Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Mühendislik Öğrencilerinin STEM Odaklı Öğretim Modülü Tasarımlarının İncelenmesi

Yıl 2020, Cilt 37, 73 - 91, 17.12.2020

Öz

Bu çalışmanın amacı jeoloji mühendisliği lisans bölümünde öğrenim görmekte olan 3. ve 4. sınıf öğrencilerinin geliştirdikleri STEM odaklı öğretim süreçlerinin Moore vd.’nin (2014) geliştirdikleri “kaliteli K-12 mühendislik eğitimi çerçevesi” doğrultusunda incelenmesidir. Çalışmada nitel araştırma yöntemlerinden iç içe geçmiş tek durum çalışması deseni kullanılmıştır. Araştırmanın çalışma grubunu jeoloji mühendisliği bölümünde öğrenim görmekte olan 36 öğrenci (16 kadın ve 20 erkek) oluşturmaktadır. Çalışmanın birincil veri kaynağını çalışma grubunda yer alan öğrencilerin üçerli gruplar halinde tasarladıkları STEM odaklı öğretim modülleri, ikincil veri kaynağını ise her bir tasarım grubu ile gerçekleştirilen yarı-yapılandırılmış görüşmeler oluşturmaktadır. Verilerin analizinde betimsel analiz yaklaşımı kullanılmıştır. Verilerin analizi sonucunda grupların geliştirdikleri modüller, çerçevede yer alan göstergeler açısından belirli farklılıklar göstermiştir. Çalışmanın bulguları katılımcıların mühendislik alanına özgü bilgi ve tecrübelerinden faydalanarak otantik mühendislik deneyimleri sunduklarını göstermektedir. Ayrıca, fen ve matematik disiplinlerine özgü bilgi ve becerilere mühendislik tasarım çözümleri bağlamında yer verildiği görülmüştür. Son olarak, katılımcıların geliştirdikleri modüllerde STEM eğitimi kaynaklarında doğrusal olarak ilerleyen tasarım süreçlerinin çok daha esnek olduğu görülmektedir.

Kaynakça

  • Abunuwara, E. (1992). The structure of the trilingual lexicon. European Journal of Cognitive Psychology, 4(4), 311-322.
  • Asghar, A., Ellington, R., Rice, E., Johnson, F. ve Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85-125.
  • Avery, Z. K. ve Reeve, E. M. (2013). Developing effective STEM professional development programs. Journal of Technology Education, 25(1), 55-69.
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.
  • Chandler, J., Fontenot, A. D. ve Tate, D. (2011). Problems associated with a lack of cohesive policy in K-12 pre-college engineering. Journal of Pre-College Engineering Education Research, 1(1), 40–48.
  • Chesky, N. Z. ve Wolfmeyer, M. R. (2015). Philosophy of STEM education: A critical investigation (1. baskı). New York: Palgrave Macmillan.
  • Çorlu, M., Capraro, R. ve Capraro, M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74-85.
  • Creswell, J. W. (2007). Research design: Qualitative and quantitative approaches. (2. baskı). Thousand Oaks, CA: Sage.
  • Crismond, D. ve Adams, R. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738-797.
  • Cunningham, C. ve Knight, M. (2004). Draw an engineer test: Development of a tool to investigate students’ ideas about engineers and engineering. Proceedings of the 2004 American Society for Engineering Education Annual Conference and Exposition. Washington D.C.: ASEE.
  • Cunningham, C., Lachappelle, C. ve Lindgren-Streicher, A. (2005). Assessing elementary school student conceptions of engineering and technology. Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition. Washington D.C.: ASEE.
  • Furner, J. M. ve Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185-189.
  • Guzey, S., Moore, T. ve Harwell, M. (2016). Building up STEM: An Analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research, 6(1), 10- 29.
  • Hernandez, P. R., Bodin, R., Elliott, J. W., Ibrahim, B., Rambo-Hernandez, K. E., Chen, T. W. ve de Miranda, M. A. (2014). Connecting the STEM dots: Measuring the effect of an integrated engineering design intervention. International journal of Technology and Design Education, 24(1), 107-120.
  • Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96-122.
  • Honey, M., Pearson, G. ve Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research (Cilt. 500). Washington, DC: National Academies Press.
  • Hyslop-Margison, E. J. ve Armstrong, J. (2004). Critical thinking in career education: The democratic importance of foundational rationality. Journal of Career and Technical Education, 21(1), 39-49.
  • Katehi, L., Pearson, G. ve Feder, M. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: National Research Council.
  • Kelley, T. R. ve Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1–11.
  • Kersten, J. A. (2013). Integration of engineering education by high school teachers to meet standards in the physics classroom (Yayımlanmamış doktora tezi). The University of Minnesota. Erişim adresi http://hdl.handle.net/11299/158540.
  • Mann, E. L., Mann, R. L., Strutz, M. L., Duncan, D. ve Yoon, S. Y. (2011). Integrating engineering into K-6 curriculum: Developing talent in the STEM disciplines. Journal of Advanced Academics, 22(4), 639-658.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A. ve Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Precollege Engineering Education Research, 4(1), 1–13.
  • Morrison, J. (2006). Attributes of STEM education. TIES STEM education monograph series. Baltimore, MD: Teaching Institute for Excellence in STEM.
  • Morrison, J. ve Raymond Bartlett, V. (2009). STEM as curriculum. Education Week, 23, 28–31.
  • National Research Council of the National Academies (2010). Standards in K-12 engineering education. Washington DC: The National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington DC: The National Academies Press.
  • Nikitina, S. ve Mansilla, V. B. (2003). Three strategies for interdisciplinary math and science teaching: A case of the Illinois Mathematics and Science Academy (GoodWork Project Report Series, No. 21). Cambridge, MA: Project Zero, Harvard University.
  • Pang, J. ve Good, R. (2000). A review of the integration of science and mathematics: Implications for further research. School Science and Mathematics, 100(2), 73–82.
  • Sanders, M. (2008). Integrative STEM education: Primer, The Technology Teacher, 68(4), 20-26.
  • Shernoff, D. J., Sinha, S., Bressler, D. M. ve Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(13), 1-16.
  • Smith, J. ve Karr-Kidwell, P. (2000). The interdisciplinary curriculum: A literary review and a manual for administrators and teachers. ERIC database (ED443172).
  • Stinson, K., Harkness, S., Meyer, H. ve Stallworth, J. (2009). Mathematics and science integration: Models and characterizations. School Science and Mathematics, 109(3), 153–161,
  • Strauss, A. ve Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Thousand Oaks, CA: Sage.
  • Van Manen, M. (2007). Phenomenology of practice. Phenomenology & Practice, 1(1), 11-30.
  • Williams, J. P. (2011). STEM Education: Proceed with caution. Design and Technology Education: An International Journal, 16(1), 26–35.
  • Witz, K. G., Goodwin, D. R., Hart, R. S., and Thomas, H. S. (2001). An essentialist methodology in education-related research using in-depth interviews. Journal of Curriculum Studies, 33(2), 195-227.
  • Yin, R. K. (2014). Case study research: Design and methods. (5. baskı). Thousand Oaks, CA: SAGE Publications.
  • Zeidler, D.L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. N. G. Lederman ve S. K. Abell (Haz.), Handbook of research on science education (s. 697-726). New York, NY: Routledge.

