EEG Controlled Racing Car
Yıl 2025,
Cilt: 8 Sayı: 2, 63 - 73, 31.12.2025
Burak Kaya
Halit Buğra Yıldırım
,
Mehmet Barış Tabakcıoğlu
Öz
In this study, real-time control of a race car is achieved using an EEG-based brain-computer interface (BCI). The user's attention level and blink movements are detected by the NeuroSky MindWave Mobile EEG sensor and transmitted via Bluetooth to a Raspberry Pi 3B platform. The Raspberry Pi analyzes this data to control the speed and direction of the vehicle through a motor driver board. The mechanical design was modeled using SolidWorks software and produced with a 3D printer, while the electronic system includes a Li-Po battery and an XL4015 voltage step-down module. Motor control is managed by an L298N H-Bridge motor driver board. The developed software enables low-latency data transmission and real-time motor control via the UDP protocol.
Proje Numarası
1919B012316428
Kaynakça
-
P.A. Abhang, B.W. Gawali, S.C. Mehrotra, “Introduction to EEG- and Speech-Based Emotion Recognition”, Academic Press, pp. 19-50, ISBN 9780128044902, 2016.
-
B. Ülker, M.B. Tabakcioglu, “Neurosky Biyosensör Kullanarak Beyin Dalgaları, Dikkat ve Meditasyon Değerlerinin Ölçülmesi ve Değerlendirilmesi”, Gaziosmanpaşa Bilimsel Araştırma Dergisi (GBAD), vol. 7, no. 1, pp. 25-33, 2018.
-
B. Ülker, M. B. Tabakcıoğlu, H. Çizmeci and D. Ayberkin, "Relations of attention and meditation level with learning in engineering education," 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Targoviste, Romania, 2017, pp. 1-4, doi: 10.1109/ECAI.2017.8166407.
-
S. Tiwari, S. Goel, A. Bhardwaj, “MIDNN- a classification approach for the EEG based motor imagery tasks using deep neural network”, Applied Intelligence, vol. 52, no. 5, pp. 4824-4843, 2022.
-
B. R. Cahn, J. Polich, “Meditation states and traits: EEG, ERP, and neuroimaging studies”, Psychological bulletin, vol. 132, no.2, pp. 180, 2006.
-
P. Arambula, E. Peper, M. Kawakami, K.H. Gibney, “The physiological correlates of Kundalini yoga meditation: A study of a yoga master”, Applied Psychophysiology and Biofeedback, vol. 26, pp. 147–153, 2001.
-
M.A. Wenger, B.K. Bagchi, “Studies of autonomic functions in practitioners of yoga in India”, Behavioral Science, vol. 6, pp. 312–323, 1961.
-
B. Anand, G.S. Chhina, B. Singh, “Some aspects of electroencephalographic studies in yogis”, Electroencephalography and Clinical Neurophysiology, vol. 13, pp. 452–456, 1961.
-
M.S. Lee, B.H. Bae, H. Ryu, J.H. Sohn, S.Y. Kim, H.T. Chung, “Changes in alpha wave and state anxiety during Chun Do Sun Bup Qi-training in trainees with open eyes”, American Journal of Chinese Medicine, vol. 25, pp. 289–299, 1997.
-
M. Alirezaei and S. H. Sardouie, “Detection of Human Attention Using EEG Signals”, 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, pp. 1-5, 2017.
-
K. Padmavathi, K. Meenakshi, K. Swaraja, A. Rajani, M. S. Raju, EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review, Complementary Therapies in Clinical Practice, vol. 43, 101329, 2021.
-
H. Altaf, S. N. Ibrahim, N. F. M. Azmin, A. L. Asnawi, B. H. B. Walid and N. H. Harun, "Machine Learning Approach for Stress Detection based on Alpha-Beta and Theta-Beta Ratios of EEG Signals," 2021 13th International Conference on Information & Communication Technology and System (ICTS), Surabaya, Indonesia, pp. 201-206, 2021.
-
A. Wróbel, “Beta activity: a carrier for visual attention”, Acta Neurobiologiae Experimentalis, vol. 60, no.2, pp. 247-260, 2000.
-
H.S. Chiang, K.L. Hsiao, L.C. Liu, LC. EEG-Based Detection Model for Evaluating and Improving Learning Attention. J. Med. Biol. Eng. 38, 847–856 (2018).
-
https://store.neurosky.com [Accessed: 07-July-2025].
-
J. Cheng, G. Mabasa and C. Oppus, "Prolonged distraction testing game implemented with ImpactJS HTML5, Gamepad and Neurosky," 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Palawan, Philippines, 2014, pp. 1-6, doi: 10.1109/HNICEM.2014.7016184.
-
M. Yoh, J. Kwon, and S. Kim. “NeuroWander: a BCI game in the form of interactive fairy tale”. 12th ACM international conference adjunct papers on Ubiquitous computing - Adjunct (UbiComp '10 Adjunct). NY, USA, 389–390. https://doi.org/10.1145/1864431.1864450
-
J. Esquicha-Tejada, S. Pari-Larico, “Interactive toy to strengthen the memory attention and logic of primary education students using sphero Arduino and NeuroSky MindWave EEG”, Proceedings of the 6th Iberoamerican Conference of Computer Human Interaction. vol. 2747, 2020.
