Araştırma Makalesi
BibTex RIS Kaynak Göster

An Application on Estimation of Machine Failure Times in Cement Production Process

Yıl 2024, Cilt: 7 Sayı: 2, 133 - 140, 31.12.2024
https://doi.org/10.55117/bufbd.1598345

Öz

This study aims at developing a model that would enable us to predict the failure times of machines in cement manufacturing process. The knowledge of machine failures is very vital in maintenance of machines in order to enhance production and minimize on costs of maintenance. In this context, Weibull distribution, Least Squares (LS) method and Maximum Likelihood Estimation (MLE) method are applied to assess failure distributions. 167 machine failure data were used in this study and analyzed with Minitab the software. It was concluded that the failure times follow Weibull distribution and the LS and MLE methods were used to estimate the parameters of the distribution in order to check the fitness. Thus, applying LS method, it is possible to get β = 2.07 and η = 971.7, while applying MLE method, results obtain as β = 2.17 and η = 966. It was noted that these values are rather close and both methods gave almost the same results.

Kaynakça

  • [1] Ç. Teke, “Design and implementation of a method for determining the optimum maintenance policy in manufacturing sector,” Sakarya University, Türkiye, 2018.
  • [2] S. M. A. Aljeddani and M. A. Mohammed, “A novel approach to Weibull distribution for the assessment of wind energy speed,” Alex. Eng. J., vol. 78, pp. 56–64, 2023.
  • [3] L. Kamberı̇, S. Orhanı̇, M. Shaqı̇rı̇, and S. Idrı̇zı̇, “Comparison of three-parameter weibull distributionparameter estimators with the maximum likelihood method,” Sak. Univ. J. Sci., 2022.
  • [4] Ş. Atamer and K. Çavdar, “Reliability analysis of a single stage gearbox,” UUJFE, vol. 14, no. 1, pp. 39–53, 2009.
  • [5] O. Alkan, R. Ozçelı̇k, and Ş. Kalkanli, “Modeling diameter distribution of oriental beech in the Almus region using the Weibull distribution,” Turk. J. For., vol. 24, no. 3, pp. 197–207, 2023.
  • [6] B. Yaniktepe and O. Kara, “Estimating wind energy potential using three different statistical distribution methods,” Cukurova University Journal of the Faculty of Engineering, vol. 36, no. 2, pp. 359–368, 2021.
  • [7] F. Oral, “Statistical analysis of the wind energy potential of Bitlis province,” DUJE, vol. 11, no. 2, pp. 671–678, 2020.
  • [8] O. Bı̇ngöl and A. Bulut, “Estimation of Weibull distribution parameters for wind energy applications: A case study of Dinar region in Turkey,” IJTS, vol. 14, no. 1, pp. 1–10, 2022.
  • [9] Z. R. Shu and M. Jesson, “Estimation of Weibull parameters for wind energy analysis across the UK,” J. Renew. Sustain. Energy, vol. 13, no. 2, p. 023303, 2021.
  • [10] I. Hussain, A. Haider, Z. Ullah, M. Russo, G. M. Casolino, and B. Azeem, “Comparative analysis of eight numerical methods using Weibull distribution to estimate wind power density for coastal areas in Pakistan,” Energies, vol. 16, no. 3, p. 1515, 2023.
  • [11] M. Yalçınkaya and B. Birgören, “Estimating confidence lower bounds of Weibull lower percentiles with small samples in material reliability analysis,” Pamukkale Univ. J. Eng. Sci., vol. 26, no. 1, pp. 184–194, 2020.
  • [12] F. Ç. Zeytinoğlu, “Comparison of statistical prediction methods for Weibull distribution scale and shape parameters,” İstanbul Ticaret University Journal of Social Sciences, vol. 8, no. 15, pp. 73–87, 2009.
  • [13] K. Doğanşahin, A. F. Uslu, and B. Kekezoğlu, “Modeling of wind speed probability distribution with twocomponent Weibull distributions,” European Journal of Science and Technology, no:15, pp. 315–326, 2019.
  • [14] M. Danacı, B. Birgören, and S. Ersöz, “Estimation algorithms for Weibull parameters and percentiles,” J. Fac. Eng. Arch. Gazi Univ., vol. 24, no. 1, pp. 119–128, 2009.
  • [15] C. K. Seal and A. H. Sherry, “Weibull distribution of brittle failures in the transition region,” Procedia Struct. Integr., vol. 2, pp. 1668–1675, 2016

