Derleme
BibTex RIS Kaynak Göster

Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes

Yıl 2022, , 83 - 109, 20.04.2022
https://doi.org/10.19111/bulletinofmre.901001

Öz

The highly siderophile element (HSE) or platinum group element (PGE) and Os isotope systematics of basaltic volcanics have recently received a significant attention because of their potential to constrain the petrological processes on magma generation and evolution. The HSE and Os isotope data, which are generally observed at very low concentrations in basalts and obtained by modern enrichment and analytical techniques, are frequently used in petrological studies. The HSE contents and ratios from whole-rock analysis of basalts, and combined evaluation with the theoretical knowledge and modelling of HSE behaviour during the partial melting of mantle and the differentiation of basaltic magma would provide opportunity for geochemical modelling on mantle melting. Besides, HSE contents and Pd-PGE/Ir-PGE ratios are important indicators for the nature of mantle sulfides, the sulfur saturation conditions of the mantle source, sulfide segregation, fractional crystallization, crustal assimilation and partial melting degrees in the origin and evolution of mantle-derived magmas. Therefore, in addition to the traditional whole-rock geochemical data obtained from Cenozoic aged basalts observed widely in Turkey, HSE and Os isotope systematics of these basalts can contribute to define the geochemical features of the mantle source, and to model petrological processes which are effective in the magma evolution.

Destekleyen Kurum

TÜBİTAK-ÇAYDAG, Project

Proje Numarası

117Y075

Teşekkür

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK-ÇAYDAG, Project no: 117Y075). The authors would like to thank editor-in-chief Halim MUTLU, technical editor Oğuz ALTUN, assistant editor Pınar ŞEN and referees for their contributions.

