Araştırma Makalesi
BibTex RIS Kaynak Göster

Improvement of Blower Impeller Design Using Finite Element Analysis Method

Yıl 2022, Cilt: 5 Sayı: 2, 206 - 214, 31.12.2022
https://doi.org/10.55117/bufbd.1136708

Öz

Blowers are widely used in industrial and commercial applications such as degassing, textile machinery, and treatment plants. There are many different parameters in designing blower impellers with extensive application areas, and therefore it is necessary to use analysis programs based on the finite element method to achieve accurate results. In this study, the blower designed by Solidworks was analyzed with Solidworks Simulation in order to eliminate the damage to the blowers used in fabric cutting machines and to improve the design.According to damage type,  ocused on the centrifugal forces as cause of damage also blower geometrical parameters and material choice were examined.The results obtained were compared with the experimental results, and the blower was improved with the analysis program. In line with the analyzes and experimental results obtained, a blower design with a safety factor of 1.5 and serviceable were carried out using aluminum 7075 T6 material.

Kaynakça

  • [1] G. Saibabu, V. Ravikumar, “Modeling and structural analysis of composite centrifugal blower using FEM,” Open Access International Journal of Science Engineering, vol.6, pp. 2456-3293, 2021.
  • [2] S. V. Kesare, M. C. Swami, “Analysis and optimization of centrifugal blower impeller by using FEA,” International Research Journal of Engineering and Technology (IRJET), vol.3, pp.1876-1883, 2016.
  • [3] Y. H. Reddy, K. Purushothaman, M. Sreenivasan, R. E. Sivakumar, “Design and analysis of zigzag classifier in food industry applications,” International Conference on Physics and Energy, pp. 1-10, 2021.
  • [4] Z. Liu, L. Wang, X. Kong, P. Li, J. Yu, A. E. Rodrigues, “Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant,” Industrial & Engineering Chemistry Research, vol. 51, pp.7355−7363, 2012.
  • [5] Z. Han, J. Wang, Zou, T. D. Zhao, C. Gao, J. Dong, X. Pan, “NOx removal from flue gas using an ozone advanced oxidation process with injection of low concentration of ethanol: performance and mechanism,” Energy Fuels, vol. 34, pp. 2080−2088, 2020.
  • [6] R. Manivel, R. Vijayanandh, T. Babin, G. Sriram, “Pneumafil casing blower through moving reference frame (MRF) – A CFD simulation,” AIP Conference Proceedings, vol. 1953, pp. 140063-1–140063-5, 2018.
  • [7] S. A. Khan, P. K. Tiwari, “Experimental Investigation of Earth Tube Heat Exchanger Colling or Heating of Natural Air,” International Research Journal of Modernization in Engineering Technology and Science, vol. 3, pp. 804-811, 2021.
  • [8] S. R. Patil, S. T. Chavan, N. S. Jadhav, S. S. Vadgeri, “Effect of volute tongue clearance variation on performance of centrifugal blower by numerical and experimental analysis,” Materials Today: Proceedings, vol. 5, pp.3883–3894, 2018.
  • [9] K. Hiradate, K. Sakamoto, Y. Shinkawa, S. Joukou, T. Uchiyama, “Investigation on pressure fluctuation related to mild surge in multi-stage centrifugal blower with inlet guide vane,” Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015.
  • [10] N. H. Fuengwarodsakul, R. W. D. “Doncker, sensorless control of switched reluctance drive with small DCLink capacitor for high-speed blowers,” Electrical Engineering, vol.100, pp. 1565–1578, 2018.
  • [11] M. W. Heo, T. W. Seo, H. S. Shim, K. Y. Kim, “Optimization of a regenerative blower to enhance aerodynamic and aeroacoustic performance,” Journal of Mechanical Science and Technology, vol.30, pp. 1197-1208, 2016.
  • [12] Z. F. Huang, Z. X. Liu, “Numerical study of a positive displacement blower. Journal of Mechanical Engineering Science,” pp. 2309-2316, 2009.
  • [13] M. K. Kare, T. P. Pramod, P. R. Balaso, P. J. Sampat, R. K. Dilip, “Study and modification of soot blower in sugar industry,” International Journal of Innovations in Engineering Research and Technology, pp.75-78, 2017.
  • [14] D. Tare, V. Bhagat, B. Talikotti, “Static and dynamic analysis of impeller of centrifugal blower,” International Journal of Innovative Science, Engineering & Technology, pp. 547-553, 2016.
  • [15] T. L. Le, T. T. Nghia, H. D. Thong, M. H. K. Son, “Numerical study of aerodynamic performance and flow characteristics of a centrifugal blower,” International Journal of Intelligent Unmanned Systems, 2021.
  • [16] A. T. Balkrishna, P. D. Darade, G. Raiphale, “Vibration analysis of centrifugal blower impeller for various materials using FEA,” IJRET: International Journal of Research in Engineering and Technology, pp. 296- 302, 2014.
  • [17] M. Sampathkumar, D. Varaprasad, M. Vijaykumar, “Static analysis of centrifugal blower using composite material,” The International Journal Of Engineering And Science (IJES), pp. 25-31, 2014.
  • [18] G. Saibabu and V. Ravikumar, “Modeling and structural analysis of composite centrifugal blower using FEM,” Open Access International Journal of Science and Engineering, vol. 6: pp. 84-94, 2021.
  • [19] P. P. Deshmukh, A. K. Salve and A. B. Pingal, “Material optimization and static analysis of centrifugal pump impeller using FEA,” International Journal of Trend in Research and Development, vol. 8: pp. 25-29, 2021.
  • [20] I. A. Magomedov, Z. S. Sebaeva, “Comparative study of finite element analysis software packages,” Journal of Physics: Conference Series, 2020.
  • [21] Engineers Edge, “Centrifugal Force Equations and Calculators,” 2022. [Online]. Available: https://www.engineersedge.com/physics/centrifugal_force.htm, [Accessed: 19- June-2022].
  • [22] Material Property Data, 2022. [Online]. Available: http://www.matweb.com , Accessed: 20- June- 2022.
  • [23] C. Iorga, A. Desrochers, C. Smeesters, “Engineering Design from a Safety Perspective,” Canadian Engineering Education Association (CEEA12) Conf., pp. 17-20, 2012.