Investigating STEM-Focused Instructional Module Designs of Engineering Students

Yıl 2020, Cilt 37, 73 - 91, 17.12.2020

Öz

This study aims to investigate STEM-oriented teaching processes developed by junior and senior students studying in the department of geological engineering, using Moore et al.’s (2014) “quality K-12 engineering education framework”. The study adopted a single case study with embedded units design, which is a qualitative research method. The sample consisted of 36 students (16 females and 20 males) enrolled in the geological engineering department. The primary data source was STEM-oriented teaching modules designed by the students in the study group and the secondary data source consisted of semi-structured interviews with each design group. Descriptive data analysis revealed that the modules developed by the groups showed differences in terms of the indicators within the framework. Specifically, the participants exhibited authentic engineering experiences by relying on their knowledge and experience specific to the field of engineering. Additionally, knowledge and skills specific to the disciplines of science and mathematics were included in the context of engineering design solutions. Finally, the design processes that progress linearly in STEM education resources were observed to be much more flexible in the modules developed by the participants.

Kaynakça

  • Abunuwara, E. (1992). The structure of the trilingual lexicon. European Journal of Cognitive Psychology, 4(4), 311-322.
  • Asghar, A., Ellington, R., Rice, E., Johnson, F. ve Prime, G. M. (2012). Supporting STEM education in secondary science contexts. Interdisciplinary Journal of Problem-Based Learning, 6(2), 85-125.
  • Avery, Z. K. ve Reeve, E. M. (2013). Developing effective STEM professional development programs. Journal of Technology Education, 25(1), 55-69.
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.
  • Chandler, J., Fontenot, A. D. ve Tate, D. (2011). Problems associated with a lack of cohesive policy in K-12 pre-college engineering. Journal of Pre-College Engineering Education Research, 1(1), 40–48.
  • Chesky, N. Z. ve Wolfmeyer, M. R. (2015). Philosophy of STEM education: A critical investigation (1. baskı). New York: Palgrave Macmillan.
  • Çorlu, M., Capraro, R. ve Capraro, M. (2014). Introducing STEM education: Implications for educating our teachers for the age of innovation. Education and Science, 39(171), 74-85.
  • Creswell, J. W. (2007). Research design: Qualitative and quantitative approaches. (2. baskı). Thousand Oaks, CA: Sage.
  • Crismond, D. ve Adams, R. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738-797.
  • Cunningham, C. ve Knight, M. (2004). Draw an engineer test: Development of a tool to investigate students’ ideas about engineers and engineering. Proceedings of the 2004 American Society for Engineering Education Annual Conference and Exposition. Washington D.C.: ASEE.
  • Cunningham, C., Lachappelle, C. ve Lindgren-Streicher, A. (2005). Assessing elementary school student conceptions of engineering and technology. Proceedings of the 2005 American Society for Engineering Education Annual Conference and Exposition. Washington D.C.: ASEE.
  • Furner, J. M. ve Kumar, D. D. (2007). The mathematics and science integration argument: A stand for teacher education. Eurasia Journal of Mathematics, Science & Technology Education, 3(3), 185-189.
  • Guzey, S., Moore, T. ve Harwell, M. (2016). Building up STEM: An Analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research, 6(1), 10- 29.
  • Hernandez, P. R., Bodin, R., Elliott, J. W., Ibrahim, B., Rambo-Hernandez, K. E., Chen, T. W. ve de Miranda, M. A. (2014). Connecting the STEM dots: Measuring the effect of an integrated engineering design intervention. International journal of Technology and Design Education, 24(1), 107-120.
  • Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96-122.
  • Honey, M., Pearson, G. ve Schweingruber, H. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research (Cilt. 500). Washington, DC: National Academies Press.
