Defensive Behaviors of the Central Highland Honeybees, Apis mellifera bandasii against Varroa destructor in Ethiopia
Yıl 2023,
Cilt: 15 Sayı: 2, 61 - 71, 28.12.2023
Alemayehu Gela
Araya Gebresilassie
Yitbarek Woldehawariat
Anagaw Atikem
Zewdu Ararso
Amssalu Bezabeh
Öz
The parasitic mite V. destructor has caused long-lasting losses to the survival of European honeybee colonies. In contrast, African honeybees are likely capable of surviving the effects of this parasitic mite with varying defense mechanisms. This study provides insights into two defense behavioral traits, including hygienic and grooming behaviors of local honeybee, Apis mellifera bandasii colonies against V. destructor mite in Ethiopia. Hygienic behavior (HB) was evaluated using the standard pin-killed brood method by calculating the dead brood removal rates (%) at 24 and 48 hrs. While grooming behavior (GB) was assessed by measuring the number of daily fallen mites and the percentage of damaged mites. The results of hygienic behavior showed greater brood removal rates of 83.1±14.3% and 97.6±3.4% at 24 hrs and 48 hrs, respectively. There were strong negative correlations between the HB and Varroa infestation rates, indicating that HB has the potential to reduce the mite population in colonies. Grooming behavior also showed higher mean daily fallen mites per colony (16.3±10.2), of which about 80% of the total fallen mites (n=488) were damaged. Ten body damage categories were identified, with most damages inflicted on mites` legs, dorsal shield, and gnathosoma because of the GB. Our study suggests that combined hygienic and grooming behaviors could be used as effective defenses against V. destructor infestations in A. m. bandasii colonies. Therefore, future selective breeding programs should integrate these specific host defenses in order to produce sustainable colonies resistant to this parasitic mite.
Etik Beyan
There are no ethical issues with the publication of this article.
Destekleyen Kurum
This research has not received any funding grants from commercial or non-profit organisations.
Teşekkür
This study was financially supported by Ethiopian Agricultural Research Institute (EIAR), Addis Ababa University (AAU) and Oromia Agricultural Research Institute (IQQO). The authors would like to thank Holeta Bee Research Center (HBRC) for all the logistic and laboratory facility arrangements during the experimental work. Our thanks also go to the bee health team at HBRC for their technical assistance during the laboratory and field work.
Kaynakça
- Abrol, D., & Sharma, D. (2013). Pollinator decline influencing global crop yield and food security. Integrated Pest Management, 208.
- Aleme, M., Yadessa, E., Tulu, D., Bogale, A., Mengistu, G., & Bezabeh, A. (2017). Performance evaluation of local honey bee races (Apismellifera Wayi Gambella) in Sheka zone. International Journal of Research in Agricultural Sciences, 4(6), 282-287.
- Allsopp, M., Govan, V., & Davison, S. (1997). Bee health report: Varroa in South Africa. Bee World, 78(4), 171-174.
- Araneda, X., Pérez, R., Castillo, C., & Medina, L. (2008). Evaluación del comportamiento higiénico de Apis mellifera L. en relación al nivel de infestación de Varroa destructor Anderson & Trueman. Idesia (Arica), 26(2), 59-67.
- Arathi, H., & Spivak, M. (2001). Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Animal Behaviour, 62(1), 57-66.
- Aumeier, P. (2001). Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees. Apidologie, 32(1), 81-90.
- Begna, D. (2014). Occurrences and distributions of honeybee (Apis mellifera Jemenetica) varroa mite (Varroa destructor) in Tigray Region, Ethiopia. Journal of Fisheries and Livestock Production, 2(3), 10.4172.
- Begna, D., Gela, A., Negera, T., & Bezabeh, A. (2016). Identifying the species, effects and seasonal dynamics of honeybee varroa mites: A newly emerging parasite to Ethiopian honeybee. International Journal of Scientific Research in Environmental Science and Toxicology, 1(1), 4.
- Boecking, O., Bienefeld, K., & Drescher, W. (2000). Heritability of the Varroa‐specific hygienic behaviour in honey bees (Hymenoptera: Apidae). Journal of Animal Breeding and genetics, 117(6), 417-424.