Sonlu Elemanlar Analiz Yöntemi Kullanılarak Blower Çark Tasarımının İyileştirilmesi

Yıl 2022, Cilt: 5 Sayı: 2, 206 - 214, 31.12.2022
https://doi.org/10.55117/bufbd.1136708

Öz

Blower, gazdan arındırmai tekstil makineleri ve arıtma tesisleri gibi endüstriyel ve ticari uygulamalarda yaygın olarak kullanılmaktadır. Geniş uygulama alanları olan blower çark tasarımında birçok farklı parametre vardır ve bu nedenle doğru sonuçlara ulaşmak için sonlu elemanlar yöntemine dayalı analiz programlarının kullanılması gerekmektedir. Bu çalışmada Solidworks ile tasarlanan blower, Solidworks Simulation ile analiz edilmiştir. Elde edilen sonuçlar deneysel sonuçlarla karşılaştırılmış ve sonlu elemanalr analiz yöntemi ile blower iyileştirilmiştir. Elde edilen analizler ve deneysel sonuçlar doğrultusunda alüminyum 7075 T6 malzeme kullanılarak güvenlik faktörü 1.5 olan bir blower tasarımı gerçekleştirilmiştir.

Kaynakça

  • [1] G. Saibabu, V. Ravikumar, “Modeling and structural analysis of composite centrifugal blower using FEM,” Open Access International Journal of Science Engineering, vol.6, pp. 2456-3293, 2021.
  • [2] S. V. Kesare, M. C. Swami, “Analysis and optimization of centrifugal blower impeller by using FEA,” International Research Journal of Engineering and Technology (IRJET), vol.3, pp.1876-1883, 2016.
  • [3] Y. H. Reddy, K. Purushothaman, M. Sreenivasan, R. E. Sivakumar, “Design and analysis of zigzag classifier in food industry applications,” International Conference on Physics and Energy, pp. 1-10, 2021.
  • [4] Z. Liu, L. Wang, X. Kong, P. Li, J. Yu, A. E. Rodrigues, “Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant,” Industrial & Engineering Chemistry Research, vol. 51, pp.7355−7363, 2012.
  • [5] Z. Han, J. Wang, Zou, T. D. Zhao, C. Gao, J. Dong, X. Pan, “NOx removal from flue gas using an ozone advanced oxidation process with injection of low concentration of ethanol: performance and mechanism,” Energy Fuels, vol. 34, pp. 2080−2088, 2020.
  • [6] R. Manivel, R. Vijayanandh, T. Babin, G. Sriram, “Pneumafil casing blower through moving reference frame (MRF) – A CFD simulation,” AIP Conference Proceedings, vol. 1953, pp. 140063-1–140063-5, 2018.
  • [7] S. A. Khan, P. K. Tiwari, “Experimental Investigation of Earth Tube Heat Exchanger Colling or Heating of Natural Air,” International Research Journal of Modernization in Engineering Technology and Science, vol. 3, pp. 804-811, 2021.
  • [8] S. R. Patil, S. T. Chavan, N. S. Jadhav, S. S. Vadgeri, “Effect of volute tongue clearance variation on performance of centrifugal blower by numerical and experimental analysis,” Materials Today: Proceedings, vol. 5, pp.3883–3894, 2018.
  • [9] K. Hiradate, K. Sakamoto, Y. Shinkawa, S. Joukou, T. Uchiyama, “Investigation on pressure fluctuation related to mild surge in multi-stage centrifugal blower with inlet guide vane,” Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015.
  • [10] N. H. Fuengwarodsakul, R. W. D. “Doncker, sensorless control of switched reluctance drive with small DCLink capacitor for high-speed blowers,” Electrical Engineering, vol.100, pp. 1565–1578, 2018.
  • [11] M. W. Heo, T. W. Seo, H. S. Shim, K. Y. Kim, “Optimization of a regenerative blower to enhance aerodynamic and aeroacoustic performance,” Journal of Mechanical Science and Technology, vol.30, pp. 1197-1208, 2016.
  • [12] Z. F. Huang, Z. X. Liu, “Numerical study of a positive displacement blower. Journal of Mechanical Engineering Science,” pp. 2309-2316, 2009.
  • [13] M. K. Kare, T. P. Pramod, P. R. Balaso, P. J. Sampat, R. K. Dilip, “Study and modification of soot blower in sugar industry,” International Journal of Innovations in Engineering Research and Technology, pp.75-78, 2017.
  • [14] D. Tare, V. Bhagat, B. Talikotti, “Static and dynamic analysis of impeller of centrifugal blower,” International Journal of Innovative Science, Engineering & Technology, pp. 547-553, 2016.