Kaynakça

  • Ackerman, L., Walker, R. J., Puchtel, I. S., Pitcher, L., Jelinek, E., Strnad, L. 2009. Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: a study of the upper mantle profile beneath Central Europe. Geochimica et Cosmochimica Acta 73, 2400–2414.
  • Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E., O’Reilly, S. Y. 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407, 891-894.
  • Alard, O., Luguet, A., Pearson, N. J., Griffin, W. L., Lorand, J. P., Gannoun, A., Burton, K. W., O’Reilly, S. Y. 2005. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–1008.
  • Aldanmaz, E. 2012. Osmium isotope and highly siderophile element geochemistry of mantle xenoliths from NW Turkey: implications for melt depletion and metasomatic history of the sub-continental lithospheric mantle. International Geology Review 54 (7), 799–815.
  • Aldanmaz, E., Pickard, M., Meisel, T., Altunkaynak, Ş., Sayıt, K., Şen, P., Hanan, B. B., Furman, F. 2015. Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf–Pb–Os isotopes. Contributions to Mineralogy and Petrology 170, 23.
  • Allégre, C. J., Luck, J. M. 1980. Osmium isotopes as petrogenetic and geological tracers. Earth and Planetary Science Letters 48, 148–154.
  • Alves, S., Schiano, P., Capmas, F., Allègre, C. J. 2002. Osmium isotope binary mixing arrays in arc volcanism. Earth and Planetary Science Letters 198, 355–369.
  • Aulbach, S., Mungall, J. E., Pearson, D. G. 2016. Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. Reviews in Mineralogy and Geochemistry 81, 239–304.
  • Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., Laurenz, V., Berndt, J. 2006. Fractionation of the noble metals by physical processes. Contributions to Mineralogy and Petrology 152, 667-684.
  • Barnes, S. J., Maier, W. D. 1999. The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids. In: Keays, R. R., Lesher, C. M., Lightfoot, P. C., Farrow, C. E. G. (eds), Dynamic processes in magmatic ore deposits and their application to mineral exploration. Geological Association of Canada, Short Course Notes 13, 69–106.
  • Barnes, S. J., Holwell, D. A., Le Vaillant, M. 2017. Magmatic sulfide ore deposits. Elements 13, 91–97.
  • Barnes, S. J., Mungall, J. E., Maier, W. D. 2015. Platinum group elements in mantle melts and mantle samples. Lithos 232, 395–417.
  • Barnes, S. J., Naldrett, A. J, Gorton, M. P. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology 53, 303–323.
  • Becker, H., Horan, M. F., Walker, R. J., Gao, S., Lorand, J. P., Rudnick, R. L. 2006. Highly siderophile element composition of the Earth’s upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta 70, 4528–4550.
  • Bezard, R., Schaefer, B. F., Turner, S., Davidson, J. P., Selby, D. 2015. Lower crustal assimilation in oceanic arcs: insights from an osmium isotopic study of the Lesser Antilles. Geochimica et Cosmochimica Acta 150, 330–344.
  • Bezmen, N. I., Asif, M., Brügmann, G. E., Romanenko, I. M., Naldrett, A. J. 1994. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals. Geochimica et Cosmochimica Acta 58, 1251-1260.
  • Bézos, A., Lorand, J. P., Humler, E., Gros, E. 2005. Platinum group element systematics in mid-oceanic ridge basalt glasses from the Pacific, Atlantic and Indian oceans. Geochimica et Cosmochimica Acta 69, 2613–2627.
  • Birck, J. L., Barman, M. R., Capmas, F. 1997. Re-Os isotopic measurements at the femtomole level in natural samples. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 20, 19–27.
  • Blusztajn, J., Hart, S. R., Ravizza, G., Dick, H. J. B. 2000. Platinum-group elements and Os isotopic characteristics of the lower oceanic crust. Chemical Geology 168, 113–122.
  • Bockrath, C., Ballhaus, C., Holzheid, A. 2004. Fractionation of the platinum-group elements during mantle melting. Science 305, 1951–1953.
  • Borg, L. E., Brandon, A. D., Clynne, M. A., Walker, R. J. 2000. Re-Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California. Earth and Planetary Science Letters 177, 301–317.
  • Brandon, A. D., Creaser, R. A., Shirey, S. B., Carlson, R. W. 1996. Osmium recycling in subduction zones. Science 272, 861–864.
  • Brenan, J. M., McDonough, W. F., Dalpé, C. 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters 212, 135-150.
  • Brenan, J. M., McDonough, W. F., Ash, R. 2005. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth and Planetary Science Letters 237, 855-872.
  • Burton, K. W., Gannoun, A., Birk, J. L., Allègre, C. J., Schiano, P., Clocchiatti, R., Alard, O. 2002. The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt petrogenesis. Earth and Planetary Science Letters 198(1), 63-76.
  • Büchl, A., Brügmann, G., Valentina, G., Batanova, V. G. 2004. Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology 208, 217-232.
  • Carlson, R. W. 2005. Application of the Pt-Re-Os isotopic systems to mantle geochemistry and geochronology. Lithos 82, 249–272.
  • Chen, K., Walker, R. J., Rudnick, R. L., Gao, S., Gaschnig, R. M., Puchtel, I. S., Tang, M., Hu, Z. H. 2016. Platinum-group element abundances and Re–Os isotopic systematics of upper continental crust through time: evidence from glacial diamictites. Geochimica et Cosmochimica Acta 191, 1–16.
  • Chesley, J. T., Ruiz, J. 1998. Crust–mantle interaction in large igneous provinces: implications from the Re–Os isotope systematics of the Columbia River flood basalts. Earth and Planetary Science Letters 154, 1–11.
  • Chesley J. T., Righter K., Ruiz J. 2004. Large scale mantle metasomatism: a Re–Os perspective. Earth and Planetary Science Letters 219, 49–60.
  • Chu, Z. Y., Harvey, J., Liu, C. Z., Guo, J. H., Wu, F. Y., Tian, W., Zhang, Y. L., Yang, Y. H. 2013. Source of highly potassic basalts in northeast China: Evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chemical Geology 357, 52–66.
  • Chu, Z., Yan, Y., Zeng, G., Tian, W., Li, C., Yang, Y., Guo, J. 2017. Petrogenesis of Cenozoic basalts in central- eastern China: Constraints from Re–Os and PGE geochemistry. Lithos 278–281, 72–83.
  • Class, C., Goldstein, S. L., Shirey, S. B. 2009. Osmium isotopes in Grand Comore lavas: a new extreme among a spectrum of EM-type mantle end members. Earth and Planetary Science Letters 284, 219–227.
  • Cohen, A. S., Waters, F. G. 1996. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analytica Chimica Acta 332, 269–275.
  • Creaser, R. A., Papanastassiou, D. A., Wasserburg, G. J. 1991. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta 55, 397-401.
  • Crocket, J. H. 2002. Platinum-group elements in basalts from Maui, Hawaii: low abundances in alkali basalts. Canadian Mineralogist 40, 595–609.
  • Crocket, J. H., Fleet, M. E., Stone, W. E. 1997. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content. Geochimica et Cosmochimica Acta 61, 4139-4149
  • Crocket, J. H., Paul, D. K. 2004. Platinum-group elements in Deccan mafic rocks: A comparison of suites differentiated by Ir content. Chemical Geology 208, 273–291.
  • Dale, C. W., Gannoun, A., Burton, K. W., Argles, T. W., Parkinson, I. J. 2007. Rhenium-osmium isotope and elemental behavior during subduction of oceanic crust and the implications for mantle recycling. Earth and Planetary Science Letters 253, 211–225.
  • Day, J. M. D. 2013. Hotspot volcanism and highly siderophile elements. Chemical Geology 341, 50–74.
  • Day, J. M. D., Pearson, D. G., Macpherson, C. G., Lowry, D., Carracedo, J. C. 2010. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica et Cosmochimica Acta 74, 6565–6589.
  • Day, J. M. D., Waters, C. L., Schaefer, B. F., Walker, R. J., Turner, S. 2016. Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re-Pt-Os isotope systematics in mafic-ultramafic rocks. Geostandards and Geoanalytical Research 40(1), 49-65.
  • Debaille, V., Trønnes, R. G., Graham, D. W., Brandon, A. D., Waigh, T. E., Lee, C. T. A. 2009. Primitive off-rift basalts from Iceland and Jan Mayen: Os- isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochimica et Cosmochimica Acta 73, 3423–3449.
  • Ely, J. C., Neal, C. R. 2003. Using platinum-group elements to investigate the origin of the Ontong Java Plateau, SW Pacific. Chemical Geology 196, 235–257.
  • Esser, B. K., Turekian, K. K. 1993. The osmium isotopic composition of the continental crust. Geochimica et Cosmochimica Acta 57, 3093–3104.
  • Fiorentini, M. L., LaFlamme, C., Denyszyn, S., Mole, D., Maas, R., Locmelis, M., Caruso, S., Hao Bui, T. 2018. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochimica et Cosmochimica Acta 223, 175-197.
  • Fischer-Gödde, M., Becker, H., Wombacher, F. 2010. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 74, 356-379.
  • Fleet, M. E., Stone, W. E., Crocket, J. H. 1991. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta 55, 2545-2554.
  • Fleet, M. E., Crocket, J. H., Stone, W. E 1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta 60, 2397-2412.
  • Gannoun, A., Burton, K. W., Schiano, P., Parkinson, I. J., Alard, O., Thomas, L. E. 2007. The scale and origin of the osmium isotope variations in mid- ocean ridge basalts. Earth and Planetary Science Letters 259, 541–556.
  • Gannoun, A., Burton, K. W., Barfod, D. N., Schiano, P., Vlastélic, I., Halliday, A. N. 2015. Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re–Os isotope system. Lithos 224–225, 1–12.
  • Gannoun, A., Burton, K. W., Day, J. M. D., Harvey, J., Schiano, P., Parkinson, I. 2016. Highly Siderophile Element and Os Isotope Systematics of Volcanic Rocks at Divergent and Convergent Plate Boundaries and in Intraplate Settings. In: Harvey,
  • J. and Day, J. M. D. (Ed.). Highly Siderophile and Strongly Chalcophile Elements in High- Temperature Geochemistry and Cosmochemistry, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 81, 651-724.
  • Garuti, G., Oddone, M., TorresRuiz, J. 1997. Platinum- group-element distribution in the subcontinental mantle: Evidence from the Ivrea zone (Italy) and the Betic-Rifean cordillera (Spain and Morocco). Canadian Journal of Earth Sciences 34, 444-463.
  • Georgatou, A. A., Chiaradia, M. 2020. Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks. Solid Earth 11(1), 1–21.
  • Georgatou, A. A., Chiaradia, M., Rezeau, H., Walle, M. 2018. Magmatic sulfides in Quaternary Ecuadorian arc magmas. Lithos 296–299, 580–599.
  • Georgiev, S., Stein, H. J., Hannah, J. L., Weiss, H. M.,Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali, M., Piasecki, S. 2012. Chemical signals for oxidative weathering predict Re–Os isochroneity in black shales, East Greenland. Chemical Geology 324-325, 108-121.
  • Gibson, S. A., Dale, C. W., Geist, D. J., Day, J. A., Brügmann, G., Harpp, K. S. 2016. The influence of melt flux and crustal processing on Re–Os isotope systematics of ocean island basalts: Constraints from Galápagos. Earth and Planetary Science Letters 449, 345–359.
  • Goldschmidt, V. M. 1954. Geochemistry. Clarendon Press, London, 730s.
  • González-Jiménez, J. M., Proenza, J. A., Gervilla, F., Melgarejo, J. C., Blanco-Moreno, J. A., Ruiz- Sánchez, R., Griffin, W. L. 2011. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125,101-12.
  • Greenough, J. D., Fryer, B. J. 1990. Distribution of gold, palladium, platinum, rhodium, ruthenium and iridium in Leg 115 Hotspot basalts: implication for magmatic processes. In: Duncan, R. A., Backman, J., Peterson, L. C. (Ed.). Proceedings of the Ocean Drilling Program, Scientific Results 71–84.