  • Hyslop-Margison, E. J. ve Armstrong, J. (2004). Critical thinking in career education: The democratic importance of foundational rationality. Journal of Career and Technical Education, 21(1), 39-49.
  • Katehi, L., Pearson, G. ve Feder, M. (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: National Research Council.
  • Kelley, T. R. ve Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3(11), 1–11.
  • Kersten, J. A. (2013). Integration of engineering education by high school teachers to meet standards in the physics classroom (Yayımlanmamış doktora tezi). The University of Minnesota. Erişim adresi http://hdl.handle.net/11299/158540.
  • Mann, E. L., Mann, R. L., Strutz, M. L., Duncan, D. ve Yoon, S. Y. (2011). Integrating engineering into K-6 curriculum: Developing talent in the STEM disciplines. Journal of Advanced Academics, 22(4), 639-658.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A. ve Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Precollege Engineering Education Research, 4(1), 1–13.
  • Morrison, J. (2006). Attributes of STEM education. TIES STEM education monograph series. Baltimore, MD: Teaching Institute for Excellence in STEM.
  • Morrison, J. ve Raymond Bartlett, V. (2009). STEM as curriculum. Education Week, 23, 28–31.
  • National Research Council of the National Academies (2010). Standards in K-12 engineering education. Washington DC: The National Academies Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington DC: The National Academies Press.
  • Nikitina, S. ve Mansilla, V. B. (2003). Three strategies for interdisciplinary math and science teaching: A case of the Illinois Mathematics and Science Academy (GoodWork Project Report Series, No. 21). Cambridge, MA: Project Zero, Harvard University.
  • Pang, J. ve Good, R. (2000). A review of the integration of science and mathematics: Implications for further research. School Science and Mathematics, 100(2), 73–82.
  • Sanders, M. (2008). Integrative STEM education: Primer, The Technology Teacher, 68(4), 20-26.
  • Shernoff, D. J., Sinha, S., Bressler, D. M. ve Ginsburg, L. (2017). Assessing teacher education and professional development needs for the implementation of integrated approaches to STEM education. International Journal of STEM Education, 4(13), 1-16.
  • Smith, J. ve Karr-Kidwell, P. (2000). The interdisciplinary curriculum: A literary review and a manual for administrators and teachers. ERIC database (ED443172).
  • Stinson, K., Harkness, S., Meyer, H. ve Stallworth, J. (2009). Mathematics and science integration: Models and characterizations. School Science and Mathematics, 109(3), 153–161,
  • Strauss, A. ve Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Thousand Oaks, CA: Sage.
  • Van Manen, M. (2007). Phenomenology of practice. Phenomenology & Practice, 1(1), 11-30.
  • Williams, J. P. (2011). STEM Education: Proceed with caution. Design and Technology Education: An International Journal, 16(1), 26–35.
  • Witz, K. G., Goodwin, D. R., Hart, R. S., and Thomas, H. S. (2001). An essentialist methodology in education-related research using in-depth interviews. Journal of Curriculum Studies, 33(2), 195-227.
  • Yin, R. K. (2014). Case study research: Design and methods. (5. baskı). Thousand Oaks, CA: SAGE Publications.
  • Zeidler, D.L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. N. G. Lederman ve S. K. Abell (Haz.), Handbook of research on science education (s. 697-726). New York, NY: Routledge.

Ayrıntılar

Birincil Dil Türkçe
Konular Sosyal
Bölüm Özgün Çalışma
Yazarlar

Engin KARAHAN Bu kişi benim
ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ
Andorra

Yayımlanma Tarihi 17 Aralık 2020
Yayınlandığı Sayı Yıl 2020, Cilt 37, Sayı

Kaynak Göster

APA Karahan, E. (2020). Mühendislik Öğrencilerinin STEM Odaklı Öğretim Modülü Tasarımlarının İncelenmesi . Boğaziçi Üniversitesi Eğitim Dergisi , STEM Eğitimi , 73-91 . Retrieved from https://dergipark.org.tr/tr/pub/buje/issue/58376/842384