt: 14 Sayı: 1, 21 - 26, 29.07.2022

Öz

This study is focused on the investigation of honey bee samples for the presence of the two most common and widely distributed honey bee parasites. In a two-year period during 2020-2021, 185 bee samples were tested. All samples were examined by morphological and light microscopic methods. The obtained results showed that 32.43% of bee samples were infested with Varroa destructor. The degree of infection in the bees ranged from 0.5% to 60%. Spores of Nosema spp. were established in 25.40% of samples with a degree of invasion in the range from 3x105 to 26x106 per bee. Mixed infections of both parasites were observed in 32.43% of the samples. Negative samples were with the lowest value of 9.74%.

Kaynakça

  • Annoscia, D., Brown, S.P., Di Prisco, G., De Paoli, E., Del Fabbro, S., Frizzera, D., Zanni, V., Galbraith, D.A., Caprio, E., & Grozinger, C.M. (2019). Haemolymph removal by Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, as predicted by Volterra’s model. Proceedings of Biological Sciences, 286, 20190331.
  • Barroso-Arévalo, S., Fernández-Carrión, E., Goyache, J., Molero, F., Puerta, F., & Sánchez-Vizcaíno, J.M. (2019). High load of deformed wing virus and Varroa destructor infestation are related to weakness of honey bee colonies in southern Spain. Frontiers in Microbiology, 10, 1331.https://doi.org/10.3389/fmicb.2019.01331
  • Beaurepaire, A. L., Krieger, K. J., & Moritz, R. F. (2017). Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance. Infection, Genetics and Evolution, 50, 49-54.
  • Botías, C., Martín-Hernández, R., Barrios, L., Meana, A., & Higes, M. (2013). Nosema spp. infection and its negative effects on honey bees (Apis mellifera iberiensis) at the colony level. Veterinary Research, 44 (25). https://doi.org/10.1186/1297-9716-44-25
  • Calderone, N. W. (2012). Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE; 7(5), e37235.
  • Chatterjee, A. (2021). The effect of honey bee colony efficiency upon crop yield besides farmer benefit. International Journal of Modern Agriculture, 10(2), 1131-1138.
  • Chen, G., Wang, S., Jia, S., Feng, Y., Hu, F., Chen, Y., & Zheng, H. (2021). A new strain of virus discovered in china specific to the parasitic mite Varroa destructor poses a potential threat to honey bees. Viruses, 13(4), 679.
  • Erban, T., Sopko, B., Kadlikova, K., Talacko, P., & Harant, K. (2019). Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Scientific Reports, 9, 9400.
  • Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., Higes, M.,. McMahon, D. P, Martín-Hernández, R., Natsopoulou, M., Paxton, R. J., Tanner, G., Webster, T. C., & Williams, G. R. (2013). "Standard methods for Nosema research." Journal of Apicultural Research, 52 (1), 1-28.
  • Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2020a). Factors Associated with Honey Bee Colony Losses: A Mini-Review. Veterinary Sciences, 7(4), 166. https://doi.org/10.3390/vetsci7040166.
  • Hristov, P., Neov, B., Shumkova, R., & Palova, N. (2020b). Significance of Apoidea as Main Pollinators. Ecological and Economic Impact and Implications for Human Nutrition. Diversity, 12, 280. https://doi.org/10.3390/d12070280.
  • Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41, 353–363. https://doi.org/10.1051/apido/2010017.
  • Lowe, E. B., Groves, R., & Gratton, C. (2021). Impacts of field-edge flower plantings on pollinator conservation and ecosystem service delivery–A meta-analysis. Agriculture, Ecosystems & Environment, 310, 107290
  • OIE (World Organization for Animal Health), (2013). Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 3.2.4., version adapted in May 2013. Also on: www.oie.int.
  • OIE (World Organization for Animal Health), (2021). Manual of Standards for Diagnostic Tests and Vaccines for Terrestrial Animals, Chapter 3.2.7., version adapted in May 2021. Also on: www.oie.int.
  • Neov, B., Georgieva, A., Shumkova, R., Radoslavov, G., & Hristov, P. (2019). Biotic and Abiotic Factors Associated with Colonies Mortalities of Managed Honey Bee (Apis mellifera). Diversity, 11(12), 237. https://doi.org/10.3390/d11120237.
  • Oliver, R. (2020). Refining the mite wash: Part 3 dislodgement, precipitation, and separation. American Bee Journal, 160, 1013.
  • Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., & van Engelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792-1801.
  • Roberts, J. M. K., Simbiken, N., Dale, C., Armstrong, J., & Anderson D. L. (2020). Tolerance of Honey Bees to Varroa Mite in the Absence of Deformed Wing Virus. Viruses. 12, 575.
  • Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96–S119.
  • Rubanov, A., Russell, K. A., Rothman, J. A., Nieh, J. C., & McFrederick, Q. S. (2019). Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Scientific reports, 9(1), 1-8.
  • Salkova, D., Gurgulova, K., Takova, S., & Panayotova-Pencheva, M. (2015). Preliminary studies on the spread of Varroa destructor and Nosema spp. in certain areas of Bulgaria. Proceedings of sixth Workshop on experimental models and methods in biomedical research, 6, 106-111.
  • Salkova, D., Gurgulova, K., Takova, S., & Panayotova-Pencheva, М. (2016a). Comparative analysis between field and laboratory diagnosis of nosemosis and varroosis on honeybee. Proceedings of seventh Workshop on experimental models and methods in biomedical research, 7, 79-84.
  • Salkova, D. S., Georgieva. T. E., Gurgulova, K. I., Takova, S. B., Panayotova-Pencheva, M. S., & Movsesyan, S. O. (2016b). Prevalence and distribution of Nosema spp. and Varroa destructor in honeybee colonies in Bulgaria. Труды Центра Паразитологии ИПЭЭ РАН, 49, 151-152.
  • Salkova, D., Shumkova, R., Balkanska, R., Palova, N., Neov, B., Radoslavov, G., & Hristov, P. (2022). Molecular Detection of Nosema spp. in Honey in Bulgaria. Veterinary Sciences, 9, 10. https://doi.org/10.3390/vetsci9010010.
  • Shumkova, R., Balkanska, R., & Hristov, P. (2021). The Herbal Supplements NOZEMAT HERB® and NOZEMAT HERB PLUS®: An Alternative Therapy for N. ceranae Infection and Its Effects on Honey Bee Strength and Production Traits. Pathogens, 10(2), 234. https://doi.org/10.3390/pathogens10020234.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Research Articles
Yazarlar

Delka Salkova 0000-0002-1716-2175

Kalinka Gurgulova 0000-0002-5142-0027

Yayımlanma Tarihi 29 Temmuz 2022
Gönderilme Tarihi 14 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 14 Sayı: 1

Kaynak Göster

APA Salkova, D., & Gurgulova, K. (2022). Detection of Varroa destructor Mite and Nosema spp. in Bee Samples From Bulgaria. Bee Studies, 14(1), 21-26.