  • [15] T. L. Le, T. T. Nghia, H. D. Thong, M. H. K. Son, “Numerical study of aerodynamic performance and flow characteristics of a centrifugal blower,” International Journal of Intelligent Unmanned Systems, 2021.
  • [16] A. T. Balkrishna, P. D. Darade, G. Raiphale, “Vibration analysis of centrifugal blower impeller for various materials using FEA,” IJRET: International Journal of Research in Engineering and Technology, pp. 296- 302, 2014.
  • [17] M. Sampathkumar, D. Varaprasad, M. Vijaykumar, “Static analysis of centrifugal blower using composite material,” The International Journal Of Engineering And Science (IJES), pp. 25-31, 2014.
  • [18] G. Saibabu and V. Ravikumar, “Modeling and structural analysis of composite centrifugal blower using FEM,” Open Access International Journal of Science and Engineering, vol. 6: pp. 84-94, 2021.
  • [19] P. P. Deshmukh, A. K. Salve and A. B. Pingal, “Material optimization and static analysis of centrifugal pump impeller using FEA,” International Journal of Trend in Research and Development, vol. 8: pp. 25-29, 2021.
  • [20] I. A. Magomedov, Z. S. Sebaeva, “Comparative study of finite element analysis software packages,” Journal of Physics: Conference Series, 2020.
  • [21] Engineers Edge, “Centrifugal Force Equations and Calculators,” 2022. [Online]. Available: https://www.engineersedge.com/physics/centrifugal_force.htm, [Accessed: 19- June-2022].
  • [22] Material Property Data, 2022. [Online]. Available: http://www.matweb.com , Accessed: 20- June- 2022.
  • [23] C. Iorga, A. Desrochers, C. Smeesters, “Engineering Design from a Safety Perspective,” Canadian Engineering Education Association (CEEA12) Conf., pp. 17-20, 2012.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik, Makine Mühendisliği, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Lezgin Kaya 0000-0002-4498-1387

Betül Gençaslam 0000-0002-0506-4498

Sezgin Balci 0000-0002-7864-8005

Erken Görünüm Tarihi 28 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 2

Kaynak Göster

APA Kaya, L., Gençaslam, B., & Balci, S. (2022). Improvement of Blower Impeller Design Using Finite Element Analysis Method. Bayburt Üniversitesi Fen Bilimleri Dergisi, 5(2), 206-214. https://doi.org/10.55117/bufbd.1136708
AMA Kaya L, Gençaslam B, Balci S. Improvement of Blower Impeller Design Using Finite Element Analysis Method. Bayburt Üniversitesi Fen Bilimleri Dergisi. Aralık 2022;5(2):206-214. doi:10.55117/bufbd.1136708
Chicago Kaya, Lezgin, Betül Gençaslam, ve Sezgin Balci. “Improvement of Blower Impeller Design Using Finite Element Analysis Method”. Bayburt Üniversitesi Fen Bilimleri Dergisi 5, sy. 2 (Aralık 2022): 206-14. https://doi.org/10.55117/bufbd.1136708.
EndNote Kaya L, Gençaslam B, Balci S (01 Aralık 2022) Improvement of Blower Impeller Design Using Finite Element Analysis Method. Bayburt Üniversitesi Fen Bilimleri Dergisi 5 2 206–214.
IEEE L. Kaya, B. Gençaslam, ve S. Balci, “Improvement of Blower Impeller Design Using Finite Element Analysis Method”, Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 2, ss. 206–214, 2022, doi: 10.55117/bufbd.1136708.
ISNAD Kaya, Lezgin vd. “Improvement of Blower Impeller Design Using Finite Element Analysis Method”. Bayburt Üniversitesi Fen Bilimleri Dergisi 5/2 (Aralık 2022), 206-214. https://doi.org/10.55117/bufbd.1136708.
JAMA Kaya L, Gençaslam B, Balci S. Improvement of Blower Impeller Design Using Finite Element Analysis Method. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2022;5:206–214.
MLA Kaya, Lezgin vd. “Improvement of Blower Impeller Design Using Finite Element Analysis Method”. Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 2, 2022, ss. 206-14, doi:10.55117/bufbd.1136708.
Vancouver Kaya L, Gençaslam B, Balci S. Improvement of Blower Impeller Design Using Finite Element Analysis Method. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2022;5(2):206-14.

Taranılan Dizinler