  • Greenough, J. D., Owen, J. V. 1992. Platinum-group element geochemistry of continental tholeiites-analysis of the Long-Range Dyke Swarm, Newfoundland, Canada. Chemical Geology 98, 203-219.
  • Hamlyn, P. R., Keays, R. R. 1986. Sulfur saturation and second-stage melts; application to the Bushveld platinum metal deposits. Economic Geology 81, 1431-1445.
  • Handler, M. R., Bennett, V. C., Carlson, R. W. 2005. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: A unique view of depleted MORB mantle? Geochimica et Cosmochimica Acta 69(24), 5747-5763.
  • Hanyu, T., Tatsumi, Y., Senda, R., Miyazaki, T., Chang, Q., Hirahara, Y., Takahashi, T., Kawabata, H., Suzuki, K., Kimura, J. I., Nakai, S. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems 12(2), Q0AC09.
  • Hart, S. R., Ravizza, G. E. 1996. Os partitioning between phases in lherzolite and basalt. In: Basu A. and Hart S. (Ed.). Earth Processes: Reading the Isotopic Code. Washington: American Geophys Union Monograph 95, 123–134.
  • Hart, S. R., Hauri, E. H., Oschmann, L. A., Whitehead, J. A. 1992. Mantle plumes and entrainment: isotopic evidence. Science 256, 517-520.
  • Hart, W. K., Carlson, R. W., Shirey, S. B. 1997. Radiogenic Os in primitive basalts from the northwestern U.S.A.: implications for petrogenesis Earth and Planetary Science Letters 150, 103–116.
  • Harvey, J., Dale, C. W., Gannoun, A., Burton, K. W. 2011. Osmium mass balance in peridotite and the effects of mantle-derived sulfides on basalt petrogenesis. Geochimica et Cosmochimica Acta 75, 5574–5596.
  • Harvey, J., Gannoun, A., Burton, K. W., Schiano, P., Rogers,N. W., Alard, O. 2010. Unravelling the effects of melt depletion and secondary infiltration on mantle Re-Os isotopes beneath the French Massif Central. Geochimica et Cosmochimica Acta 74, 293–320.
  • Haughton, D. R., Roeder, P. L., Skinner, B. J. 1974. Solubility of sulfur in mafic magmas. Economic Geology 69, 451-467.
  • Hertogen, J., Janssens, M. J., Palme, H. 1980. Trace elements in ocean ridge glasses: implications for fractionation during mantle evolution and petrogenesis. Geochimica et Cosmochimica Acta 44, 2125-2143.
  • Holwell, D. A., Keith, M., Fiorentini, M., McDonald, I., Lu, Y., Giuliani, A., Smith, D. J., Locmelis, M. 2019. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nature Communications 10, 3511.
  • Hopkins, J. L., Timm, C., Wilson, C. J. N., Millet, M. A., Poirier, A., Leonard, G. S. 2016. Os isotopic constraints on crustal contamination in Auckland Volcanic Field basalts, New Zealand. Chemical Geology 439, 83–97.
  • Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N., Rubin, A. 2003. Highly siderophile elements in chondrites. Chemical Geology 196, 5–20.
  • Hou, Z. Q., Zheng, Y. C., Yang, Z. M., Rui, Z. Y., Zhao, Z. D., Qu, X. M., Jiang, S. H., Sun, Q. Z. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita 48, 173–192.
  • Huang, X. W., Su, B. X., Zhou, M. F., Gao, J. F., Qi, L.2017. Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity. Lithos 282–283, 215– 227.
  • Huang, X. W., Zhou, M. F., Wang, C. Y., Robinson, P. T., Zhao, J. H., Qi, L. 2013. Chalcophile element constraints on magma differentiation of Quaternary volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences 76, 1–11.
  • Ireland, T. J., Walker, R. J., Garcia, M. O. 2009. Highly siderophile element and 187Os isotope systematics of Hawaiian picrites: implications for parental melt composition and source heterogeneity. Chemical Geology 260, 112–128.
  • Ivanov, A. V., Perepelov, A. B., Palesskii, S. V., Nikolaeva, I.V. 2008. First data on the distribution of platinum group elements (Ir, Os, Ru, Pt, and Pd) and Re in island-arc basalts of Kamchatka. Doklady Earth Sciences 420(4), 597–601.
  • Izokh, A. E., Medvedev, A. Y., Fedoseev, G. S., Polyakov, G. V., Nikolaeva, I. V., Palesskii, S. V. 2016. Distribution of PGE in Permo-Triassic basalts of the Siberian Large Igneous Province. Russian Geology and Geophysics 57, 809–821.
  • Jackson, M. G., Shirey, S. B. 2011. Re–Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth and Planetary Science Letters 312, 91–101.
  • Jamais, M., Lassiter, J. C., Brügmann, G. 2008. PGE and Os isotopic variations in lavas from Kohala Volcano Hawaii: constraints on PGE behavior and melt/ crust interaction. Chemical Geology 250, 16-28.
  • Jaques, A., Green, D. 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287-310.
  • Jung, S., Pfänder, J. A., Brauns, M., Maas, R. 2011. Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb, Hf and Os isotopes from central European volcanic province basalts. Geochimica et Cosmochimica Acta 75, 2664-2683.
  • Keays, R. R. 1982. Palladium and iridium in komatiites and associated rocks: Application to petrogenetic problems. In: Arndt, N. T. and Nesbitt, E. G. (Ed.). Komatiites, London, Allen and Unwin, 435–457.
  • Keays, R. R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of the ore deposits. Lithos 34, 1-18.
  • Keays, R. R., Lightfoot, P. C. 2007. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Mineralium Deposita 42, 319-336.
  • Keith, M., Haase, K., Klemd, R., Schwarz-Schampera, U., Franke, H. 2017. Systematic variations in magmatic sulfide chemistry from mid-ocean ridges, backarc basins and island arcs. Chemical Geology 451, 67–77.
  • Kepezhinskas, P., Defant, M. J. 2001. Nonchondritic Pt/ Pd ratios in arc mantle xenoliths: Evidence for platinum enrichment in depleted island-arc mantle sources. Geology 29, 851–854.
  • Kerr, A., Leitch, A. M. 2005. Self-destructive sulfide segregation systems and the formation of high- grade magmatic ore deposits. Economic Geology 100, 311–332.
  • Lassiter, J. C., Luhr, J. F. 2001. Osmium abundance and isotope variations in mafic Mexican volcanic rocks: evidence for crustal contamination and constraints on the geochemical behavior of osmium during partial melting and fractional crystallization. Geochemistry, Geophysics, Geosystems 2,1027.
  • Li, C., Ripley, E. M., Tao, Y., Hu, R. 2016. The significance of PGE variations with Sr–Nd isotopes and lithophile elements in the Emeishan flood basalt province from SW China to northern Vietnam. Lithos 248-251, 1-11.
  • Lightfoot, P. C., Keays, R. R. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: Implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geology 100, 439-462.
  • Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., Naldrett, A. J., Gorbachev, N. S., Fedorenko, A., Doherty, W. 1994. Chemostratigraphy of Siberian trap lavas, Noril'sk district, Russia: Implications for the evolution of flood basalt magmas: In: Lightfoot, P. C. and Naldrett, A. J. (eds.), Proceedings of the Sudbury-Noril'sk Symposium: Ontario Geological Survey Special Publications 5, 283- 312.
  • Lightfoot, P. C., Hawkesworth, C. J., Olshefsky, K., Green, A. H., Doherty, W., Keays, R. R. 1997. Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and the Nuussuaq Peninsula, West Greenland with implications for the mineral potential of comagmatic intrusions. Contributions to Mineralogy and Petrology 128, 139-163.
  • Locmelis, M., Fiorentini, M. L., Rushmer, T., Arevalo Jr., R., Adam, J., Denyszyn, S. W. 2016. Sulfur and metal fertilization of the lower continental crust. Lithos 244, 74–93.
  • Lorand, J. P., Luguet, A., Alard, O. 2008. Platinum-group elements: a new set of key tracers for the Earth’s interior. Elements 4, 247–252.
  • Lorand, J. P., Luguet, A., Alard, O. 2009. Platinum group elements: A new set of key tracers for the Earth’s interior. Elements 4, 247.
  • Lorand, J. P., Delpech, G., Gregoire, M., Moine, B., O'Reilly, S. Y., Cottin, J. Y. 2004. Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chemical Geology 208, 195–215.
  • Luck, J. M., Allègre, C. J. 1984. 187Re/188Os investigation in sulfide from Cape Smith komatiite. Earth and Planetary Science Letters 68, 205-208.
  • Luguet, A., Lorand, J. P., Seyler, M. 2003. Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean). Geochimica et Cosmochimica Acta 67, 1553-1570.
  • Ma, G. S. K., Malpas, J., Gao, J. F., Wang, K. L., Qi, L., Xenophontos, C. 2013. Platinum-group element geochemistry of intraplate basalts from the Aleppo Plateau, NW Syria. Geological Magazine 150 (3), 497–508.
  • Maier, W. D., Barnes, S. J. 2004. Pt/Pd and Pd/Ir ratios in mantle-derived magmas: a possible role for mantle metasomatism. South African Journal of Geology 107, 333-340.
  • Maier, W. D., Barnes, S. J., Waal, S. A. 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: A review of recent advances in the use of geochemical tools, and their application to some South African ores. South African Journal of Geology 101, 237-253.
  • Mavrogenes, J. A., O’Neill, H. S. C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta 63, 1173–1180.
  • McBride, J. S., Lambert, D. D., Greig, A., Nicholls, I.A. 1996. Multistage evolution of Australian subcontinental mantle: Re-Os isotopic constraints from Victorian mantle xenoliths. Geology 24, 631–634.
  • McBride, J. S., Lambert, D. D., Nicholls, I. A., Price, R. C. 2001. Osmium isotopic evidence for crust–mantle interaction in the genesis of continental intraplate basalts from the Newer Volcanics Province, Southeastern Australia. Journal of Petrology 42, 1197–1218.
  • McDonough, W. F., Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223-253.
  • McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D., Andrew, A. S. 1999. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516.
  • Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., Wooden, J. L. 2002. Re– Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419, 705-708.
  • Meisel, T., Horan, M. F. 2016. Analytical Methods for the Highly Siderophile Elements. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 81, 89-106.
  • Meisel, T., Walker, R. J., Irving, A. J., Lorand, J. P. 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica et Cosmochimica Acta 65, 1311–1323.
  • Meisel, T., Walker, R. J., Morgan, J. W. 1996. The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383, 517–520.
  • Momme, P., Tegner, C., Brooks, C. K., Keays, R. R. 2006. Two melting regimes during Paleogene flood basalt generation in East Greenland: Combined REE and PGE modelling. Contributions to Mineralogy and Petrology 151, 88-100.
  • Mungall, J. E., Brenan, J. M., 2014. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle– crust fractionation of the chalcophile elements. Geochimica et Cosmochimica Acta 125, 265-289.
  • Mungall, J. E., Hanley, J. J., Arndt, N. T., Debecdelievre, A. 2006. Evidence from meimechites and other low- degree mantle melts for redox controls on mantle– crust fractionation of platinum-group elements. Proceedings of the National Academy of Sciences of USA 103(34), 12695–12700.
  • Naldrett, A. J. 2011. Fundamentals of magmatic sulfide deposits. In: Li, C. and Ripley, E. M. (eds.), Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis. Reviews in Economic Geology 17, 1–50.
  • Norman, M. D., Garcia, M. O., Bennett, V. C. 2004. Rhenium and chalcophile elements in basaltic glasses from Ko’olau and Moloka’I volcanoes: magmatic outgassing and composition of the Hawaiian plume. Geochimica et Cosmochimica Acta 68, 3761-3777.
  • Park, J. W., Campbell, I., Kim, J., Moon, J. W. 2015. The role of sulfide saturation on formation of a Cu- and Au-rich magma: insights from the platinum group element geochemistry of Niuatahi–Motutahi lavas, Tonga rear arc. Journal of Petrology 56, 59–81.
