Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Matematik Öğretmeni Ne Bilmeli? Alan Bilgisi ve Alan Eğitimi Bilgisi Arasındaki Fark

Yıl 2010, Cilt: 27 Sayı: 2, 33 - 47, 03.09.2015

Öz

Kaynakça

  • Adams, T. (1998). Prospective elementary teachers' mathematics subject matter knowledge: The real number system. Journal for Research in Mathematics Education, 20, 35-48.
  • Alacacı, C. (2010). Öğrencilerin kesir konusundaki kavram yanılgıları, İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri, E. Bingölbalı & F.M. Özmantar, (Haz.) (s.63-95). Ankara: Pegem Yayıncılık.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389–407.
  • Ball, D. (1990). The mathematical understandings that preservice teachers bring to teacher education. Elementary School Journal, 90. 449-466.
  • Ball, D.L. (1988). Unlearning to teach mathematics. For the Learning of Mathematics, 8(1), 40-48.
  • Bingölbalı, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler, Matematiksel kavram yanılgıları ve çözüm önerileri, M.F. Özmantar, E. Bingolbalı, & H.Akkoç (Haz.) (s. 223-255). Ankara: Pegem Yayıncılık.
  • Borko, H., Eisenhart, M., Brown, C., Underhill, R., Jones, D., & Agard, P. (1992). Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily? Journal for Research in Mathematics Education, 23, 194- 222.
  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378.
  • Dabbah, M., Nurlu, Z., & Önder, H.A. (1992). Calculus 1 for math students.Ankara: Middle East Technical University.
  • Dubinsky, E., Schoenfeld, A. H., & Kaput, J. (1994). Research in collegiate mathematics education I. Providence, RI: American Mathematical Society.
  • Ferguson, R. F., & Womack, S. T. (1993). The impact of subject matter and education coursework on teaching performance. Journal of Teacher Education. 44(1), 55-63.
  • Flores, A. (2008). The mean as the balance point: thought experiments with measuring sticks, International Journal of Mathematical Education in Science and Technology, 39 (6), 741 – 748.
  • Graeber, A.O., Tirosh, D., Glover, R. (1989). Preservice teachers’ mistconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20, 95-102.
  • Guyton, E., & Farokhi, E. (1987). Relationships among acadernic performance, basic skills, subject matter knowledge and teaching skills of teacher educalion graduates. Journal of Teacher Education, 38,37-42.
  • Heinz, K. R. (2000). Conceptions of ratio in a class or preservice and practicing Teachers. Yayınlanmamış doktora tezi, Penn State University, State College.
  • Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. In James, H (Haz.). Hillsdale, NJ, England: Lawrence Erlbaum.
  • Kamii, C., Lewis, B. A. & Kirkland, L. D. (2001). Fluency in subtraction compared with addition. Journal of Mathematical Behavior, 20, 33-42.
  • Kaput, J. J., & West, M. M. (1994). Missing-value proportional reasoning problems: factors affecting informal reasoning patterns. G. Harel & J. Confrey (Haz.), The development of multiplicative reasoning in the learning of mathematics (s. 235-187). Albany: State University of New York.
  • Karagöz Akar, G. (2007). Conceptions of between ratios and within ratios. Yayınlanmamış doktora tezi. The Pennsylvania State University.
  • Karagöz Akar, G. (2010). Oran konusunun kavramsal öğreniminde öğrencilerin karşılaşabileceği zorluklar, olası kavram yanılgıları ve çözüm önerileri, İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri, E.
  • Bingölbalı & F. M. Özmantar (Haz.) (s.267-289). Ankara: Pegem Yayıncılık.
  • Labinovicz, E. (1985). Learning from children: New beginnings for teaching numerical thinking. Addison & Westly: Menlo Park, California.
  • Lamon, S. J. (1995). Ratio and proportion: Elementary didactical phenomenology. J.S.a.B.Schappelle (Haz.), Providing a foundation for teaching mathematics in the middle grades. (s. 167-198). Albany: State University of New York.
  • Lesh, R., Post, T. R., & Behr, M. (1988). Proportional reasoning. H. James & B. Merlyn (Haz.), Number concepts and operations in the middle grades (s. 93- 119). Reston, Virginia: National Council of Teachers of Mathematics.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum.
  • MEB,Talim Terbiye Kurulu. (2010). ‘9. Sınıf geometri dersi öğretim programı’, s.39. ttkb.meb.gov.tr adresinden alınmıştır.
  • Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13(2), 125–145.
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston,VA:Author.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • Passow, E. (1996). Understanding calculus concepts. ABD: McGraw-Hill Company. Shulman, L. S. (1987) Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  • Simon, M. A., & Blume, G. W. (1994). Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. Journal of Mathematical Behavior, 13, 183-197.
  • Simon, M. A. (1993). Prospective elementary teachers knowledge of division. Journal for Research in Mathematics Education, 24, 233-254.
  • Stein, M. K., Smith, M. S., Henningson, M. A., & Silver, E. A. (1999). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press.
  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229-274.
  • Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts or rate. G. Harel & J. Confrey (Haz.), The development of multiplicative reasoning in the learning of mathematics (s. 179-234). New York, Albany: New York Press.
  • Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundations of mathematics education. O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sépulveda (Haz.), Annual Meeting of the International Group for the Psychology of Mathematics Education, (Cilt 1, s. 45-64). Morélia, Mexico: PME.
  • Wilson, S., Floden, R., & Ferrini-Mundy, J. (2001). Teacher preparation research: Current knowledge, gaps, and recommendations. A research report prepared for the U.S. Department of Education. University of Washington, Center for the Study of Teaching and Policy, Seattle.
  • Van de Walle, J.A. (2008). Elementary and middle school mathematics: Teaching developmentally. Boston: Pearson Custom Publishing.
  • Yıldırım, C. (1996). Matematiksel düşünme. İstanbul: Remzi Kitabevi.