- Boecking, O., & Spivak, M. (1999). Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie, 30(2-3), 141-158.
- Büchler, R., Andonov, S., Bienefeld, K., Costa, C., Hatjina, F., Kezic, N., Kryger, P., Spivak, M., Uzunov, A. & Wilde, J. (2013). Standard methods for rearing and selection of Apis mellifera queens. Journal of Apicultural Research, 52(1), 1-30.
- Büchler, R., Berg, S., & Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in Europe. Apidologie, 41(3), 393-408.
- Castilhos, D., Polesso, A. M., da Silva, A. C. F., dos Santos, A. B., de Carvalho Lopes, A. T., de Oliveira Filho, A. A., Da Cunha, A. F. S., Puker, A., Matioli, A. L., & Campos, A. A. S. (2023). Varroa destructor infestation levels in Africanized honey bee colonies in Brazil from 1977 when first detected to 2020. Apidologie, 54(1), 5.
- Chemurot, M., Akol, A. M., Masembe, C., De Smet, L., Descamps, T., & de Graaf, D. C. (2016). Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda. Experimental and Applied Acarology, 68(4), 497-508.
- Corrêa-Marques, M. H., Issa, M., & Jong, D. D. (2000). Classification and quantification of damaged Varroa jacobsoni found in the debris of honey bee colonies as criteria for selection? American Bee Journal, 140(10), 820-824.
- Dadoun, N., Nait-Mouloud, M., Mohammedi, A., & Sadeddine Zennouche, O. (2020). Differences in grooming behavior between susceptible and resistant honey bee colonies after 13 years of natural selection. Apidologie, 51(5), 793-801.
- Dalmon, A., Peruzzi, M., Le Conte, Y., Alaux, C. & Pioz, M. (2019). Temperature-driven changes in viral loads in the honey bee Apis mellifera. Journal of invertebrate pathology, 160, 87-94.
- Delaplane, K. S., Van Der Steen, J., & Guzman-Novoa, E. (2013). Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 52(1), 1-12.
- Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., Wauquiez, Q., Tannahill, C., Frey, E., & Ziegelmann, B. (2013). Standard methods for varroa research. Journal of Apicultural Research, 52(1), 1-54.
- Dietemann, V., Pirk, C. W. W., & Crewe, R. (2009). Is there a need for conservation of honeybees in Africa? Apidologie, 40(3), 285-295.
- Fazier, M., Muli, E., Conklin, T., Schmehl, D., Torto, B., Frazier, J., Tumlinson, J., Evans, J. D., & Raina, S. (2010). A scientific note on Varroa destructor found in East Africa; threat or opportunity? Apidologie, 41(4), 463-465.
- Fichtl, R., & Adi, A. (1994). Honeybee flora of Ethiopia: Margraf Verlag.
- Flores, J. M., Gámiz, V., Jiménez-Marín, Á., Flores-Cortés, A., Gil-Lebrero, S., Garrido, J. J., & Hernando, M. D. (2021). Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Research in Veterinary Science, 135, 85-95.
- Gebremedhn, H., Amssalu, B., Smet, L. D., & de Graaf, D. C. (2019). Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS One, 14(9), e0223236.
- Gela, A., Atickem, A., Bezabeh, A., Woldehawariat, Y., & Gebresilassie, A. (2023). Insights into varroa mite (Varroa destructor) infestation levels in local honeybee (Apis mellifera) colonies of Ethiopia. Journal of Applied Entomology, 147(9), 798-808.
- Gratzer, K., Wakjira, K., Fiedler, S. & Brodschneider, R. 2021. Challenges and perspectives for beekeeping in Ethiopia. A review. Agronomy for Sustainable Development, 41, 115.
- Grindrod, I., & Martin, S. J. (2021). Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents? Proceedings of the Royal Society B, 288(1956), 20211375.
- Grindrod, I., & Martin, S. J. (2023). Varroa resistance in Apis cerana: a review. Apidologie, 54(2), 14.
- Hamiduzzaman, M. M., Emsen, B., Hunt, G. J., Subramanyam, S., Williams, C. E., Tsuruda, J. M., & Guzman-Novoa, E. (2017). Differential gene expression associated with honey bee grooming behavior in response to Varroa mites. Behavior genetics, 47(3), 335-344.