  • Peach, C. L., Mathez, E. A., Keays, R. R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta 54, 3379-3389.
  • Peach, C. L., Mathez, E. A., Keays, R. R., Reeves, S. J. 1994. Experimentally determined sulfide melt- silicate melt partition coefficient for iridium and palladium. Chemical Geology 117, 361-377.
  • Pearson, D. G., Nowell, G. M. 2004. Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite– pyroxenite mantle sources. Journal of Petrology 45, 439–455.
  • Pearson, D. G., Irvine, G. J., Ionov, D. A., Boyd, F. R., Dreibus, G. E. 2004. A Re–Os isotope Systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chemical Geology 208, 29–59.
  • Pearson, D. G., Parman, S. W., Nowell, G. M. 2007. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449, 202-205.
  • Pearson, D. G., Snyder, G. A., Shirey, S. B., Taylor, L. A., Carlson, R. W., Sobolev, N. V. 1995. Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374, 711–713.
  • Peucker-Ehrenbrink, B., Jahn, B. M., 2001. Rhenium- osmium isotope systematics and platinum-group element concentrations: loess and the upper continental crust. Geochemistry, Geophysics, Geosystems 2 (2001GC000172).
  • Peucker-Ehrenbrink, B., Bach, W., Hart, S. R., Blusztajn, J., Abbruzzese, T. 2003. Rhenium–osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP sites 504 and 417/418. Geochemistry, Geophysics, Geosystems 4 (2002GC000414).
  • Peucker-Ehrenbrink, B., Hanghoj, K., Atwood, T., Kelemen, P. B. 2012. Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust. Geology 40(3), 199–202.
  • Philipp, H., Eckhardt, J. D., Puchelt, H. 2001. Platinum- group elements (PGE) in basalts of the seaward- dipping reflector sequence, SE Greenland Coast. Journal of Petrology 42, 407-432.
  • Pitcher, L., Helz, R. T., Walker, R. J., Piccoli, P. 2009. Fractionation of the platinum-group elements and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii. Chemical Geology 260, 196–210
  • Powell, W., O'Reilly, S. Y. 2007. Sulfide mobility in mantle fluids beneath eastern Australia: implications for metasomatic processes and mantle Re-Os chronology. Lithos 94, 132-147.
  • Qi, L., Zhou, M. F. 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chemical Geology 248, 83–103.
  • Qi, L., Wang, C. Y., Zhou, M. F. 2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China. Lithos 106, 222- 236
  • Qi, L., Zhou, M. F., Wang, C. Y. 2004. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS. Journal of Analytical Atomic Spectrometry 19, 1335–1339.
  • Qi, L., Gao, J. F., Huang, X. W., Hu, J., Zhou, M. F., Zhong, H. 2011. An improved digestion technique for determination of platinum group elements in geological samples. Journal of Analytical Atomic Spectrometry 26, 1900–1904.
  • Qi, L., Zhou, M. F., Wang, C. Y., Sun, M. 2007. Evaluation of the determination of Re and PGEs abundance of geological samples by ICP-MS coupled with a modified Carius tube digestion at different temperatures. Geochemical Journal 41, 407–14.
  • Rehkämper, M., Halliday, A. N., Fitton, J. G., Lee, D. C., Wieneke, M., Arndt, N. T. 1999a. Ir, Ru, Pt, and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum- group elements in the mantle. Geochimica et Cosmochimica Acta 63, 3915–3934.
  • Rehkämper, M., Halliday, A. N., Alt, J., Fitton, J. G., Zipfel, J., Takazawa, E. 1999b. Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: Petrogenetic signature of melt percolation? Earth and Planetary Science Letters 172, 65–81.
  • Reisberg, L., Allègre, C. J., Luck, J. M. 1991. The Re–Os systematics of the Ronda ultramafic complex of Southern Spain. Earth and Planetary Science Letters 105, 196–213.
  • Reisberg, L., Zhi, X. C., Lorand, J. P., Wagner, C., Peng, Z. C., Zimmermann, C. 2005. Re–Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effects of melt percolation. Earth and Planetary Science Letters 239, 286-308.
  • Richards, J. P. 2009. Post subduction porphyry Cu-Au an d epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37, 247–250.
  • Richards, J. P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Review 40, 1–26.
  • Righter, K., Campbell, A. J., Humayun, M., Hervig, M. R. L. 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta 68-867-880. Rocha-Júnior, E. R. V., Puchtel, I. S., Marques, L. S., Walker, J., Machado, F. B., Nardy, A. J. R., Babinski, M., Figueiredo, A. M. G. 2012. Re-Os isotope and highly siderophile element systematics of the Paraná continental flood basalts (Brazil). Earth and Planetary Science Letters 337–338, 164–173.
  • Roy-Barman, M., Wasserburg, G. J., Papanastassiou, D. A., Chaussidon, M. 1998. Osmium isotope composition and Re-Os concentrations in sulfide globules from basaltic glasses. Earth and Planetary Science Letters 154, 331-347.
  • Rudnick, R. L., Lee, C. 2002. Osmium isotope constraints on the tectonic evolution of the lithosphere in the southwestern United States. International Geology Review 44, 501-511.
  • Rudnick, R. L., Gao, S. 2004. Composition of the continental crust. In: Holland, H. D., Turekian, K. K. (eds.), Treatise on Geochemistry. Elsevier, Amsterdam, 3, 1–64.
  • Rudnick, R. L., Walker, R. J. 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos 112, 1083– 1095.
  • Saal, A. E., Rudnick, R. L., Ravizza, G. E., Hart, S. R. 1998. Re-Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 393, 58–61.
  • Salters, V. J. M., Andreas, S. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, 469-484.
  • Savelyev, D. P., Kamenetsky, V. S., Danyushevsky, L. V., Botcharnikov, R. E., Kamenetsky, M. B., Park, J. W., Portnyagin, M. V., Olin, P., Krasheninnikov, P., Hauff, F. 2018. Immiscible sulfide melts in primitive oceanic magmas: Evidence and implications from picrite lavas (Eastern Kamchatka, Russia). American Mineralogist 103, 886–898.
  • Schmidt, G., Snow, J. 2002. Os isotopes in mantle xenoliths from the Eifel volcanic field and the Vogelsberg (Germany): age constraints on the lithospheric mantle, Contributions to Mineralogy and Petrology 143, 694–705.
  • Selby, D., Creaser, R. A., Stein, H. J., Markey, R. J., Hannah, J. L. 2007. Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta 71, 1999-2013.
  • Sen, I. S., Bizimis, M., Sen, G., Huang, S. 2011. A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths. Geochimica et Cosmochimica Acta 75, 4899–4916.
  • Sharpe, M. R. 1982. Noble metals in the marginal rocks of the Bushveld Complex. Economic Geology 77, 1286-1295.
  • Shirey, S. B., Walker, R. J. 1995. Carius tube digestion for low blank rhenium–osmium analysis. Analytical Chemistry 67, 2136–2141.
  • Shirey, S. B., Walker, R. J. 1998. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423-500.
  • Stein, H., Hannah, J. 2015. Rhenium–Osmium geochronology: sulfides, shales, oils, and mantle. In: Rink, W. J., Thompson, J. W. (eds.), Encyclopedia of Scientific Dating Methods, Springer, Dordrecht.
  • Stone, W. E., Crocket, J. H., Fleet, M. E. 1990. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200°C. Geochimica et Cosmochimica Acta 54, 2341-234.
  • Sun, Y., Ying, J., Zhou, X., Shao, J., Chu, Z., Su, B. 2014. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: implications for the role of ancient subducted sediments. Lithos 208–209, 53–66.
  • Suzuki, K., Senda, R., Shimizu, K. 2011. Osmium behavior in a subduction system elucidated from chromian spinel in Bonin Island beach sands. Geology 39, 999–1002.
  • Tatsumoto, M., Basu, A. R., Wankang, H., Junwen, W., Guanghong, X. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters 113, 107–128.
  • Turner, S., Handler, M., Bindeman, I., Suzuki, K. 2009. New insights into the origin of O–Hf–Os isotope signatures in arc lavas from Tonga–Kermadec. Chemical Geology 266,187–193.
  • Van Keken, P. E., Hauri, E. H., Ballentine, C. J. 2002. Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences 30, 493– 525.
  • Vogel, D. C., Keays, R. R. 1997. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia. Chemical Geology 136, 181-204.
  • Völkening, J., Walczyk, T., Heumann, K. G. 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 105, 147–159.
  • Walker, R. J. 2016. Siderophile Elements in Tracing Planetary Formation and Evolution. Geochemical Perspectives 5(1), 145s.
  • Walker, R. J., Carlson, R. W., Shirey, S. B., Boyd, F. R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths-implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta 53, 1583–1595.
  • Walker, R. J., Prichard, H. M., Ishiwatari, A., Pimentel, M. M. 2002. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromitites. Geochimica et Cosmochimica Acta 66, 329–345.
  • Wang, C. Y., Zhou, M. F., Qi, L. 2010. Origin of extremely PGE-rich mafic magma system: an example from the Jinbaoshan ultramafic sill, Emeishan large igneous province, SW China. Lithos 119, 147– 161.
  • Wang, C. Y., Zhou, M. F., Qi, L. 2011. Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province, SW China. Contributions to Mineralogy and Petrology 161, 237-254.
  • Wang, Z., Becker, H. 2015. Fractionation of highly siderophile and chalcophile elements during magma transport in the mantle: constraints from pyroxenites of the Balmuccia peridotite massif. Geochimica et Cosmochimica Acta 159, 244–263.
  • Waters, C. L., Zanon, V., Day, J. M. D., Watanabe, S., Sayıt, K., Olson, K. M., Hanan, B. B., Widom, E. 2020. Sulfide mantle source heterogenity recorded in basaltic lavas from the Azores. Geochimica et Cosmochimica Acta 268, 422–445.
  • Widom, E., Hoernle, K. A., Shirey, S. B., Schmincke, H.U. 1999. Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. Journal of Petrology 40, 279–296.
  • Woodland, S. J., Pearson, D. G., Thirlwall, M. F. 2002. A platinum group element and Re-Os isotope investigation of siderophile element recycling in subduction zones: Comparison of Grenada, Lesser Antilles Arc, and the Izu-Bonin Arc. Journal of Petrology 43(1), 171–198.
  • Xu, J. F., Suzuki, K., Xu, Y. G., Mei, H. J., Li, J. 2007. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochimica et Cosmochimica Acta 71, 2104–2119.
  • Yang, A. Y., Zhao, T. P., Zhou, M. F., Deng, X. G., Wang, G. Q., Li, J. 2013. Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: Constraints on the assimilation and fractional crystallization (AFC) processes. Lithos 179, 28–35.
  • Yuan, F., Zhou, T., Zhang, D., Jowitt, S. M., Keays, R. R., Liu, S., Fan, Y. 2012. Siderophile and chalcophile metal variations in basalts: Implications for the sulphide saturation history and Ni–Cu–PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geology Reviews 45, 5–15.
  • Zeng, G., Huang, X. W., Zhou, M. F., Chen, L. H., Xu, X. S. 2016. Using chalcophile elements to constrain crustal contamination and xenolith-magma interaction in Cenozoic basalts of eastern China. Lithos 258–259, 163–172.
  • Zhang, W. H., Zhang, H. F., Sun, Y. L., Fan W. M., Han,B. F., Tang, Y. J. 2015. Platinum-group element geochemistry of Cenozoic basalts from the North China Craton: Implications for mantle heterogeneity. Science China: Earth Sciences 58, 881–895.
  • Zhang, Y. L., Liu, C. Z., Ge, W. C., Wu, F. Y., Chu, Z. Y. 2011. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): implications for crust–mantle decoupling. Lithos 126, 233–247.
  • Zindler, A., Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences
Yıl 2022, , 83 - 109, 20.04.2022
https://doi.org/10.19111/bulletinofmre.901001