Bir Matematik Öğretmeni Ne Bilmeli? Alan Bilgisi ve Alan Eğitimi Bilgisi Arasındaki Fark

Yıl 2010, Cilt: 27 Sayı: 2, 33 - 47, 03.09.2015

Öz

Eğitim alanında 1980’li yıllarda yapılan araştırmalar sonucunda alan bilgisi ile alan eğitimi bilgisinin birbirlerinden farklı olmaları gerektigi kuramsal ve empirik sonuçlarla kanıtlanmıştır. Sonuçlar, öğretmen yetiştiren eğitim kurumlarını işlevsel anlamda ciddi değişiklikler yapmaya yönlendirmiştir. Bu bağlamda, bu çalışmanın amacı ulusal ve uluslararası eğitim araştırmalarını temel alarak, matematik eğitimi öğretmen adaylarının sahip olmaları gereken bilgi türünün karakteristik özelliklerini nitelik ve nicelik açısından incelemektir. Araştırma sonuçları öğretmen yetiştiren eğitim fakültelerinin önemini bir kez daha gözler önüne sermektedir.

Kaynakça

  • Adams, T. (1998). Prospective elementary teachers' mathematics subject matter knowledge: The real number system. Journal for Research in Mathematics Education, 20, 35-48.
  • Alacacı, C. (2010). Öğrencilerin kesir konusundaki kavram yanılgıları, İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri, E. Bingölbalı & F.M. Özmantar, (Haz.) (s.63-95). Ankara: Pegem Yayıncılık.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389–407.
  • Ball, D. (1990). The mathematical understandings that preservice teachers bring to teacher education. Elementary School Journal, 90. 449-466.
  • Ball, D.L. (1988). Unlearning to teach mathematics. For the Learning of Mathematics, 8(1), 40-48.
  • Bingölbalı, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler, Matematiksel kavram yanılgıları ve çözüm önerileri, M.F. Özmantar, E. Bingolbalı, & H.Akkoç (Haz.) (s. 223-255). Ankara: Pegem Yayıncılık.
  • Borko, H., Eisenhart, M., Brown, C., Underhill, R., Jones, D., & Agard, P. (1992). Learning to teach hard mathematics: Do novice teachers and their instructors give up too easily? Journal for Research in Mathematics Education, 23, 194- 222.
  • Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-378.
  • Dabbah, M., Nurlu, Z., & Önder, H.A. (1992). Calculus 1 for math students.Ankara: Middle East Technical University.
  • Dubinsky, E., Schoenfeld, A. H., & Kaput, J. (1994). Research in collegiate mathematics education I. Providence, RI: American Mathematical Society.
  • Ferguson, R. F., & Womack, S. T. (1993). The impact of subject matter and education coursework on teaching performance. Journal of Teacher Education. 44(1), 55-63.
  • Flores, A. (2008). The mean as the balance point: thought experiments with measuring sticks, International Journal of Mathematical Education in Science and Technology, 39 (6), 741 – 748.
  • Graeber, A.O., Tirosh, D., Glover, R. (1989). Preservice teachers’ mistconceptions in solving verbal problems in multiplication and division. Journal for Research in Mathematics Education, 20, 95-102.
  • Guyton, E., & Farokhi, E. (1987). Relationships among acadernic performance, basic skills, subject matter knowledge and teaching skills of teacher educalion graduates. Journal of Teacher Education, 38,37-42.
  • Heinz, K. R. (2000). Conceptions of ratio in a class or preservice and practicing Teachers. Yayınlanmamış doktora tezi, Penn State University, State College.
  • Hiebert, J. (1986). Conceptual and procedural knowledge: The case of mathematics. In James, H (Haz.). Hillsdale, NJ, England: Lawrence Erlbaum.
  • Kamii, C., Lewis, B. A. & Kirkland, L. D. (2001). Fluency in subtraction compared with addition. Journal of Mathematical Behavior, 20, 33-42.
  • Kaput, J. J., & West, M. M. (1994). Missing-value proportional reasoning problems: factors affecting informal reasoning patterns. G. Harel & J. Confrey (Haz.), The development of multiplicative reasoning in the learning of mathematics (s. 235-187). Albany: State University of New York.