-
M. Serrhini, A. Dargham, “Toward incorporating bio-signals in online education case of assessing student attention with BCI”, Europe and MENA cooperation advances in information and communication technologies, Springer International Publishing, 2017.
-
M.M. Khan, “Research and development of a brain-controlled wheelchair for paralyzed patients”, Intell. Autom. Soft Comput., vol. 30, pp. 49-64, 2021.
-
K. Permana, S. K. Wijaya, and P. Prajitno, “Controlled wheelchair based on brain computer interface using Neurosky Mindwave Mobile 2”, AIP Conference Proceedings, vol. 2168, no. 1, 2019.
-
M. Akila, K. SathiyaSekar, A. Suresh, “Smart brain-controlled wheelchair and devices based on EEG in low cost for disabled person”, International Journal of Computers Communication Networks and Circuit System, vol. 1, no. 1, 291-298, 2015.
-
B. Fışkın, M. Göllü, İ. Zengin, E. Yüksel, İ. Varol, M.B. Tabakcıoğlu, “Brain waves controlled model wheelchair”, Uluslararası İleri Doğa Bilimleri ve Mühendislik Araştırmaları Dergisi, Sayı 7, no. 6, S. 71-74, 2023.
-
Motorobit, “XL4015 5A Adjustable Voltage Stepper Module,” 2024. [Online]. Available: https://www.motorobit.com/xl4015-5a-adjustable-voltage-stepper-module [Accessed: 29-Apr-2025].
-
Amazon Türkiye, “L298N Dual H-Bridge Motor Sürücü Modülü,” 2024. [Online]. Available: https://www.amazon.com.tr/Tahrik-Kontrol-Panosu-Mod%C3%BCl%C3%BC-Arduino/dp/ B00NJOTBOK. [Accessed: 29-Apr-2025].
-
https://raspberrypi.stackexchange.com/questions/147680/adafruit-platformdetect-board-py-pin-mapping [Accessed: 02-May-2025]
EEG Kontrollü Yarış Arabası
Yıl 2025,
Cilt: 8 Sayı: 2, 63 - 73, 31.12.2025
Burak Kaya
Halit Buğra Yıldırım
,
Mehmet Barış Tabakcıoğlu
Öz
Bu çalışmada, EEG tabanlı beyin-bilgisayar arayüzü (BCI) kullanılarak bir yarış arabasının gerçek zamanlı kontrolü gerçekleştirilmektedir. Kullanıcının dikkat seviyesi ve göz kırpma hareketleri, NeuroSky MindWave Mobile EEG sensörü ile tespit edilip Bluetooth bağlantısı üzerinden Raspberry Pi 3B platformuna aktarılmaktadır. Raspberry Pi, bu verileri analiz ederek motor sürücü kartı üzerinden aracın hızını ve yönünü kontrol etmektedir. Mekanik tasarım SolidWorks yazılımı ile modellenip 3B yazıcı ile üretilmiş, elektronik sistemde ise Li-Po batarya ve XL4015 voltaj düşürücü modül kullanılmıştır. Motor kontrolü L298N H-Köprüsü motor sürücü kartı ile sağlanmıştır. Geliştirilen yazılım, UDP protokolü üzerinden düşük gecikmeli veri aktarımı ve gerçek zamanlı motor kontrolü sağlamaktadır.
Etik Beyan
Etik kurul kararı gerekmiyor.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
1919B012316428
Teşekkür
Bu çalışma TÜBİTAK 2209A Üniversite Öğrencileri Araştırma projesi kapsamında 1919B012316428 proje numarası ile desteklenmiştir.
Kaynakça
-
P.A. Abhang, B.W. Gawali, S.C. Mehrotra, “Introduction to EEG- and Speech-Based Emotion Recognition”, Academic Press, pp. 19-50, ISBN 9780128044902, 2016.
-
B. Ülker, M.B. Tabakcioglu, “Neurosky Biyosensör Kullanarak Beyin Dalgaları, Dikkat ve Meditasyon Değerlerinin Ölçülmesi ve Değerlendirilmesi”, Gaziosmanpaşa Bilimsel Araştırma Dergisi (GBAD), vol. 7, no. 1, pp. 25-33, 2018.
-
B. Ülker, M. B. Tabakcıoğlu, H. Çizmeci and D. Ayberkin, "Relations of attention and meditation level with learning in engineering education," 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Targoviste, Romania, 2017, pp. 1-4, doi: 10.1109/ECAI.2017.8166407.
-
S. Tiwari, S. Goel, A. Bhardwaj, “MIDNN- a classification approach for the EEG based motor imagery tasks using deep neural network”, Applied Intelligence, vol. 52, no. 5, pp. 4824-4843, 2022.
-
B. R. Cahn, J. Polich, “Meditation states and traits: EEG, ERP, and neuroimaging studies”, Psychological bulletin, vol. 132, no.2, pp. 180, 2006.