Çimento Üretim Sürecinde Makine Arıza Sürelerinin Tahmini Üzerine Bir Uygulama

Yıl 2024, Cilt: 7 Sayı: 2, 133 - 140, 31.12.2024
https://doi.org/10.55117/bufbd.1598345

Öz

Bu çalışma, çimento üretim sürecindeki makinelerin arıza sürelerini tahmin etmemizi sağlayacak bir model geliştirmeyi amaçlamaktadır. Makine arızalarının bilinmesi, üretimi artırmak ve bakım maliyetlerini en aza indirmek için makinelerin bakımında çok önemlidir. Bu bağlamda, arıza dağılımlarını değerlendirmek için Weibull dağılımı, En Küçük Kareler (LS) yöntemi ve Maksimum Olabilirlik Tahmini (MLE) yöntemi uygulanmıştır. Bu çalışmada 167 makine arıza verisi kullanılmış ve Minitab yazılımı ile analiz edilmiştir. Arıza sürelerinin Weibull dağılımını takip ettiği sonucuna varılmış ve uygunluğu kontrol etmek amacıyla dağılımın parametrelerini tahmin etmek için LS ve MLE yöntemleri kullanılmıştır. Böylece LS yöntemi uygulandığında β = 2.07 ve η = 971.7, MLE yöntemi uygulandığında ise β = 2.17 ve η = 966 olarak elde edilmiştir. Bu değerlerin oldukça yakın olduğu ve her iki yöntemin de neredeyse aynı sonuçları verdiği görülmüştür.

Kaynakça

  • [1] Ç. Teke, “Design and implementation of a method for determining the optimum maintenance policy in manufacturing sector,” Sakarya University, Türkiye, 2018.
  • [2] S. M. A. Aljeddani and M. A. Mohammed, “A novel approach to Weibull distribution for the assessment of wind energy speed,” Alex. Eng. J., vol. 78, pp. 56–64, 2023.
  • [3] L. Kamberı̇, S. Orhanı̇, M. Shaqı̇rı̇, and S. Idrı̇zı̇, “Comparison of three-parameter weibull distributionparameter estimators with the maximum likelihood method,” Sak. Univ. J. Sci., 2022.
  • [4] Ş. Atamer and K. Çavdar, “Reliability analysis of a single stage gearbox,” UUJFE, vol. 14, no. 1, pp. 39–53, 2009.
  • [5] O. Alkan, R. Ozçelı̇k, and Ş. Kalkanli, “Modeling diameter distribution of oriental beech in the Almus region using the Weibull distribution,” Turk. J. For., vol. 24, no. 3, pp. 197–207, 2023.
  • [6] B. Yaniktepe and O. Kara, “Estimating wind energy potential using three different statistical distribution methods,” Cukurova University Journal of the Faculty of Engineering, vol. 36, no. 2, pp. 359–368, 2021.
  • [7] F. Oral, “Statistical analysis of the wind energy potential of Bitlis province,” DUJE, vol. 11, no. 2, pp. 671–678, 2020.
  • [8] O. Bı̇ngöl and A. Bulut, “Estimation of Weibull distribution parameters for wind energy applications: A case study of Dinar region in Turkey,” IJTS, vol. 14, no. 1, pp. 1–10, 2022.
  • [9] Z. R. Shu and M. Jesson, “Estimation of Weibull parameters for wind energy analysis across the UK,” J. Renew. Sustain. Energy, vol. 13, no. 2, p. 023303, 2021.
  • [10] I. Hussain, A. Haider, Z. Ullah, M. Russo, G. M. Casolino, and B. Azeem, “Comparative analysis of eight numerical methods using Weibull distribution to estimate wind power density for coastal areas in Pakistan,” Energies, vol. 16, no. 3, p. 1515, 2023.
  • [11] M. Yalçınkaya and B. Birgören, “Estimating confidence lower bounds of Weibull lower percentiles with small samples in material reliability analysis,” Pamukkale Univ. J. Eng. Sci., vol. 26, no. 1, pp. 184–194, 2020.
  • [12] F. Ç. Zeytinoğlu, “Comparison of statistical prediction methods for Weibull distribution scale and shape parameters,” İstanbul Ticaret University Journal of Social Sciences, vol. 8, no. 15, pp. 73–87, 2009.
  • [13] K. Doğanşahin, A. F. Uslu, and B. Kekezoğlu, “Modeling of wind speed probability distribution with twocomponent Weibull distributions,” European Journal of Science and Technology, no:15, pp. 315–326, 2019.
  • [14] M. Danacı, B. Birgören, and S. Ersöz, “Estimation algorithms for Weibull parameters and percentiles,” J. Fac. Eng. Arch. Gazi Univ., vol. 24, no. 1, pp. 119–128, 2009.
  • [15] C. K. Seal and A. H. Sherry, “Weibull distribution of brittle failures in the transition region,” Procedia Struct. Integr., vol. 2, pp. 1668–1675, 2016
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Çağatay Teke 0000-0002-6975-8544