  • Karagöz Akar, G. (2007). Conceptions of between ratios and within ratios. Yayınlanmamış doktora tezi. The Pennsylvania State University.
  • Karagöz Akar, G. (2010). Oran konusunun kavramsal öğreniminde öğrencilerin karşılaşabileceği zorluklar, olası kavram yanılgıları ve çözüm önerileri, İlköğretimde karşılaşılan matematiksel zorluklar ve çözüm önerileri, E.
  • Bingölbalı & F. M. Özmantar (Haz.) (s.267-289). Ankara: Pegem Yayıncılık.
  • Labinovicz, E. (1985). Learning from children: New beginnings for teaching numerical thinking. Addison & Westly: Menlo Park, California.
  • Lamon, S. J. (1995). Ratio and proportion: Elementary didactical phenomenology. J.S.a.B.Schappelle (Haz.), Providing a foundation for teaching mathematics in the middle grades. (s. 167-198). Albany: State University of New York.
  • Lesh, R., Post, T. R., & Behr, M. (1988). Proportional reasoning. H. James & B. Merlyn (Haz.), Number concepts and operations in the middle grades (s. 93- 119). Reston, Virginia: National Council of Teachers of Mathematics.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum.
  • MEB,Talim Terbiye Kurulu. (2010). ‘9. Sınıf geometri dersi öğretim programı’, s.39. ttkb.meb.gov.tr adresinden alınmıştır.
  • Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13(2), 125–145.
  • National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston,VA:Author.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • Passow, E. (1996). Understanding calculus concepts. ABD: McGraw-Hill Company. Shulman, L. S. (1987) Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–22.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  • Simon, M. A., & Blume, G. W. (1994). Mathematical modeling as a component of understanding ratio-as-measure: A study of prospective elementary teachers. Journal of Mathematical Behavior, 13, 183-197.
  • Simon, M. A. (1993). Prospective elementary teachers knowledge of division. Journal for Research in Mathematics Education, 24, 233-254.
  • Stein, M. K., Smith, M. S., Henningson, M. A., & Silver, E. A. (1999). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press.
  • Thompson, P. W. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26, 229-274.
  • Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts or rate. G. Harel & J. Confrey (Haz.), The development of multiplicative reasoning in the learning of mathematics (s. 179-234). New York, Albany: New York Press.
  • Thompson, P. W. (2008). Conceptual analysis of mathematical ideas: Some spadework at the foundations of mathematics education. O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sépulveda (Haz.), Annual Meeting of the International Group for the Psychology of Mathematics Education, (Cilt 1, s. 45-64). Morélia, Mexico: PME.
  • Wilson, S., Floden, R., & Ferrini-Mundy, J. (2001). Teacher preparation research: Current knowledge, gaps, and recommendations. A research report prepared for the U.S. Department of Education. University of Washington, Center for the Study of Teaching and Policy, Seattle.
  • Van de Walle, J.A. (2008). Elementary and middle school mathematics: Teaching developmentally. Boston: Pearson Custom Publishing.
  • Yıldırım, C. (1996). Matematiksel düşünme. İstanbul: Remzi Kitabevi.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Özgün Çalışma
Yazarlar

Gülseren Karagöz Akar

Yayımlanma Tarihi 3 Eylül 2015
Yayımlandığı Sayı Yıl 2010 Cilt: 27 Sayı: 2

Kaynak Göster

APA Karagöz Akar, G. (2015). Bir Matematik Öğretmeni Ne Bilmeli? Alan Bilgisi ve Alan Eğitimi Bilgisi Arasındaki Fark. Bogazici University Journal of Education, 27(2), 33-47.