Derleme
BibTex RIS Kaynak Göster

A Review On Antıvıral Effects Of Plant Extracts

Yıl 2021, Cilt: 4 Sayı: 2, 156 - 163, 31.12.2021

Öz

As pathogens, viruses direct their metabolic events by being infected in living cells. Scientific studies on plants have increased and research on their phytochemical properties has accelerated. In this study, some plant samples that have antiviral effects of herbal extracts against viruses were brought together. The bioactive properties of plant extracts and the active ingredients of plants that have antiviral effects on viruses have been tabulated and presented. Although there are few new studies on plant species with antiviral effect potential, a wide variety of active phytochemicals have been identified, including flavonoids, terpenoids, lignans, sulfides, polyphenolics, coumarins, saponins, furyl compounds, alkaloids, polyins, thiophenes, proteins and peptides. Especially Lamiacaea, Zingiberaceae, Fabaceae, Rutaceae and Umbelliferae families and Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, Phellodendron cortex and Sophora subprostrata radix species are known as plants whose extracts can be used to be antiviral agents.

Kaynakça

  • [1] Chen, C. J., Michaelis, M., Hsu, H. K., Tsai, C. C., Yang, K. D., Wu, Y. C., and Doerr, H. W. (2008). Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. Journal of ethnopharmacology, 120(1), 108-111.
  • [2] Shayganni E, Bahmani M, Asgary S, Rafieian-Kopaei M. Inflammaging and cardiovascular disease: management by medicinal plants. Phytomedicine. 2016;23:1119–26.
  • [3] Koonin, E. V., Senkevich, T. G. and Dolja, V. V. (2006). The ancient Virus World and evolution of cells. Biology direct, 1(1), 29.
  • [4] Baell, J. B. (2016). Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of natural products, 79(3), 616-628.
  • [5] Rao, S. V., Tulasi, D. P., Pavithra, K., Nisha, R. and Taj, R. (2018). In Sılıco Studıes On Dengue And Mers Coronavırus Proteıns Wıth Selected Corıandrum Satıvum L. Herb Constıtuents.
  • [6] Chandra S, Rawat DS. Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integr Med Res. 2015;4:123–31.
  • [7] Handa, S.S, Khanuja, S.P.S., Longo, G., Rakesh, D.D. (2008). Extraction Technologies for Medicinal and Aromatic Plants. United Nations Industrial Development Organization and The International Centre for Science and High Technology. Icsunıdo Is Supported by the Italian Ministry of Foreign Affairs, 35-51.
  • [8] Sahebkar, A. and Iranshahi, M. (2010). Biological activities of essential oils from the genus Ferula (Apiaceae). Asian Biomedicine, 4(6), 835-847.
  • [9] Şengül, M., Topdaş. (2019). E. F. Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 201-216.
  • [10] Jasim, S. A. A. and Naji, M. A. (2003). A Review Novel Antiviral Agents: A Medicinal Plant Perspective.
  • [11] Tkachenko, K.G. (2006). Antiviral activity of the essential oils of some Heracleum L. species, Journal of Herbs, Spices and Medicinal Plants, 3, pp. 1-12.
  • [12] Bisht C, Badoni A. Medicinal strength of some alpine and sub-alpine zones of Western Himalaya India. New York Sci J 2009; 2: 41–46.
  • [13] Lalani, S. and Poh, C. L. (2020). Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses, 12(2), 184.
  • [14] Lelešius, R., Karpovaitė, A., Mickienė, R., Drevinskas, T., Tiso, N., Ragažinskienė, O. And Šalomskas, A. (2019). In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC veterinary research, 15(1), 178.
  • [15] Kim, H. Y., Shin, H. S., Park, H., Kim, Y. C., Yun, Y. G., Park, S. and Kim, K. (2008). In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of clinical virology, 41(2), 122-128.
  • [16] Hassan, S. T., Masarčíková, R. and Berchová, K. (2015). Bioactive natural products with anti‐herpes simplex virus properties. Journal of Pharmacy and Pharmacology, 67(10), 1325-1336.