- Harris, J. W., Danka, R. G., & Villa, J. D. (2010). Honey bees (Hymenoptera: Apidae) with the trait of Varroa sensitive hygiene remove brood with all reproductive stages of Varroa mites (Mesostigmata: Varroidae). Annals of the Entomological Society of America, 103(2), 146-152.
- Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2020). Factors associated with honey bee colony losses: A mini-review. Veterinary Sciences, 7(4), 166.
- Hunde, T., & Hora, Z. (2022). Determining the performance of Apis Mellifera bandasii populations under different agroecologies of Central Ethiopia. Advances in Agriculture, 2022.
- Kablau, A., Berg, S., Härtel, S., & Scheiner, R. (2020). Hyperthermia treatment can kill immature and adult Varroa destructor mites without reducing drone fertility. Apidologie, 51(3), 307-315.
- Kamel, S. M., Strange, J. P., & Sheppard, W. S. (2003). A scientific note on hygienic behavior in Apis mellifera lamarckii and A. m. carnica in Egypt. Apidologie, 34(2), 189-190.
- Kebede, D. (2006). Testing colonies of India honey bees Apis cerana for hygienic behavior. (Master's thesis), Department of Apiculture of Agricultural Science, Bangalore.
- Khan, K. A., & Ghramh, H. A. (2021). An investigation of the efficacy of hygienic behavior of various honey bee (Apis mellifera) races toward Varroa destructor (Acari: Varroidae) mite infestation. Journal of King Saud University-Science, 33(3), 101393.
- Kim, S. H., Mondet, F., Hervé, M., & Mercer, A. (2018). Honey bees performing varroa sensitive hygiene remove the most mite-compromised bees from highly infested patches of brood. Apidologie, 49, 335-345.
- Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41(3), 353-363.
- Locke, B. (2016). Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie, 47, 467-482. Malfroy, S. (2015). A model for industry planning and preparedness for an incursion of Varroa mite (Project Number: MT12049). Horticulture Innovation Australia Limited.
- Masaquiza, D., Vargas, J., Ortíz, N., Salazar, R., Curbelo, L., Pérez, A., & Arenal, A. (2021). Hygienic behavior of Apis mellifera and its relationship with Varroa destructor infestation and honey production in the Central Highlands of Ecuador. Insects, 12(11), 966.
- Medina-Flores, C. A., Guzman-Novoa, E., Aréchiga Flores, C. F., Gutiérrez Bañuelos, H., & Aguilera Soto, J. I. (2014). Honey production and Varroa destructor infestation of Africanized honey bee (Apis mellifera) colonies with high and low hygienic behavior. Revista mexicana de ciencias pecuarias, 5(2), 157-170.
- Meixner, M. D., Kryger, P., & Costa, C. (2015). Effects of genotype, environment, and their interactions on honey bee health in Europe. Current Opinion in Insect Science, 10, 177-184.
- Mekonnon, B., Lakew, B., & Dessalegn, T. (2015). Morphological diversity and association of traits in Ethiopian food barley (Hordeum vulgare L.) landraces in relation to regions of origin and altitudes. Journal of Plant Breeding and Crop Science, 7(2), 44-54.
- Mohammed, N. A. (2002). Geographical races of the Honeybees (Apis mellifera L.) of the Northern Regions of Ethiopia. Rhodes University.
- Mondet, F., Alaux, C., Severac, D., Rohmer, M., Mercer, A. R., & Le Conte, Y. (2015). Antennae hold a key to Varroasensitive hygiene behaviour in honey bees. Scientific reports, 5(1), 1-12.
- Mondet, F., Beaurepaire, A., McAfee, A., Locke, B., Alaux, C., Blanchard, S., Danka, B., & Le Conte, Y. (2020). Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. International journal for parasitology, 50(6-7), 433-447.
- Morfin, N., Espinosa-Montaño, L. G., & Guzman-Novoa, E. (2020). A direct assay to assess self-grooming behavior in honey bees (Apis mellifera L.). Apidologie, 51, 892897.