Öz

Proje Numarası

117Y075

Kaynakça

  • Ackerman, L., Walker, R. J., Puchtel, I. S., Pitcher, L., Jelinek, E., Strnad, L. 2009. Effects of melt percolation on highly siderophile elements and Os isotopes in subcontinental lithospheric mantle: a study of the upper mantle profile beneath Central Europe. Geochimica et Cosmochimica Acta 73, 2400–2414.
  • Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E., O’Reilly, S. Y. 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407, 891-894.
  • Alard, O., Luguet, A., Pearson, N. J., Griffin, W. L., Lorand, J. P., Gannoun, A., Burton, K. W., O’Reilly, S. Y. 2005. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–1008.
  • Aldanmaz, E. 2012. Osmium isotope and highly siderophile element geochemistry of mantle xenoliths from NW Turkey: implications for melt depletion and metasomatic history of the sub-continental lithospheric mantle. International Geology Review 54 (7), 799–815.
  • Aldanmaz, E., Pickard, M., Meisel, T., Altunkaynak, Ş., Sayıt, K., Şen, P., Hanan, B. B., Furman, F. 2015. Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf–Pb–Os isotopes. Contributions to Mineralogy and Petrology 170, 23.
  • Allégre, C. J., Luck, J. M. 1980. Osmium isotopes as petrogenetic and geological tracers. Earth and Planetary Science Letters 48, 148–154.
  • Alves, S., Schiano, P., Capmas, F., Allègre, C. J. 2002. Osmium isotope binary mixing arrays in arc volcanism. Earth and Planetary Science Letters 198, 355–369.
  • Aulbach, S., Mungall, J. E., Pearson, D. G. 2016. Distribution and processing of highly siderophile elements in cratonic mantle lithosphere. Reviews in Mineralogy and Geochemistry 81, 239–304.
  • Ballhaus, C., Bockrath, C., Wohlgemuth-Ueberwasser, C., Laurenz, V., Berndt, J. 2006. Fractionation of the noble metals by physical processes. Contributions to Mineralogy and Petrology 152, 667-684.
  • Barnes, S. J., Maier, W. D. 1999. The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids. In: Keays, R. R., Lesher, C. M., Lightfoot, P. C., Farrow, C. E. G. (eds), Dynamic processes in magmatic ore deposits and their application to mineral exploration. Geological Association of Canada, Short Course Notes 13, 69–106.
  • Barnes, S. J., Holwell, D. A., Le Vaillant, M. 2017. Magmatic sulfide ore deposits. Elements 13, 91–97.
  • Barnes, S. J., Mungall, J. E., Maier, W. D. 2015. Platinum group elements in mantle melts and mantle samples. Lithos 232, 395–417.
  • Barnes, S. J., Naldrett, A. J, Gorton, M. P. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chemical Geology 53, 303–323.
  • Becker, H., Horan, M. F., Walker, R. J., Gao, S., Lorand, J. P., Rudnick, R. L. 2006. Highly siderophile element composition of the Earth’s upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochimica et Cosmochimica Acta 70, 4528–4550.
  • Bezard, R., Schaefer, B. F., Turner, S., Davidson, J. P., Selby, D. 2015. Lower crustal assimilation in oceanic arcs: insights from an osmium isotopic study of the Lesser Antilles. Geochimica et Cosmochimica Acta 150, 330–344.
  • Bezmen, N. I., Asif, M., Brügmann, G. E., Romanenko, I. M., Naldrett, A. J. 1994. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals. Geochimica et Cosmochimica Acta 58, 1251-1260.
  • Bézos, A., Lorand, J. P., Humler, E., Gros, E. 2005. Platinum group element systematics in mid-oceanic ridge basalt glasses from the Pacific, Atlantic and Indian oceans. Geochimica et Cosmochimica Acta 69, 2613–2627.
  • Birck, J. L., Barman, M. R., Capmas, F. 1997. Re-Os isotopic measurements at the femtomole level in natural samples. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 20, 19–27.
  • Blusztajn, J., Hart, S. R., Ravizza, G., Dick, H. J. B. 2000. Platinum-group elements and Os isotopic characteristics of the lower oceanic crust. Chemical Geology 168, 113–122.
  • Bockrath, C., Ballhaus, C., Holzheid, A. 2004. Fractionation of the platinum-group elements during mantle melting. Science 305, 1951–1953.
  • Borg, L. E., Brandon, A. D., Clynne, M. A., Walker, R. J. 2000. Re-Os isotopic systematics of primitive lavas from the Lassen region of the Cascade arc, California. Earth and Planetary Science Letters 177, 301–317.
  • Brandon, A. D., Creaser, R. A., Shirey, S. B., Carlson, R. W. 1996. Osmium recycling in subduction zones. Science 272, 861–864.
  • Brenan, J. M., McDonough, W. F., Dalpé, C. 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters 212, 135-150.
  • Brenan, J. M., McDonough, W. F., Ash, R. 2005. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth and Planetary Science Letters 237, 855-872.
  • Burton, K. W., Gannoun, A., Birk, J. L., Allègre, C. J., Schiano, P., Clocchiatti, R., Alard, O. 2002. The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt petrogenesis. Earth and Planetary Science Letters 198(1), 63-76.
  • Büchl, A., Brügmann, G., Valentina, G., Batanova, V. G. 2004. Formation of podiform chromitite deposits: implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology 208, 217-232.
  • Carlson, R. W. 2005. Application of the Pt-Re-Os isotopic systems to mantle geochemistry and geochronology. Lithos 82, 249–272.
  • Chen, K., Walker, R. J., Rudnick, R. L., Gao, S., Gaschnig, R. M., Puchtel, I. S., Tang, M., Hu, Z. H. 2016. Platinum-group element abundances and Re–Os isotopic systematics of upper continental crust through time: evidence from glacial diamictites. Geochimica et Cosmochimica Acta 191, 1–16.
  • Chesley, J. T., Ruiz, J. 1998. Crust–mantle interaction in large igneous provinces: implications from the Re–Os isotope systematics of the Columbia River flood basalts. Earth and Planetary Science Letters 154, 1–11.
  • Chesley J. T., Righter K., Ruiz J. 2004. Large scale mantle metasomatism: a Re–Os perspective. Earth and Planetary Science Letters 219, 49–60.
  • Chu, Z. Y., Harvey, J., Liu, C. Z., Guo, J. H., Wu, F. Y., Tian, W., Zhang, Y. L., Yang, Y. H. 2013. Source of highly potassic basalts in northeast China: Evidence from Re–Os, Sr–Nd–Hf isotopes and PGE geochemistry. Chemical Geology 357, 52–66.
  • Chu, Z., Yan, Y., Zeng, G., Tian, W., Li, C., Yang, Y., Guo, J. 2017. Petrogenesis of Cenozoic basalts in central- eastern China: Constraints from Re–Os and PGE geochemistry. Lithos 278–281, 72–83.
  • Class, C., Goldstein, S. L., Shirey, S. B. 2009. Osmium isotopes in Grand Comore lavas: a new extreme among a spectrum of EM-type mantle end members. Earth and Planetary Science Letters 284, 219–227.
  • Cohen, A. S., Waters, F. G. 1996. Separation of osmium from geological materials by solvent extraction for analysis by thermal ionisation mass spectrometry. Analytica Chimica Acta 332, 269–275.
  • Creaser, R. A., Papanastassiou, D. A., Wasserburg, G. J. 1991. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium. Geochimica et Cosmochimica Acta 55, 397-401.
  • Crocket, J. H. 2002. Platinum-group elements in basalts from Maui, Hawaii: low abundances in alkali basalts. Canadian Mineralogist 40, 595–609.
  • Crocket, J. H., Fleet, M. E., Stone, W. E. 1997. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content. Geochimica et Cosmochimica Acta 61, 4139-4149
  • Crocket, J. H., Paul, D. K. 2004. Platinum-group elements in Deccan mafic rocks: A comparison of suites differentiated by Ir content. Chemical Geology 208, 273–291.
  • Dale, C. W., Gannoun, A., Burton, K. W., Argles, T. W., Parkinson, I. J. 2007. Rhenium-osmium isotope and elemental behavior during subduction of oceanic crust and the implications for mantle recycling. Earth and Planetary Science Letters 253, 211–225.
  • Day, J. M. D. 2013. Hotspot volcanism and highly siderophile elements. Chemical Geology 341, 50–74.
  • Day, J. M. D., Pearson, D. G., Macpherson, C. G., Lowry, D., Carracedo, J. C. 2010. Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica et Cosmochimica Acta 74, 6565–6589.
  • Day, J. M. D., Waters, C. L., Schaefer, B. F., Walker, R. J., Turner, S. 2016. Use of hydrofluoric acid desilicification in the determination of highly siderophile element abundances and Re-Pt-Os isotope systematics in mafic-ultramafic rocks. Geostandards and Geoanalytical Research 40(1), 49-65.
  • Debaille, V., Trønnes, R. G., Graham, D. W., Brandon, A. D., Waigh, T. E., Lee, C. T. A. 2009. Primitive off-rift basalts from Iceland and Jan Mayen: Os- isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochimica et Cosmochimica Acta 73, 3423–3449.
  • Ely, J. C., Neal, C. R. 2003. Using platinum-group elements to investigate the origin of the Ontong Java Plateau, SW Pacific. Chemical Geology 196, 235–257.
  • Esser, B. K., Turekian, K. K. 1993. The osmium isotopic composition of the continental crust. Geochimica et Cosmochimica Acta 57, 3093–3104.
  • Fiorentini, M. L., LaFlamme, C., Denyszyn, S., Mole, D., Maas, R., Locmelis, M., Caruso, S., Hao Bui, T. 2018. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochimica et Cosmochimica Acta 223, 175-197.
  • Fischer-Gödde, M., Becker, H., Wombacher, F. 2010. Rhodium, gold and other highly siderophile element abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 74, 356-379.
  • Fleet, M. E., Stone, W. E., Crocket, J. H. 1991. Partitioning of palladium, iridium, and platinum between sulfide liquid and basalt melt: effects of melt composition, concentration, and oxygen fugacity. Geochimica et Cosmochimica Acta 55, 2545-2554.
  • Fleet, M. E., Crocket, J. H., Stone, W. E 1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochimica et Cosmochimica Acta 60, 2397-2412.
  • Gannoun, A., Burton, K. W., Schiano, P., Parkinson, I. J., Alard, O., Thomas, L. E. 2007. The scale and origin of the osmium isotope variations in mid- ocean ridge basalts. Earth and Planetary Science Letters 259, 541–556.
  • Gannoun, A., Burton, K. W., Barfod, D. N., Schiano, P., Vlastélic, I., Halliday, A. N. 2015. Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re–Os isotope system. Lithos 224–225, 1–12.
  • Gannoun, A., Burton, K. W., Day, J. M. D., Harvey, J., Schiano, P., Parkinson, I. 2016. Highly Siderophile Element and Os Isotope Systematics of Volcanic Rocks at Divergent and Convergent Plate Boundaries and in Intraplate Settings. In: Harvey,
  • J. and Day, J. M. D. (Ed.). Highly Siderophile and Strongly Chalcophile Elements in High- Temperature Geochemistry and Cosmochemistry, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 81, 651-724.
  • Garuti, G., Oddone, M., TorresRuiz, J. 1997. Platinum- group-element distribution in the subcontinental mantle: Evidence from the Ivrea zone (Italy) and the Betic-Rifean cordillera (Spain and Morocco). Canadian Journal of Earth Sciences 34, 444-463.
  • Georgatou, A. A., Chiaradia, M. 2020. Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks. Solid Earth 11(1), 1–21.
  • Georgatou, A. A., Chiaradia, M., Rezeau, H., Walle, M. 2018. Magmatic sulfides in Quaternary Ecuadorian arc magmas. Lithos 296–299, 580–599.
  • Georgiev, S., Stein, H. J., Hannah, J. L., Weiss, H. M.,Bingen, B., Xu, G., Rein, E., Hatlø, V., Løseth, H., Nali, M., Piasecki, S. 2012. Chemical signals for oxidative weathering predict Re–Os isochroneity in black shales, East Greenland. Chemical Geology 324-325, 108-121.
  • Gibson, S. A., Dale, C. W., Geist, D. J., Day, J. A., Brügmann, G., Harpp, K. S. 2016. The influence of melt flux and crustal processing on Re–Os isotope systematics of ocean island basalts: Constraints from Galápagos. Earth and Planetary Science Letters 449, 345–359.
  • Goldschmidt, V. M. 1954. Geochemistry. Clarendon Press, London, 730s.
  • González-Jiménez, J. M., Proenza, J. A., Gervilla, F., Melgarejo, J. C., Blanco-Moreno, J. A., Ruiz- Sánchez, R., Griffin, W. L. 2011. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos 125,101-12.
  • Greenough, J. D., Fryer, B. J. 1990. Distribution of gold, palladium, platinum, rhodium, ruthenium and iridium in Leg 115 Hotspot basalts: implication for magmatic processes. In: Duncan, R. A., Backman, J., Peterson, L. C. (Ed.). Proceedings of the Ocean Drilling Program, Scientific Results 71–84.
  • Greenough, J. D., Owen, J. V. 1992. Platinum-group element geochemistry of continental tholeiites-analysis of the Long-Range Dyke Swarm, Newfoundland, Canada. Chemical Geology 98, 203-219.