  • [17] Devi U, Thakur M. Exploration of ethnobotanical uses of some wild plants from cold desert of Himachal Pradesh. Asian J Exp Biol Sci 2011; 2: 362–366.
  • [18] Singh AG et al. An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. J Ethnobiol Ethnomed 2012; 8: 19.
  • [19] Chiang, L.C., Ng, L.T., Cheng, P.W., Chiang, W., Lin, C.C. (2005). Antiviral activities of extracts and selected pure constituentsof Ocimum basilicum. Clin. Exp. Pharmacol. Physiol. 32 (10), 811e816.
  • [20] Chavan R, Chowdhary A. In vitroinhibitory activity of Justicia adhatodaextracts against influenza virus infectionand hemagglutination. Int JPharm Sci Rev Res 2014; 25: 231–236.
  • [21] Hayashi K, Kamiya M, Hayashi T. Virucidal effects of thesteam distillate from Houttuynia cordata and its components onHSV-1, influenza virus, and HIV. Planta Med 1995; 61: 237-241.
  • [22] Kwon, H. J., Ryu, Y. B., Kim, Y. M., Song, N., Kim, C. Y., Rho, M. C. and Park, S. J. (2013). In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorganic & medicinal chemistry, 21(15), 4706-4713.
  • [23] Tsai, Y. C., Lee, C. L., Yen, H. R., Chang, Y. S., Lin, Y. P., Huang, S. H. and Lin, C. W. (2020). Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 10(3), 366.
  • [24] Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L. and Li, R. S. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research, 67(1), 18-23.
  • [25] Hao, J., Han, W., Huang, S., Xue, B., Deng, X. (2002). Microwave assisted extraction ofartemisinin from Artemisia annua L. Sep. Purif. Technol. 28, 191.
  • [26] Zhang XL, Guo YS, Wang CH, Li GQ, Xu JJ, Chung HY, Ye WC, Li YL, WangGC. Phenolic compounds from Origanum vulgare and their antioxidant andantiviral activities. Food Chem. 2014;152:300–6.
  • [27] Faydaoğlu, E., Sürücüoğlu, M. (2013). Tıbbi Ve Aromatik Bitkilerin Antimikrobiyal, Antioksidan Aktiviteleri Ve Kullanım Olanakları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 233- 265.
  • [28] Wanner, J., Bail, S., Jirovetz, L., Buchbauer, G., Schmidt, E., Gochev, V. and Stoyanova, A. (2010). Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Natural product communications, 5(9).
  • [29] Mohajer Shojai T, Ghalyanchi Langeroudi A, Karimi V, Barin A, Sadri N.(2016). The effect of Allium sativum (garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6: 458–67.
  • [30] Mazzanti G, Battinelli L, Pompeo C. Inhibitory activity of Melissa officinalis L. extraction herpes simplex virus type 2 replication. Nat Prod Res. 2008;22: 1433–40.
  • [31] Razborsek MI, Voncina DB, Dolecek V, Voncina E. Determination of majör phenolic acids, phenolic Diterpenes and Triterpenes in rosemary (Rosmarinus officinalis L.) by gas chromatography and mass spectrometry. Acta Chim Slov. 2007;54:60–7.
  • [32] Hudson, J.B. (2012). Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J. Biomed. Biotechnol. 2012, 769896. [33] Karimi, S., Mohammadi, A., Dadras, H. (2014). The effect of Echinacea purpurea and Sambucus nigra L. on H9N2 avian influenza virus in infected chicken embryo. Vet. Arh. 84 (2), 153e165.
  • [34] Wagner, H., Jurcic, K. (2002). Immunological studies of Revitonil, a phytopharmaceutical containing Echinacea purpurea and Glycyrrhiza glabra root extract. Phytomedicine 9 (5), 390e397.
  • [35] Shi L, Yin F, Xin X, et al. Astragalus Polysaccharide Protects Astrocytes from Being Infected by HSV-1 through TLR3/NF-κB Signaling Pathway. Evid Based Complement Alternat Med. 2014;2014:285356.
  • [36] Flores-Ocelotl MR, Rosas-Murrieta NH, Moreno DA, et al. Taraxacum officinale and Urticadioica extracts inhibit dengue virus serotype 2replication in vitro. BMC Complement Altern Med.2018;18(1):95.
  • [37] Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y. and Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research, 68(1), 36-42.

Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme

Yıl 2021, Cilt: 4 Sayı: 2, 156 - 163, 31.12.2021

Öz

Hastalık yapıcı olarak virüsler, canlı hücrelerde enfekte ettiği hücrenin metabolic olaylarını yönetirler. Son dönemlerde bitkiler üzerinde yapılan bilimsel çalışmalar artmış ve fitokimyasal özellikleri ile ilgili araştırmalar hız kazanmıştır. Bu çalışma ile, virüslere karşı antiviral etki gösteren bazı bitkisel özütlerin örnekleri biraraya getirilmiştir. Bitki özütlerinin biyoaktif özellikleri ile virüsler üzerinde antiviral etkileri bulunan bitkilerin etken maddeleri tablolaştırılarak sunulmaya çalışılmıştır. Antiviral etki potansiyeli olan bitki türleri üzerine yapılmış yeni çalışmalar az olmakla birlikte, incelenen çalışmalara bakıldığında saponinler, proteinler, terpenoidler, lignanlar, sülfitler, polifenolikler, kumarinler, furilbileşikler, flavonoidler, alkaloidler, poliinler, tiyofenler ve peptitler gibi birçok çeşitli aktif fitokimyasallar bulunmaktadır. Özellikle Lamiacaea, Zingiberaceae, Fabaceae, Rutaceae ve Umbelliferae familyaları ile Meliae cortex, Cimicifuga rhizoma, Coptidisrhizoma, Sophora subprostrataradx ve Phellodendron cortex türleri antiviral ajanlar olmak için ekstraktlarından yararlanılabilecek bitkiler olarak bilinmektedir.