- Muli, E., Patch, H., Frazier, M., Frazier, J., Torto, B., Baumgarten, T., Kilonzo, J., Mumoki, F., Masiga, D., & Tumlinson, J. (2014). Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa. PLoS One, 9(4), e94459.
- Nazzi, F., & Le Conte, Y. (2016). Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annual Review of Entomology, 61(1), 417-432.
- Nganso, B. T., Fombong, A. T., Yusuf, A. A., Pirk, C. W., Stuhl, C., & Torto, B. (2017). Hygienic and grooming behaviors in African and European honeybees-New damage categories in Varroa destructor. PLoS One, 12(6), e0179329.
- Noël, A., Le Conte, Y., & Mondet, F. (2020). Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerging Topics in Life Sciences, 4(1), 45-57.
- O’Shea-Wheller, T. A., Rinkevich, F. D., Danka, R. G., SimoneFinstrom, M., Tokarz, P. G., & Healy, K. B. (2022). A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Scientific reports, 12(1), 4852.
- Panasiuk, B., Skowronek, W., Bienkowska, M., Gerula, D., & Wegrzynowicz, P. (2010). Age of worker bees performing hygienic behaviour in a honeybee colony. Journal of Apicultural Science, 54(2).
- Parker, R., Guarna, M. M., Melathopoulos, A. P., Moon, K.-M., White, R., Huxter, E., Pernal, S. F., & Foster, L. J. (2012). Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome biology, 13, 1-15.
- Peng, Y.-S., Fang, Y., Xu, S., & Ge, L. (1987). The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology, 49(1), 54-60.
- Pettis, J., & Shimanuki, H. (1999). A hive modification to reduce varroa populations. American Bee Journal, 139(6), 471473.
- Pirk, C. W., Strauss, U., Yusuf, A. A., Demares, F., & Human, H. (2016). Honeybee health in Africa—a review. Apidologie, 47(3), 276-300.
- Plettner, E., Eliash, N., Singh, N. K., Pinnelli, G. R., & Soroker, V. (2017). The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie, 48(1), 78-92.
- Pritchard, D. J. (2016). Grooming by honey bees as a component of varroa resistant behavior. Journal of Apicultural Research, 55(1), 38-48.
- Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., . . . Ellis, J. D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792-1801.
- Rath, W. (1999). Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie, 30(2-3), 97-110.
- Roberts, K. E. & Hughes, W. O. (2014). Immuno-senescence and resistance to parasite infection in the honey bee, Apis mellifera. Journal of Invertebrate Pathology, 121, 16.
- Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96-S119.
- Russo, R. M., Liendo, M. C., Landi, L., Pietronave, H., Merke, J., Fain, H., Muntaabski, I., Palacio, M. A., Rodríguez, G. A., & Lanzavecchia, S. B. (2020). Grooming behavior in naturally Varroa-resistant Apis mellifera colonies from north-central Argentina. Frontiers in Ecology and Evolution, 8, 590281.
- Shegaw, T., Arke, A., Belay, N., & Habte Giorgis, D. (2022). Diagnostic survey on varroa mite (Varroa distractor) prevalence in South-Western Ethiopia. Cogent Food & Agriculture, 8(1), 2143610.
- Shitaneh, E., Arega, H., Getent, M., & Bezabeh, A. (2022). Performance evaluation of local honey bee race (Apis melifera secutellata) in the Metekel Zone of North Western Ethiopia. Veterinary Medicine and Science, 8(6), 2696-2702.
- Spivak, M., & Danka, R. G. (2021). Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie, 52, 1-16.
- Spivak, M., & Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6), 555-565.
- Strauss, U., Pirk, C. W., Crewe, R. M., Human, H. & Dietemann, V. (2015). Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa. Experimental and Applied Acarology, 65, 89-106.
- Tibatá, V. M., Sanchez, A., Palmer-Young, E., Junca, H., Solarte, V. M., Madella, S., Ariza, F., Figueroa, J., & Corona, M. (2021). Africanized honey bees in Colombia exhibit high prevalence but low level of infestation of Varroa mites and low prevalence of pathogenic viruses. PLoS One, 16(5), e0244906.