  • Hamlyn, P. R., Keays, R. R. 1986. Sulfur saturation and second-stage melts; application to the Bushveld platinum metal deposits. Economic Geology 81, 1431-1445.
  • Handler, M. R., Bennett, V. C., Carlson, R. W. 2005. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: A unique view of depleted MORB mantle? Geochimica et Cosmochimica Acta 69(24), 5747-5763.
  • Hanyu, T., Tatsumi, Y., Senda, R., Miyazaki, T., Chang, Q., Hirahara, Y., Takahashi, T., Kawabata, H., Suzuki, K., Kimura, J. I., Nakai, S. 2011. Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems 12(2), Q0AC09.
  • Hart, S. R., Ravizza, G. E. 1996. Os partitioning between phases in lherzolite and basalt. In: Basu A. and Hart S. (Ed.). Earth Processes: Reading the Isotopic Code. Washington: American Geophys Union Monograph 95, 123–134.
  • Hart, S. R., Hauri, E. H., Oschmann, L. A., Whitehead, J. A. 1992. Mantle plumes and entrainment: isotopic evidence. Science 256, 517-520.
  • Hart, W. K., Carlson, R. W., Shirey, S. B. 1997. Radiogenic Os in primitive basalts from the northwestern U.S.A.: implications for petrogenesis Earth and Planetary Science Letters 150, 103–116.
  • Harvey, J., Dale, C. W., Gannoun, A., Burton, K. W. 2011. Osmium mass balance in peridotite and the effects of mantle-derived sulfides on basalt petrogenesis. Geochimica et Cosmochimica Acta 75, 5574–5596.
  • Harvey, J., Gannoun, A., Burton, K. W., Schiano, P., Rogers,N. W., Alard, O. 2010. Unravelling the effects of melt depletion and secondary infiltration on mantle Re-Os isotopes beneath the French Massif Central. Geochimica et Cosmochimica Acta 74, 293–320.
  • Haughton, D. R., Roeder, P. L., Skinner, B. J. 1974. Solubility of sulfur in mafic magmas. Economic Geology 69, 451-467.
  • Hertogen, J., Janssens, M. J., Palme, H. 1980. Trace elements in ocean ridge glasses: implications for fractionation during mantle evolution and petrogenesis. Geochimica et Cosmochimica Acta 44, 2125-2143.
  • Holwell, D. A., Keith, M., Fiorentini, M., McDonald, I., Lu, Y., Giuliani, A., Smith, D. J., Locmelis, M. 2019. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nature Communications 10, 3511.
  • Hopkins, J. L., Timm, C., Wilson, C. J. N., Millet, M. A., Poirier, A., Leonard, G. S. 2016. Os isotopic constraints on crustal contamination in Auckland Volcanic Field basalts, New Zealand. Chemical Geology 439, 83–97.
  • Horan, M. F., Walker, R. J., Morgan, J. W., Grossman, J. N., Rubin, A. 2003. Highly siderophile elements in chondrites. Chemical Geology 196, 5–20.
  • Hou, Z. Q., Zheng, Y. C., Yang, Z. M., Rui, Z. Y., Zhao, Z. D., Qu, X. M., Jiang, S. H., Sun, Q. Z. 2013. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineralium Deposita 48, 173–192.
  • Huang, X. W., Su, B. X., Zhou, M. F., Gao, J. F., Qi, L.2017. Cenozoic basalts in SE China: Chalcophile element geochemistry, sulfide saturation history, and source heterogeneity. Lithos 282–283, 215– 227.
  • Huang, X. W., Zhou, M. F., Wang, C. Y., Robinson, P. T., Zhao, J. H., Qi, L. 2013. Chalcophile element constraints on magma differentiation of Quaternary volcanoes in Tengchong, SW China. Journal of Asian Earth Sciences 76, 1–11.
  • Ireland, T. J., Walker, R. J., Garcia, M. O. 2009. Highly siderophile element and 187Os isotope systematics of Hawaiian picrites: implications for parental melt composition and source heterogeneity. Chemical Geology 260, 112–128.
  • Ivanov, A. V., Perepelov, A. B., Palesskii, S. V., Nikolaeva, I.V. 2008. First data on the distribution of platinum group elements (Ir, Os, Ru, Pt, and Pd) and Re in island-arc basalts of Kamchatka. Doklady Earth Sciences 420(4), 597–601.
  • Izokh, A. E., Medvedev, A. Y., Fedoseev, G. S., Polyakov, G. V., Nikolaeva, I. V., Palesskii, S. V. 2016. Distribution of PGE in Permo-Triassic basalts of the Siberian Large Igneous Province. Russian Geology and Geophysics 57, 809–821.
  • Jackson, M. G., Shirey, S. B. 2011. Re–Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth and Planetary Science Letters 312, 91–101.
  • Jamais, M., Lassiter, J. C., Brügmann, G. 2008. PGE and Os isotopic variations in lavas from Kohala Volcano Hawaii: constraints on PGE behavior and melt/ crust interaction. Chemical Geology 250, 16-28.
  • Jaques, A., Green, D. 1980. Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology 73, 287-310.
  • Jung, S., Pfänder, J. A., Brauns, M., Maas, R. 2011. Crustal contamination and mantle source characteristics in continental intra-plate volcanic rocks: Pb, Hf and Os isotopes from central European volcanic province basalts. Geochimica et Cosmochimica Acta 75, 2664-2683.
  • Keays, R. R. 1982. Palladium and iridium in komatiites and associated rocks: Application to petrogenetic problems. In: Arndt, N. T. and Nesbitt, E. G. (Ed.). Komatiites, London, Allen and Unwin, 435–457.
  • Keays, R. R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of the ore deposits. Lithos 34, 1-18.
  • Keays, R. R., Lightfoot, P. C. 2007. Siderophile and chalcophile metal variations in Tertiary picrites and basalts from West Greenland with implications for the sulphide saturation history of continental flood basalt magmas. Mineralium Deposita 42, 319-336.
  • Keith, M., Haase, K., Klemd, R., Schwarz-Schampera, U., Franke, H. 2017. Systematic variations in magmatic sulfide chemistry from mid-ocean ridges, backarc basins and island arcs. Chemical Geology 451, 67–77.
  • Kepezhinskas, P., Defant, M. J. 2001. Nonchondritic Pt/ Pd ratios in arc mantle xenoliths: Evidence for platinum enrichment in depleted island-arc mantle sources. Geology 29, 851–854.
  • Kerr, A., Leitch, A. M. 2005. Self-destructive sulfide segregation systems and the formation of high- grade magmatic ore deposits. Economic Geology 100, 311–332.
  • Lassiter, J. C., Luhr, J. F. 2001. Osmium abundance and isotope variations in mafic Mexican volcanic rocks: evidence for crustal contamination and constraints on the geochemical behavior of osmium during partial melting and fractional crystallization. Geochemistry, Geophysics, Geosystems 2,1027.
  • Li, C., Ripley, E. M., Tao, Y., Hu, R. 2016. The significance of PGE variations with Sr–Nd isotopes and lithophile elements in the Emeishan flood basalt province from SW China to northern Vietnam. Lithos 248-251, 1-11.
  • Lightfoot, P. C., Keays, R. R. 2005. Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: Implications for the origin of the Ni-Cu-PGE sulfide ores. Economic Geology 100, 439-462.
  • Lightfoot, P. C., Hawkesworth, C. J., Hergt, J., Naldrett, A. J., Gorbachev, N. S., Fedorenko, A., Doherty, W. 1994. Chemostratigraphy of Siberian trap lavas, Noril'sk district, Russia: Implications for the evolution of flood basalt magmas: In: Lightfoot, P. C. and Naldrett, A. J. (eds.), Proceedings of the Sudbury-Noril'sk Symposium: Ontario Geological Survey Special Publications 5, 283- 312.
  • Lightfoot, P. C., Hawkesworth, C. J., Olshefsky, K., Green, A. H., Doherty, W., Keays, R. R. 1997. Geochemistry of Tertiary tholeiites and picrites from Qeqertarssuaq (Disko Island) and the Nuussuaq Peninsula, West Greenland with implications for the mineral potential of comagmatic intrusions. Contributions to Mineralogy and Petrology 128, 139-163.
  • Locmelis, M., Fiorentini, M. L., Rushmer, T., Arevalo Jr., R., Adam, J., Denyszyn, S. W. 2016. Sulfur and metal fertilization of the lower continental crust. Lithos 244, 74–93.
  • Lorand, J. P., Luguet, A., Alard, O. 2008. Platinum-group elements: a new set of key tracers for the Earth’s interior. Elements 4, 247–252.
  • Lorand, J. P., Luguet, A., Alard, O. 2009. Platinum group elements: A new set of key tracers for the Earth’s interior. Elements 4, 247.
  • Lorand, J. P., Delpech, G., Gregoire, M., Moine, B., O'Reilly, S. Y., Cottin, J. Y. 2004. Platinum-group elements and the multistage metasomatic history of Kerguelen lithospheric mantle (South Indian Ocean). Chemical Geology 208, 195–215.
  • Luck, J. M., Allègre, C. J. 1984. 187Re/188Os investigation in sulfide from Cape Smith komatiite. Earth and Planetary Science Letters 68, 205-208.
  • Luguet, A., Lorand, J. P., Seyler, M. 2003. Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean). Geochimica et Cosmochimica Acta 67, 1553-1570.
  • Ma, G. S. K., Malpas, J., Gao, J. F., Wang, K. L., Qi, L., Xenophontos, C. 2013. Platinum-group element geochemistry of intraplate basalts from the Aleppo Plateau, NW Syria. Geological Magazine 150 (3), 497–508.
  • Maier, W. D., Barnes, S. J. 2004. Pt/Pd and Pd/Ir ratios in mantle-derived magmas: a possible role for mantle metasomatism. South African Journal of Geology 107, 333-340.
  • Maier, W. D., Barnes, S. J., Waal, S. A. 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: A review of recent advances in the use of geochemical tools, and their application to some South African ores. South African Journal of Geology 101, 237-253.
  • Mavrogenes, J. A., O’Neill, H. S. C. 1999. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochimica et Cosmochimica Acta 63, 1173–1180.
  • McBride, J. S., Lambert, D. D., Greig, A., Nicholls, I.A. 1996. Multistage evolution of Australian subcontinental mantle: Re-Os isotopic constraints from Victorian mantle xenoliths. Geology 24, 631–634.
  • McBride, J. S., Lambert, D. D., Nicholls, I. A., Price, R. C. 2001. Osmium isotopic evidence for crust–mantle interaction in the genesis of continental intraplate basalts from the Newer Volcanics Province, Southeastern Australia. Journal of Petrology 42, 1197–1218.
  • McDonough, W. F., Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223-253.
  • McInnes, B. I. A., McBride, J. S., Evans, N. J., Lambert, D. D., Andrew, A. S. 1999. Osmium isotope constraints on ore metal recycling in subduction zones. Science 286, 512–516.
  • Meibom, A., Sleep, N. H., Chamberlain, C. P., Coleman, R. G., Frei, R., Hren, M. T., Wooden, J. L. 2002. Re– Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419, 705-708.
  • Meisel, T., Horan, M. F. 2016. Analytical Methods for the Highly Siderophile Elements. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 81, 89-106.
  • Meisel, T., Walker, R. J., Irving, A. J., Lorand, J. P. 2001. Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochimica et Cosmochimica Acta 65, 1311–1323.
  • Meisel, T., Walker, R. J., Morgan, J. W. 1996. The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383, 517–520.
  • Momme, P., Tegner, C., Brooks, C. K., Keays, R. R. 2006. Two melting regimes during Paleogene flood basalt generation in East Greenland: Combined REE and PGE modelling. Contributions to Mineralogy and Petrology 151, 88-100.
  • Mungall, J. E., Brenan, J. M., 2014. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle– crust fractionation of the chalcophile elements. Geochimica et Cosmochimica Acta 125, 265-289.
  • Mungall, J. E., Hanley, J. J., Arndt, N. T., Debecdelievre, A. 2006. Evidence from meimechites and other low- degree mantle melts for redox controls on mantle– crust fractionation of platinum-group elements. Proceedings of the National Academy of Sciences of USA 103(34), 12695–12700.
  • Naldrett, A. J. 2011. Fundamentals of magmatic sulfide deposits. In: Li, C. and Ripley, E. M. (eds.), Magmatic Ni-Cu and PGE Deposits: Geology, Geochemistry, and Genesis. Reviews in Economic Geology 17, 1–50.
  • Norman, M. D., Garcia, M. O., Bennett, V. C. 2004. Rhenium and chalcophile elements in basaltic glasses from Ko’olau and Moloka’I volcanoes: magmatic outgassing and composition of the Hawaiian plume. Geochimica et Cosmochimica Acta 68, 3761-3777.
  • Park, J. W., Campbell, I., Kim, J., Moon, J. W. 2015. The role of sulfide saturation on formation of a Cu- and Au-rich magma: insights from the platinum group element geochemistry of Niuatahi–Motutahi lavas, Tonga rear arc. Journal of Petrology 56, 59–81.
  • Peach, C. L., Mathez, E. A., Keays, R. R. 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochimica et Cosmochimica Acta 54, 3379-3389.
  • Peach, C. L., Mathez, E. A., Keays, R. R., Reeves, S. J. 1994. Experimentally determined sulfide melt- silicate melt partition coefficient for iridium and palladium. Chemical Geology 117, 361-377.