Kaynakça

  • [1] Chen, C. J., Michaelis, M., Hsu, H. K., Tsai, C. C., Yang, K. D., Wu, Y. C., and Doerr, H. W. (2008). Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. Journal of ethnopharmacology, 120(1), 108-111.
  • [2] Shayganni E, Bahmani M, Asgary S, Rafieian-Kopaei M. Inflammaging and cardiovascular disease: management by medicinal plants. Phytomedicine. 2016;23:1119–26.
  • [3] Koonin, E. V., Senkevich, T. G. and Dolja, V. V. (2006). The ancient Virus World and evolution of cells. Biology direct, 1(1), 29.
  • [4] Baell, J. B. (2016). Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). Journal of natural products, 79(3), 616-628.
  • [5] Rao, S. V., Tulasi, D. P., Pavithra, K., Nisha, R. and Taj, R. (2018). In Sılıco Studıes On Dengue And Mers Coronavırus Proteıns Wıth Selected Corıandrum Satıvum L. Herb Constıtuents.
  • [6] Chandra S, Rawat DS. Medicinal plants of the family Caryophyllaceae: a review of ethno-medicinal uses and pharmacological properties. Integr Med Res. 2015;4:123–31.
  • [7] Handa, S.S, Khanuja, S.P.S., Longo, G., Rakesh, D.D. (2008). Extraction Technologies for Medicinal and Aromatic Plants. United Nations Industrial Development Organization and The International Centre for Science and High Technology. Icsunıdo Is Supported by the Italian Ministry of Foreign Affairs, 35-51.
  • [8] Sahebkar, A. and Iranshahi, M. (2010). Biological activities of essential oils from the genus Ferula (Apiaceae). Asian Biomedicine, 4(6), 835-847.
  • [9] Şengül, M., Topdaş. (2019). E. F. Katı-Sıvı Ekstraksiyonunda Kullanılan Modern Teknikler ve Bu Teknikler Arasında Ultrason Yardımlı Ekstraksiyonun Yeri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 50(2), 201-216.
  • [10] Jasim, S. A. A. and Naji, M. A. (2003). A Review Novel Antiviral Agents: A Medicinal Plant Perspective.
  • [11] Tkachenko, K.G. (2006). Antiviral activity of the essential oils of some Heracleum L. species, Journal of Herbs, Spices and Medicinal Plants, 3, pp. 1-12.
  • [12] Bisht C, Badoni A. Medicinal strength of some alpine and sub-alpine zones of Western Himalaya India. New York Sci J 2009; 2: 41–46.
  • [13] Lalani, S. and Poh, C. L. (2020). Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses, 12(2), 184.
  • [14] Lelešius, R., Karpovaitė, A., Mickienė, R., Drevinskas, T., Tiso, N., Ragažinskienė, O. And Šalomskas, A. (2019). In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC veterinary research, 15(1), 178.
  • [15] Kim, H. Y., Shin, H. S., Park, H., Kim, Y. C., Yun, Y. G., Park, S. and Kim, K. (2008). In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. Journal of clinical virology, 41(2), 122-128.
  • [16] Hassan, S. T., Masarčíková, R. and Berchová, K. (2015). Bioactive natural products with anti‐herpes simplex virus properties. Journal of Pharmacy and Pharmacology, 67(10), 1325-1336.
  • [17] Devi U, Thakur M. Exploration of ethnobotanical uses of some wild plants from cold desert of Himachal Pradesh. Asian J Exp Biol Sci 2011; 2: 362–366.
  • [18] Singh AG et al. An ethnobotanical survey of medicinal plants used in Terai forest of western Nepal. J Ethnobiol Ethnomed 2012; 8: 19.
  • [19] Chiang, L.C., Ng, L.T., Cheng, P.W., Chiang, W., Lin, C.C. (2005). Antiviral activities of extracts and selected pure constituentsof Ocimum basilicum. Clin. Exp. Pharmacol. Physiol. 32 (10), 811e816.
  • [20] Chavan R, Chowdhary A. In vitroinhibitory activity of Justicia adhatodaextracts against influenza virus infectionand hemagglutination. Int JPharm Sci Rev Res 2014; 25: 231–236.
  • [21] Hayashi K, Kamiya M, Hayashi T. Virucidal effects of thesteam distillate from Houttuynia cordata and its components onHSV-1, influenza virus, and HIV. Planta Med 1995; 61: 237-241.
  • [22] Kwon, H. J., Ryu, Y. B., Kim, Y. M., Song, N., Kim, C. Y., Rho, M. C. and Park, S. J. (2013). In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorganic & medicinal chemistry, 21(15), 4706-4713.
  • [23] Tsai, Y. C., Lee, C. L., Yen, H. R., Chang, Y. S., Lin, Y. P., Huang, S. H. and Lin, C. W. (2020). Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 10(3), 366.
  • [24] Li, S. Y., Chen, C., Zhang, H. Q., Guo, H. Y., Wang, H., Wang, L. and Li, R. S. (2005). Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral research, 67(1), 18-23.
  • [25] Hao, J., Han, W., Huang, S., Xue, B., Deng, X. (2002). Microwave assisted extraction ofartemisinin from Artemisia annua L. Sep. Purif. Technol. 28, 191.
  • [26] Zhang XL, Guo YS, Wang CH, Li GQ, Xu JJ, Chung HY, Ye WC, Li YL, WangGC. Phenolic compounds from Origanum vulgare and their antioxidant andantiviral activities. Food Chem. 2014;152:300–6.
  • [27] Faydaoğlu, E., Sürücüoğlu, M. (2013). Tıbbi Ve Aromatik Bitkilerin Antimikrobiyal, Antioksidan Aktiviteleri Ve Kullanım Olanakları. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(2), 233- 265.
  • [28] Wanner, J., Bail, S., Jirovetz, L., Buchbauer, G., Schmidt, E., Gochev, V. and Stoyanova, A. (2010). Chemical composition and antimicrobial activity of cumin oil (Cuminum cyminum, Apiaceae). Natural product communications, 5(9).
  • [29] Mohajer Shojai T, Ghalyanchi Langeroudi A, Karimi V, Barin A, Sadri N.(2016). The effect of Allium sativum (garlic) extract on infectious bronchitis virus in specific pathogen free embryonic egg. Avicenna J Phytomed. 2016;6: 458–67.
  • [30] Mazzanti G, Battinelli L, Pompeo C. Inhibitory activity of Melissa officinalis L. extraction herpes simplex virus type 2 replication. Nat Prod Res. 2008;22: 1433–40.
  • [31] Razborsek MI, Voncina DB, Dolecek V, Voncina E. Determination of majör phenolic acids, phenolic Diterpenes and Triterpenes in rosemary (Rosmarinus officinalis L.) by gas chromatography and mass spectrometry. Acta Chim Slov. 2007;54:60–7.
  • [32] Hudson, J.B. (2012). Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases. J. Biomed. Biotechnol. 2012, 769896. [33] Karimi, S., Mohammadi, A., Dadras, H. (2014). The effect of Echinacea purpurea and Sambucus nigra L. on H9N2 avian influenza virus in infected chicken embryo. Vet. Arh. 84 (2), 153e165.
  • [34] Wagner, H., Jurcic, K. (2002). Immunological studies of Revitonil, a phytopharmaceutical containing Echinacea purpurea and Glycyrrhiza glabra root extract. Phytomedicine 9 (5), 390e397.
  • [35] Shi L, Yin F, Xin X, et al. Astragalus Polysaccharide Protects Astrocytes from Being Infected by HSV-1 through TLR3/NF-κB Signaling Pathway. Evid Based Complement Alternat Med. 2014;2014:285356.
  • [36] Flores-Ocelotl MR, Rosas-Murrieta NH, Moreno DA, et al. Taraxacum officinale and Urticadioica extracts inhibit dengue virus serotype 2replication in vitro. BMC Complement Altern Med.2018;18(1):95.
  • [37] Lin, C. W., Tsai, F. J., Tsai, C. H., Lai, C. C., Wan, L., Ho, T. Y. and Chao, P. D. L. (2005). Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research, 68(1), 36-42.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Gülcay Ercan Oğuztürk 0000-0002-0893-4719