- Traynor, K. S., Mondet, F., de Miranda, J. R., Techer, M., Kowallik, V., Oddie, M. A., Chantawannakul, P., & McAfee, A. (2020). Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends in Parasitology, 36(7), 592-606.
- Yang, H., Shi, J., Liao, C., Yan, W., & Wu, X. (2021). Varroa destructor mite infestations in capped brood cells of honeybee workers affect emergence development and adult foraging ability. Current zoology, 67(5), 569-571.
Yıl 2023,
Cilt: 15 Sayı: 2, 61 - 71, 28.12.2023
Alemayehu Gela
Araya Gebresilassie
Yitbarek Woldehawariat
Anagaw Atikem
Zewdu Ararso
Amssalu Bezabeh
Kaynakça
- Abrol, D., & Sharma, D. (2013). Pollinator decline influencing global crop yield and food security. Integrated Pest Management, 208.
- Aleme, M., Yadessa, E., Tulu, D., Bogale, A., Mengistu, G., & Bezabeh, A. (2017). Performance evaluation of local honey bee races (Apismellifera Wayi Gambella) in Sheka zone. International Journal of Research in Agricultural Sciences, 4(6), 282-287.
- Allsopp, M., Govan, V., & Davison, S. (1997). Bee health report: Varroa in South Africa. Bee World, 78(4), 171-174.
- Araneda, X., Pérez, R., Castillo, C., & Medina, L. (2008). Evaluación del comportamiento higiénico de Apis mellifera L. en relación al nivel de infestación de Varroa destructor Anderson & Trueman. Idesia (Arica), 26(2), 59-67.
- Arathi, H., & Spivak, M. (2001). Influence of colony genotypic composition on the performance of hygienic behaviour in the honeybee, Apis mellifera L. Animal Behaviour, 62(1), 57-66.
- Aumeier, P. (2001). Bioassay for grooming effectiveness towards Varroa destructor mites in Africanized and Carniolan honey bees. Apidologie, 32(1), 81-90.
- Begna, D. (2014). Occurrences and distributions of honeybee (Apis mellifera Jemenetica) varroa mite (Varroa destructor) in Tigray Region, Ethiopia. Journal of Fisheries and Livestock Production, 2(3), 10.4172.
- Begna, D., Gela, A., Negera, T., & Bezabeh, A. (2016). Identifying the species, effects and seasonal dynamics of honeybee varroa mites: A newly emerging parasite to Ethiopian honeybee. International Journal of Scientific Research in Environmental Science and Toxicology, 1(1), 4.
- Boecking, O., Bienefeld, K., & Drescher, W. (2000). Heritability of the Varroa‐specific hygienic behaviour in honey bees (Hymenoptera: Apidae). Journal of Animal Breeding and genetics, 117(6), 417-424.
- Boecking, O., & Spivak, M. (1999). Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie, 30(2-3), 141-158.
- Büchler, R., Andonov, S., Bienefeld, K., Costa, C., Hatjina, F., Kezic, N., Kryger, P., Spivak, M., Uzunov, A. & Wilde, J. (2013). Standard methods for rearing and selection of Apis mellifera queens. Journal of Apicultural Research, 52(1), 1-30.
- Büchler, R., Berg, S., & Le Conte, Y. (2010). Breeding for resistance to Varroa destructor in Europe. Apidologie, 41(3), 393-408.
- Castilhos, D., Polesso, A. M., da Silva, A. C. F., dos Santos, A. B., de Carvalho Lopes, A. T., de Oliveira Filho, A. A., Da Cunha, A. F. S., Puker, A., Matioli, A. L., & Campos, A. A. S. (2023). Varroa destructor infestation levels in Africanized honey bee colonies in Brazil from 1977 when first detected to 2020. Apidologie, 54(1), 5.
- Chemurot, M., Akol, A. M., Masembe, C., De Smet, L., Descamps, T., & de Graaf, D. C. (2016). Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda. Experimental and Applied Acarology, 68(4), 497-508.
- Corrêa-Marques, M. H., Issa, M., & Jong, D. D. (2000). Classification and quantification of damaged Varroa jacobsoni found in the debris of honey bee colonies as criteria for selection? American Bee Journal, 140(10), 820-824.