  • Pearson, D. G., Nowell, G. M. 2004. Re–Os and Lu–Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif: implications for mixed peridotite– pyroxenite mantle sources. Journal of Petrology 45, 439–455.
  • Pearson, D. G., Irvine, G. J., Ionov, D. A., Boyd, F. R., Dreibus, G. E. 2004. A Re–Os isotope Systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chemical Geology 208, 29–59.
  • Pearson, D. G., Parman, S. W., Nowell, G. M. 2007. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449, 202-205.
  • Pearson, D. G., Snyder, G. A., Shirey, S. B., Taylor, L. A., Carlson, R. W., Sobolev, N. V. 1995. Archaean Re–Os age for Siberian eclogites and constraints on Archaean tectonics. Nature 374, 711–713.
  • Peucker-Ehrenbrink, B., Jahn, B. M., 2001. Rhenium- osmium isotope systematics and platinum-group element concentrations: loess and the upper continental crust. Geochemistry, Geophysics, Geosystems 2 (2001GC000172).
  • Peucker-Ehrenbrink, B., Bach, W., Hart, S. R., Blusztajn, J., Abbruzzese, T. 2003. Rhenium–osmium isotope systematics and platinum group element concentrations in oceanic crust from DSDP/ODP sites 504 and 417/418. Geochemistry, Geophysics, Geosystems 4 (2002GC000414).
  • Peucker-Ehrenbrink, B., Hanghoj, K., Atwood, T., Kelemen, P. B. 2012. Rhenium-osmium isotope systematics and platinum group element concentrations in oceanic crust. Geology 40(3), 199–202.
  • Philipp, H., Eckhardt, J. D., Puchelt, H. 2001. Platinum- group elements (PGE) in basalts of the seaward- dipping reflector sequence, SE Greenland Coast. Journal of Petrology 42, 407-432.
  • Pitcher, L., Helz, R. T., Walker, R. J., Piccoli, P. 2009. Fractionation of the platinum-group elements and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii. Chemical Geology 260, 196–210
  • Powell, W., O'Reilly, S. Y. 2007. Sulfide mobility in mantle fluids beneath eastern Australia: implications for metasomatic processes and mantle Re-Os chronology. Lithos 94, 132-147.
  • Qi, L., Zhou, M. F. 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SW China. Chemical Geology 248, 83–103.
  • Qi, L., Wang, C. Y., Zhou, M. F. 2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China. Lithos 106, 222- 236
  • Qi, L., Zhou, M. F., Wang, C. Y. 2004. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS. Journal of Analytical Atomic Spectrometry 19, 1335–1339.
  • Qi, L., Gao, J. F., Huang, X. W., Hu, J., Zhou, M. F., Zhong, H. 2011. An improved digestion technique for determination of platinum group elements in geological samples. Journal of Analytical Atomic Spectrometry 26, 1900–1904.
  • Qi, L., Zhou, M. F., Wang, C. Y., Sun, M. 2007. Evaluation of the determination of Re and PGEs abundance of geological samples by ICP-MS coupled with a modified Carius tube digestion at different temperatures. Geochemical Journal 41, 407–14.
  • Rehkämper, M., Halliday, A. N., Fitton, J. G., Lee, D. C., Wieneke, M., Arndt, N. T. 1999a. Ir, Ru, Pt, and Pd in basalts and komatiites: new constraints for the geochemical behavior of the platinum- group elements in the mantle. Geochimica et Cosmochimica Acta 63, 3915–3934.
  • Rehkämper, M., Halliday, A. N., Alt, J., Fitton, J. G., Zipfel, J., Takazawa, E. 1999b. Non-chondritic platinum-group element ratios in oceanic mantle lithosphere: Petrogenetic signature of melt percolation? Earth and Planetary Science Letters 172, 65–81.
  • Reisberg, L., Allègre, C. J., Luck, J. M. 1991. The Re–Os systematics of the Ronda ultramafic complex of Southern Spain. Earth and Planetary Science Letters 105, 196–213.
  • Reisberg, L., Zhi, X. C., Lorand, J. P., Wagner, C., Peng, Z. C., Zimmermann, C. 2005. Re–Os and S systematics of spinel peridotite xenoliths from east central China: evidence for contrasting effects of melt percolation. Earth and Planetary Science Letters 239, 286-308.
  • Richards, J. P. 2009. Post subduction porphyry Cu-Au an d epithermal Au deposits: products of remelting of subduction-modified lithosphere. Geology 37, 247–250.
  • Richards, J. P. 2011. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geology Review 40, 1–26.
  • Righter, K., Campbell, A. J., Humayun, M., Hervig, M. R. L. 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochimica et Cosmochimica Acta 68-867-880. Rocha-Júnior, E. R. V., Puchtel, I. S., Marques, L. S., Walker, J., Machado, F. B., Nardy, A. J. R., Babinski, M., Figueiredo, A. M. G. 2012. Re-Os isotope and highly siderophile element systematics of the Paraná continental flood basalts (Brazil). Earth and Planetary Science Letters 337–338, 164–173.
  • Roy-Barman, M., Wasserburg, G. J., Papanastassiou, D. A., Chaussidon, M. 1998. Osmium isotope composition and Re-Os concentrations in sulfide globules from basaltic glasses. Earth and Planetary Science Letters 154, 331-347.
  • Rudnick, R. L., Lee, C. 2002. Osmium isotope constraints on the tectonic evolution of the lithosphere in the southwestern United States. International Geology Review 44, 501-511.
  • Rudnick, R. L., Gao, S. 2004. Composition of the continental crust. In: Holland, H. D., Turekian, K. K. (eds.), Treatise on Geochemistry. Elsevier, Amsterdam, 3, 1–64.
  • Rudnick, R. L., Walker, R. J. 2009. Interpreting ages from Re–Os isotopes in peridotites. Lithos 112, 1083– 1095.
  • Saal, A. E., Rudnick, R. L., Ravizza, G. E., Hart, S. R. 1998. Re-Os isotope evidence for the composition, formation and age of the lower continental crust. Nature 393, 58–61.
  • Salters, V. J. M., Andreas, S. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems 5, 469-484.
  • Savelyev, D. P., Kamenetsky, V. S., Danyushevsky, L. V., Botcharnikov, R. E., Kamenetsky, M. B., Park, J. W., Portnyagin, M. V., Olin, P., Krasheninnikov, P., Hauff, F. 2018. Immiscible sulfide melts in primitive oceanic magmas: Evidence and implications from picrite lavas (Eastern Kamchatka, Russia). American Mineralogist 103, 886–898.
  • Schmidt, G., Snow, J. 2002. Os isotopes in mantle xenoliths from the Eifel volcanic field and the Vogelsberg (Germany): age constraints on the lithospheric mantle, Contributions to Mineralogy and Petrology 143, 694–705.
  • Selby, D., Creaser, R. A., Stein, H. J., Markey, R. J., Hannah, J. L. 2007. Assessment of the 187Re decay constant by cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochimica et Cosmochimica Acta 71, 1999-2013.
  • Sen, I. S., Bizimis, M., Sen, G., Huang, S. 2011. A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths. Geochimica et Cosmochimica Acta 75, 4899–4916.
  • Sharpe, M. R. 1982. Noble metals in the marginal rocks of the Bushveld Complex. Economic Geology 77, 1286-1295.
  • Shirey, S. B., Walker, R. J. 1995. Carius tube digestion for low blank rhenium–osmium analysis. Analytical Chemistry 67, 2136–2141.
  • Shirey, S. B., Walker, R. J. 1998. The Re–Os isotope system in cosmochemistry and high-temperature geochemistry. Annual Review of Earth and Planetary Sciences 26, 423-500.
  • Stein, H., Hannah, J. 2015. Rhenium–Osmium geochronology: sulfides, shales, oils, and mantle. In: Rink, W. J., Thompson, J. W. (eds.), Encyclopedia of Scientific Dating Methods, Springer, Dordrecht.
  • Stone, W. E., Crocket, J. H., Fleet, M. E. 1990. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200°C. Geochimica et Cosmochimica Acta 54, 2341-234.
  • Sun, Y., Ying, J., Zhou, X., Shao, J., Chu, Z., Su, B. 2014. Geochemistry of ultrapotassic volcanic rocks in Xiaogulihe NE China: implications for the role of ancient subducted sediments. Lithos 208–209, 53–66.
  • Suzuki, K., Senda, R., Shimizu, K. 2011. Osmium behavior in a subduction system elucidated from chromian spinel in Bonin Island beach sands. Geology 39, 999–1002.
  • Tatsumoto, M., Basu, A. R., Wankang, H., Junwen, W., Guanghong, X. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters 113, 107–128.
  • Turner, S., Handler, M., Bindeman, I., Suzuki, K. 2009. New insights into the origin of O–Hf–Os isotope signatures in arc lavas from Tonga–Kermadec. Chemical Geology 266,187–193.
  • Van Keken, P. E., Hauri, E. H., Ballentine, C. J. 2002. Mantle mixing: the generation, preservation, and destruction of chemical heterogeneity. Annual Review of Earth and Planetary Sciences 30, 493– 525.
  • Vogel, D. C., Keays, R. R. 1997. The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia. Chemical Geology 136, 181-204.
  • Völkening, J., Walczyk, T., Heumann, K. G. 1991. Osmium isotope ratio determinations by negative thermal ionization mass spectrometry. International Journal of Mass Spectrometry and Ion Processes 105, 147–159.
  • Walker, R. J. 2016. Siderophile Elements in Tracing Planetary Formation and Evolution. Geochemical Perspectives 5(1), 145s.
  • Walker, R. J., Carlson, R. W., Shirey, S. B., Boyd, F. R. 1989. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths-implications for the chemical evolution of subcontinental mantle. Geochimica et Cosmochimica Acta 53, 1583–1595.
  • Walker, R. J., Prichard, H. M., Ishiwatari, A., Pimentel, M. M. 2002. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromitites. Geochimica et Cosmochimica Acta 66, 329–345.
  • Wang, C. Y., Zhou, M. F., Qi, L. 2010. Origin of extremely PGE-rich mafic magma system: an example from the Jinbaoshan ultramafic sill, Emeishan large igneous province, SW China. Lithos 119, 147– 161.
  • Wang, C. Y., Zhou, M. F., Qi, L. 2011. Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province, SW China. Contributions to Mineralogy and Petrology 161, 237-254.
  • Wang, Z., Becker, H. 2015. Fractionation of highly siderophile and chalcophile elements during magma transport in the mantle: constraints from pyroxenites of the Balmuccia peridotite massif. Geochimica et Cosmochimica Acta 159, 244–263.
  • Waters, C. L., Zanon, V., Day, J. M. D., Watanabe, S., Sayıt, K., Olson, K. M., Hanan, B. B., Widom, E. 2020. Sulfide mantle source heterogenity recorded in basaltic lavas from the Azores. Geochimica et Cosmochimica Acta 268, 422–445.
  • Widom, E., Hoernle, K. A., Shirey, S. B., Schmincke, H.U. 1999. Os isotope systematics in the Canary Islands and Madeira: lithospheric contamination and mantle plume signatures. Journal of Petrology 40, 279–296.
  • Woodland, S. J., Pearson, D. G., Thirlwall, M. F. 2002. A platinum group element and Re-Os isotope investigation of siderophile element recycling in subduction zones: Comparison of Grenada, Lesser Antilles Arc, and the Izu-Bonin Arc. Journal of Petrology 43(1), 171–198.
  • Xu, J. F., Suzuki, K., Xu, Y. G., Mei, H. J., Li, J. 2007. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochimica et Cosmochimica Acta 71, 2104–2119.
  • Yang, A. Y., Zhao, T. P., Zhou, M. F., Deng, X. G., Wang, G. Q., Li, J. 2013. Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: Constraints on the assimilation and fractional crystallization (AFC) processes. Lithos 179, 28–35.
  • Yuan, F., Zhou, T., Zhang, D., Jowitt, S. M., Keays, R. R., Liu, S., Fan, Y. 2012. Siderophile and chalcophile metal variations in basalts: Implications for the sulphide saturation history and Ni–Cu–PGE mineralization potential of the Tarim continental flood basalt province, Xinjiang Province, China. Ore Geology Reviews 45, 5–15.
  • Zeng, G., Huang, X. W., Zhou, M. F., Chen, L. H., Xu, X. S. 2016. Using chalcophile elements to constrain crustal contamination and xenolith-magma interaction in Cenozoic basalts of eastern China. Lithos 258–259, 163–172.
  • Zhang, W. H., Zhang, H. F., Sun, Y. L., Fan W. M., Han,B. F., Tang, Y. J. 2015. Platinum-group element geochemistry of Cenozoic basalts from the North China Craton: Implications for mantle heterogeneity. Science China: Earth Sciences 58, 881–895.
  • Zhang, Y. L., Liu, C. Z., Ge, W. C., Wu, F. Y., Chu, Z. Y. 2011. Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the Central Asian Orogenic Belt (CAOB): implications for crust–mantle decoupling. Lithos 126, 233–247.
  • Zindler, A., Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences
Toplam 182 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Arslan Bu kişi benim 0000-0003-0816-4168