-
P. Arambula, E. Peper, M. Kawakami, K.H. Gibney, “The physiological correlates of Kundalini yoga meditation: A study of a yoga master”, Applied Psychophysiology and Biofeedback, vol. 26, pp. 147–153, 2001.
-
M.A. Wenger, B.K. Bagchi, “Studies of autonomic functions in practitioners of yoga in India”, Behavioral Science, vol. 6, pp. 312–323, 1961.
-
B. Anand, G.S. Chhina, B. Singh, “Some aspects of electroencephalographic studies in yogis”, Electroencephalography and Clinical Neurophysiology, vol. 13, pp. 452–456, 1961.
-
M.S. Lee, B.H. Bae, H. Ryu, J.H. Sohn, S.Y. Kim, H.T. Chung, “Changes in alpha wave and state anxiety during Chun Do Sun Bup Qi-training in trainees with open eyes”, American Journal of Chinese Medicine, vol. 25, pp. 289–299, 1997.
-
M. Alirezaei and S. H. Sardouie, “Detection of Human Attention Using EEG Signals”, 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, pp. 1-5, 2017.
-
K. Padmavathi, K. Meenakshi, K. Swaraja, A. Rajani, M. S. Raju, EEG based interpretation of human brain activity during yoga and meditation using machine learning: A systematic review, Complementary Therapies in Clinical Practice, vol. 43, 101329, 2021.
-
H. Altaf, S. N. Ibrahim, N. F. M. Azmin, A. L. Asnawi, B. H. B. Walid and N. H. Harun, "Machine Learning Approach for Stress Detection based on Alpha-Beta and Theta-Beta Ratios of EEG Signals," 2021 13th International Conference on Information & Communication Technology and System (ICTS), Surabaya, Indonesia, pp. 201-206, 2021.
-
A. Wróbel, “Beta activity: a carrier for visual attention”, Acta Neurobiologiae Experimentalis, vol. 60, no.2, pp. 247-260, 2000.
-
H.S. Chiang, K.L. Hsiao, L.C. Liu, LC. EEG-Based Detection Model for Evaluating and Improving Learning Attention. J. Med. Biol. Eng. 38, 847–856 (2018).
-
https://store.neurosky.com [Accessed: 07-July-2025].
-
J. Cheng, G. Mabasa and C. Oppus, "Prolonged distraction testing game implemented with ImpactJS HTML5, Gamepad and Neurosky," 2014 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Palawan, Philippines, 2014, pp. 1-6, doi: 10.1109/HNICEM.2014.7016184.
-
M. Yoh, J. Kwon, and S. Kim. “NeuroWander: a BCI game in the form of interactive fairy tale”. 12th ACM international conference adjunct papers on Ubiquitous computing - Adjunct (UbiComp '10 Adjunct). NY, USA, 389–390. https://doi.org/10.1145/1864431.1864450
-
J. Esquicha-Tejada, S. Pari-Larico, “Interactive toy to strengthen the memory attention and logic of primary education students using sphero Arduino and NeuroSky MindWave EEG”, Proceedings of the 6th Iberoamerican Conference of Computer Human Interaction. vol. 2747, 2020.
-
M. Serrhini, A. Dargham, “Toward incorporating bio-signals in online education case of assessing student attention with BCI”, Europe and MENA cooperation advances in information and communication technologies, Springer International Publishing, 2017.
-
M.M. Khan, “Research and development of a brain-controlled wheelchair for paralyzed patients”, Intell. Autom. Soft Comput., vol. 30, pp. 49-64, 2021.
-
K. Permana, S. K. Wijaya, and P. Prajitno, “Controlled wheelchair based on brain computer interface using Neurosky Mindwave Mobile 2”, AIP Conference Proceedings, vol. 2168, no. 1, 2019.
-
M. Akila, K. SathiyaSekar, A. Suresh, “Smart brain-controlled wheelchair and devices based on EEG in low cost for disabled person”, International Journal of Computers Communication Networks and Circuit System, vol. 1, no. 1, 291-298, 2015.
-
B. Fışkın, M. Göllü, İ. Zengin, E. Yüksel, İ. Varol, M.B. Tabakcıoğlu, “Brain waves controlled model wheelchair”, Uluslararası İleri Doğa Bilimleri ve Mühendislik Araştırmaları Dergisi, Sayı 7, no. 6, S. 71-74, 2023.
-
Motorobit, “XL4015 5A Adjustable Voltage Stepper Module,” 2024. [Online]. Available: https://www.motorobit.com/xl4015-5a-adjustable-voltage-stepper-module [Accessed: 29-Apr-2025].
-
Amazon Türkiye, “L298N Dual H-Bridge Motor Sürücü Modülü,” 2024. [Online]. Available: https://www.amazon.com.tr/Tahrik-Kontrol-Panosu-Mod%C3%BCl%C3%BC-Arduino/dp/ B00NJOTBOK. [Accessed: 29-Apr-2025].
-
https://raspberrypi.stackexchange.com/questions/147680/adafruit-platformdetect-board-py-pin-mapping [Accessed: 02-May-2025]