- Dadoun, N., Nait-Mouloud, M., Mohammedi, A., & Sadeddine Zennouche, O. (2020). Differences in grooming behavior between susceptible and resistant honey bee colonies after 13 years of natural selection. Apidologie, 51(5), 793-801.
- Dalmon, A., Peruzzi, M., Le Conte, Y., Alaux, C. & Pioz, M. (2019). Temperature-driven changes in viral loads in the honey bee Apis mellifera. Journal of invertebrate pathology, 160, 87-94.
- Delaplane, K. S., Van Der Steen, J., & Guzman-Novoa, E. (2013). Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 52(1), 1-12.
- Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., Wauquiez, Q., Tannahill, C., Frey, E., & Ziegelmann, B. (2013). Standard methods for varroa research. Journal of Apicultural Research, 52(1), 1-54.
- Dietemann, V., Pirk, C. W. W., & Crewe, R. (2009). Is there a need for conservation of honeybees in Africa? Apidologie, 40(3), 285-295.
- Fazier, M., Muli, E., Conklin, T., Schmehl, D., Torto, B., Frazier, J., Tumlinson, J., Evans, J. D., & Raina, S. (2010). A scientific note on Varroa destructor found in East Africa; threat or opportunity? Apidologie, 41(4), 463-465.
- Fichtl, R., & Adi, A. (1994). Honeybee flora of Ethiopia: Margraf Verlag.
- Flores, J. M., Gámiz, V., Jiménez-Marín, Á., Flores-Cortés, A., Gil-Lebrero, S., Garrido, J. J., & Hernando, M. D. (2021). Impact of Varroa destructor and associated pathologies on the colony collapse disorder affecting honey bees. Research in Veterinary Science, 135, 85-95.
- Gebremedhn, H., Amssalu, B., Smet, L. D., & de Graaf, D. C. (2019). Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS One, 14(9), e0223236.
- Gela, A., Atickem, A., Bezabeh, A., Woldehawariat, Y., & Gebresilassie, A. (2023). Insights into varroa mite (Varroa destructor) infestation levels in local honeybee (Apis mellifera) colonies of Ethiopia. Journal of Applied Entomology, 147(9), 798-808.
- Gratzer, K., Wakjira, K., Fiedler, S. & Brodschneider, R. 2021. Challenges and perspectives for beekeeping in Ethiopia. A review. Agronomy for Sustainable Development, 41, 115.
- Grindrod, I., & Martin, S. J. (2021). Parallel evolution of Varroa resistance in honey bees: a common mechanism across continents? Proceedings of the Royal Society B, 288(1956), 20211375.
- Grindrod, I., & Martin, S. J. (2023). Varroa resistance in Apis cerana: a review. Apidologie, 54(2), 14.
- Hamiduzzaman, M. M., Emsen, B., Hunt, G. J., Subramanyam, S., Williams, C. E., Tsuruda, J. M., & Guzman-Novoa, E. (2017). Differential gene expression associated with honey bee grooming behavior in response to Varroa mites. Behavior genetics, 47(3), 335-344.
- Harris, J. W., Danka, R. G., & Villa, J. D. (2010). Honey bees (Hymenoptera: Apidae) with the trait of Varroa sensitive hygiene remove brood with all reproductive stages of Varroa mites (Mesostigmata: Varroidae). Annals of the Entomological Society of America, 103(2), 146-152.
- Hristov, P., Shumkova, R., Palova, N., & Neov, B. (2020). Factors associated with honey bee colony losses: A mini-review. Veterinary Sciences, 7(4), 166.
- Hunde, T., & Hora, Z. (2022). Determining the performance of Apis Mellifera bandasii populations under different agroecologies of Central Ethiopia. Advances in Agriculture, 2022.
- Kablau, A., Berg, S., Härtel, S., & Scheiner, R. (2020). Hyperthermia treatment can kill immature and adult Varroa destructor mites without reducing drone fertility. Apidologie, 51(3), 307-315.
- Kamel, S. M., Strange, J. P., & Sheppard, W. S. (2003). A scientific note on hygienic behavior in Apis mellifera lamarckii and A. m. carnica in Egypt. Apidologie, 34(2), 189-190.