İrfan Temizel 0000-0002-6293-8649

Emel Abdioğlu 0000-0001-5196-8060

Bahrican Ar 0000-0001-9983-7430

Cem Yücel 0000-0001-7220-9397

Proje Numarası 117Y075
Yayımlanma Tarihi 20 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Arslan, M., Temizel, İ., Abdioğlu, E., Ar, B., vd. (2022). Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes. Bulletin of the Mineral Research and Exploration, 167(167), 83-109. https://doi.org/10.19111/bulletinofmre.901001
AMA Arslan M, Temizel İ, Abdioğlu E, Ar B, Yücel C. Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes. Bull.Min.Res.Exp. Nisan 2022;167(167):83-109. doi:10.19111/bulletinofmre.901001
Chicago Arslan, Mehmet, İrfan Temizel, Emel Abdioğlu, Bahrican Ar, ve Cem Yücel. “Highly Siderophile Element and Osmium Isotope Systematics of Basaltic Volcanics: A Different Approach to Petrological Processes”. Bulletin of the Mineral Research and Exploration 167, sy. 167 (Nisan 2022): 83-109. https://doi.org/10.19111/bulletinofmre.901001.
EndNote Arslan M, Temizel İ, Abdioğlu E, Ar B, Yücel C (01 Nisan 2022) Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes. Bulletin of the Mineral Research and Exploration 167 167 83–109.
IEEE M. Arslan, İ. Temizel, E. Abdioğlu, B. Ar, ve C. Yücel, “Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes”, Bull.Min.Res.Exp., c. 167, sy. 167, ss. 83–109, 2022, doi: 10.19111/bulletinofmre.901001.
ISNAD Arslan, Mehmet vd. “Highly Siderophile Element and Osmium Isotope Systematics of Basaltic Volcanics: A Different Approach to Petrological Processes”. Bulletin of the Mineral Research and Exploration 167/167 (Nisan 2022), 83-109. https://doi.org/10.19111/bulletinofmre.901001.
JAMA Arslan M, Temizel İ, Abdioğlu E, Ar B, Yücel C. Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes. Bull.Min.Res.Exp. 2022;167:83–109.
MLA Arslan, Mehmet vd. “Highly Siderophile Element and Osmium Isotope Systematics of Basaltic Volcanics: A Different Approach to Petrological Processes”. Bulletin of the Mineral Research and Exploration, c. 167, sy. 167, 2022, ss. 83-109, doi:10.19111/bulletinofmre.901001.
Vancouver Arslan M, Temizel İ, Abdioğlu E, Ar B, Yücel C. Highly siderophile element and osmium isotope systematics of basaltic volcanics: A different approach to petrological processes. Bull.Min.Res.Exp. 2022;167(167):83-109.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en