Talip Turna 0000-0001-6318-7245

Turan Yuksek 0000-0003-2964-1760

Uğur Kaval 0000-0003-4049-9144

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 2

Kaynak Göster

APA Ercan Oğuztürk, G., Turna, T., Yuksek, T., Kaval, U. (2021). Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme. Bayburt Üniversitesi Fen Bilimleri Dergisi, 4(2), 156-163.
AMA Ercan Oğuztürk G, Turna T, Yuksek T, Kaval U. Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme. Bayburt Üniversitesi Fen Bilimleri Dergisi. Aralık 2021;4(2):156-163.
Chicago Ercan Oğuztürk, Gülcay, Talip Turna, Turan Yuksek, ve Uğur Kaval. “Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme”. Bayburt Üniversitesi Fen Bilimleri Dergisi 4, sy. 2 (Aralık 2021): 156-63.
EndNote Ercan Oğuztürk G, Turna T, Yuksek T, Kaval U (01 Aralık 2021) Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme. Bayburt Üniversitesi Fen Bilimleri Dergisi 4 2 156–163.
IEEE G. Ercan Oğuztürk, T. Turna, T. Yuksek, ve U. Kaval, “Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme”, Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 2, ss. 156–163, 2021.
ISNAD Ercan Oğuztürk, Gülcay vd. “Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme”. Bayburt Üniversitesi Fen Bilimleri Dergisi 4/2 (Aralık 2021), 156-163.
JAMA Ercan Oğuztürk G, Turna T, Yuksek T, Kaval U. Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2021;4:156–163.
MLA Ercan Oğuztürk, Gülcay vd. “Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme”. Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 2, 2021, ss. 156-63.
Vancouver Ercan Oğuztürk G, Turna T, Yuksek T, Kaval U. Bazı Bitki Ekstraktlarının Antivaral Etkileri Üzerine Bir Derleme. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2021;4(2):156-63.

Taranılan Dizinler