- Kebede, D. (2006). Testing colonies of India honey bees Apis cerana for hygienic behavior. (Master's thesis), Department of Apiculture of Agricultural Science, Bangalore.
- Khan, K. A., & Ghramh, H. A. (2021). An investigation of the efficacy of hygienic behavior of various honey bee (Apis mellifera) races toward Varroa destructor (Acari: Varroidae) mite infestation. Journal of King Saud University-Science, 33(3), 101393.
- Kim, S. H., Mondet, F., Hervé, M., & Mercer, A. (2018). Honey bees performing varroa sensitive hygiene remove the most mite-compromised bees from highly infested patches of brood. Apidologie, 49, 335-345.
- Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie, 41(3), 353-363.
- Locke, B. (2016). Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie, 47, 467-482. Malfroy, S. (2015). A model for industry planning and preparedness for an incursion of Varroa mite (Project Number: MT12049). Horticulture Innovation Australia Limited.
- Masaquiza, D., Vargas, J., Ortíz, N., Salazar, R., Curbelo, L., Pérez, A., & Arenal, A. (2021). Hygienic behavior of Apis mellifera and its relationship with Varroa destructor infestation and honey production in the Central Highlands of Ecuador. Insects, 12(11), 966.
- Medina-Flores, C. A., Guzman-Novoa, E., Aréchiga Flores, C. F., Gutiérrez Bañuelos, H., & Aguilera Soto, J. I. (2014). Honey production and Varroa destructor infestation of Africanized honey bee (Apis mellifera) colonies with high and low hygienic behavior. Revista mexicana de ciencias pecuarias, 5(2), 157-170.
- Meixner, M. D., Kryger, P., & Costa, C. (2015). Effects of genotype, environment, and their interactions on honey bee health in Europe. Current Opinion in Insect Science, 10, 177-184.
- Mekonnon, B., Lakew, B., & Dessalegn, T. (2015). Morphological diversity and association of traits in Ethiopian food barley (Hordeum vulgare L.) landraces in relation to regions of origin and altitudes. Journal of Plant Breeding and Crop Science, 7(2), 44-54.
- Mohammed, N. A. (2002). Geographical races of the Honeybees (Apis mellifera L.) of the Northern Regions of Ethiopia. Rhodes University.
- Mondet, F., Alaux, C., Severac, D., Rohmer, M., Mercer, A. R., & Le Conte, Y. (2015). Antennae hold a key to Varroasensitive hygiene behaviour in honey bees. Scientific reports, 5(1), 1-12.
- Mondet, F., Beaurepaire, A., McAfee, A., Locke, B., Alaux, C., Blanchard, S., Danka, B., & Le Conte, Y. (2020). Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. International journal for parasitology, 50(6-7), 433-447.
- Morfin, N., Espinosa-Montaño, L. G., & Guzman-Novoa, E. (2020). A direct assay to assess self-grooming behavior in honey bees (Apis mellifera L.). Apidologie, 51, 892897.
- Muli, E., Patch, H., Frazier, M., Frazier, J., Torto, B., Baumgarten, T., Kilonzo, J., Mumoki, F., Masiga, D., & Tumlinson, J. (2014). Evaluation of the distribution and impacts of parasites, pathogens, and pesticides on honey bee (Apis mellifera) populations in East Africa. PLoS One, 9(4), e94459.
- Nazzi, F., & Le Conte, Y. (2016). Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annual Review of Entomology, 61(1), 417-432.
- Nganso, B. T., Fombong, A. T., Yusuf, A. A., Pirk, C. W., Stuhl, C., & Torto, B. (2017). Hygienic and grooming behaviors in African and European honeybees-New damage categories in Varroa destructor. PLoS One, 12(6), e0179329.
- Noël, A., Le Conte, Y., & Mondet, F. (2020). Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it? Emerging Topics in Life Sciences, 4(1), 45-57.
- O’Shea-Wheller, T. A., Rinkevich, F. D., Danka, R. G., SimoneFinstrom, M., Tokarz, P. G., & Healy, K. B. (2022). A derived honey bee stock confers resistance to Varroa destructor and associated viral transmission. Scientific reports, 12(1), 4852.