Mümtaz İpek 0000-0001-9619-2403

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Aralık 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Teke, Ç., & İpek, M. (2024). An Application on Estimation of Machine Failure Times in Cement Production Process. Bayburt Üniversitesi Fen Bilimleri Dergisi, 7(2), 133-140. https://doi.org/10.55117/bufbd.1598345
AMA Teke Ç, İpek M. An Application on Estimation of Machine Failure Times in Cement Production Process. Bayburt Üniversitesi Fen Bilimleri Dergisi. Aralık 2024;7(2):133-140. doi:10.55117/bufbd.1598345
Chicago Teke, Çağatay, ve Mümtaz İpek. “An Application on Estimation of Machine Failure Times in Cement Production Process”. Bayburt Üniversitesi Fen Bilimleri Dergisi 7, sy. 2 (Aralık 2024): 133-40. https://doi.org/10.55117/bufbd.1598345.
EndNote Teke Ç, İpek M (01 Aralık 2024) An Application on Estimation of Machine Failure Times in Cement Production Process. Bayburt Üniversitesi Fen Bilimleri Dergisi 7 2 133–140.
IEEE Ç. Teke ve M. İpek, “An Application on Estimation of Machine Failure Times in Cement Production Process”, Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 7, sy. 2, ss. 133–140, 2024, doi: 10.55117/bufbd.1598345.
ISNAD Teke, Çağatay - İpek, Mümtaz. “An Application on Estimation of Machine Failure Times in Cement Production Process”. Bayburt Üniversitesi Fen Bilimleri Dergisi 7/2 (Aralık 2024), 133-140. https://doi.org/10.55117/bufbd.1598345.
JAMA Teke Ç, İpek M. An Application on Estimation of Machine Failure Times in Cement Production Process. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2024;7:133–140.
MLA Teke, Çağatay ve Mümtaz İpek. “An Application on Estimation of Machine Failure Times in Cement Production Process”. Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 7, sy. 2, 2024, ss. 133-40, doi:10.55117/bufbd.1598345.
Vancouver Teke Ç, İpek M. An Application on Estimation of Machine Failure Times in Cement Production Process. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2024;7(2):133-40.

Taranılan Dizinler