- Panasiuk, B., Skowronek, W., Bienkowska, M., Gerula, D., & Wegrzynowicz, P. (2010). Age of worker bees performing hygienic behaviour in a honeybee colony. Journal of Apicultural Science, 54(2).
- Parker, R., Guarna, M. M., Melathopoulos, A. P., Moon, K.-M., White, R., Huxter, E., Pernal, S. F., & Foster, L. J. (2012). Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome biology, 13, 1-15.
- Peng, Y.-S., Fang, Y., Xu, S., & Ge, L. (1987). The resistance mechanism of the Asian honey bee, Apis cerana Fabr., to an ectoparasitic mite, Varroa jacobsoni Oudemans. Journal of Invertebrate Pathology, 49(1), 54-60.
- Pettis, J., & Shimanuki, H. (1999). A hive modification to reduce varroa populations. American Bee Journal, 139(6), 471473.
- Pirk, C. W., Strauss, U., Yusuf, A. A., Demares, F., & Human, H. (2016). Honeybee health in Africa—a review. Apidologie, 47(3), 276-300.
- Plettner, E., Eliash, N., Singh, N. K., Pinnelli, G. R., & Soroker, V. (2017). The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie, 48(1), 78-92.
- Pritchard, D. J. (2016). Grooming by honey bees as a component of varroa resistant behavior. Journal of Apicultural Research, 55(1), 38-48.
- Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., . . . Ellis, J. D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792-1801.
- Rath, W. (1999). Co-adaptation of Apis cerana Fabr. and Varroa jacobsoni Oud. Apidologie, 30(2-3), 97-110.
- Roberts, K. E. & Hughes, W. O. (2014). Immuno-senescence and resistance to parasite infection in the honey bee, Apis mellifera. Journal of Invertebrate Pathology, 121, 16.
- Rosenkranz, P., Aumeier, P., & Ziegelmann, B. (2010). Biology and control of Varroa destructor. Journal of Invertebrate Pathology, 103, S96-S119.
- Russo, R. M., Liendo, M. C., Landi, L., Pietronave, H., Merke, J., Fain, H., Muntaabski, I., Palacio, M. A., Rodríguez, G. A., & Lanzavecchia, S. B. (2020). Grooming behavior in naturally Varroa-resistant Apis mellifera colonies from north-central Argentina. Frontiers in Ecology and Evolution, 8, 590281.
- Shegaw, T., Arke, A., Belay, N., & Habte Giorgis, D. (2022). Diagnostic survey on varroa mite (Varroa distractor) prevalence in South-Western Ethiopia. Cogent Food & Agriculture, 8(1), 2143610.
- Shitaneh, E., Arega, H., Getent, M., & Bezabeh, A. (2022). Performance evaluation of local honey bee race (Apis melifera secutellata) in the Metekel Zone of North Western Ethiopia. Veterinary Medicine and Science, 8(6), 2696-2702.
- Spivak, M., & Danka, R. G. (2021). Perspectives on hygienic behavior in Apis mellifera and other social insects. Apidologie, 52, 1-16.
- Spivak, M., & Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6), 555-565.
- Strauss, U., Pirk, C. W., Crewe, R. M., Human, H. & Dietemann, V. (2015). Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa. Experimental and Applied Acarology, 65, 89-106.
- Tibatá, V. M., Sanchez, A., Palmer-Young, E., Junca, H., Solarte, V. M., Madella, S., Ariza, F., Figueroa, J., & Corona, M. (2021). Africanized honey bees in Colombia exhibit high prevalence but low level of infestation of Varroa mites and low prevalence of pathogenic viruses. PLoS One, 16(5), e0244906.
- Traynor, K. S., Mondet, F., de Miranda, J. R., Techer, M., Kowallik, V., Oddie, M. A., Chantawannakul, P., & McAfee, A. (2020). Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends in Parasitology, 36(7), 592-606.
- Yang, H., Shi, J., Liao, C., Yan, W., & Wu, X. (2021). Varroa destructor mite infestations in capped brood cells of honeybee workers affect emergence development and adult foraging ability. Current zoology, 67(5), 569-571.