Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 160 Sayı: 160, 231 - 244, 27.12.2019
https://doi.org/10.19111/bulletinofmre.502021

Öz

Kaynakça

  • Abdelrahman, E.M. 1990. Discussion on “A least-squares approach to depth determination from gravity data” by O. P. Gupta. Geophysics, 55, 376-378.
  • Abdelrahman, E.M., El-Araby, T.M. 1993. A least-squares minimization approach to depth determination from moving average residual gravity anomalies. Geophysics, 58,1779–1784.
  • Abdelrahman, E.M., El-Araby, H.M. 1993. Shape and depth solutions from gravity using correlation factors between successive least-squares residuals. Geophysics, 59, 1785–1791.
  • Abdelrahman, E.M., Bayoumi, A.I., Abdelhady, Y.E., Gobashy, M.M., El-Araby, H.M. 1989. Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophysics, 54, 1614-1621.
  • Abdelrahman, E.M., Bayoumi, A.I., El-Araby, H.M. 1991. A least-squares minimization approach to invert gravity data. Geophysics, 56, 115-l 18.
  • Al-Garni, M.A. 2013. Inversion of residual gravity anomalies using neural network. Arab J Geosci, 6,1509–1516.
  • Asfahani, J., Tlas, M. 2008. An automatic method of direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure and Applied Geophysics, 165/5, 981–994.
  • Biswas, A. 2015. Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geoscience Frontiers, 6/6, 875–893.
  • Biswas, A. 2016. Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique. Modeling Earth Systems and Environment, 2/1, 30.
  • Biswas, A. 2018. Inversion of source parameters from magnetic anomalies for mineral /ore deposits exploration using global optimization technique and analysis of uncertainty. Natural Resources Research, 27/1, 778–107.
  • Biswas, A., Sharma, S. P. 2016. Integrated geophysical studies to elicit the structure associated with Uranium mineralization around South Purulia Shear Zone, India: A Review. Ore Geology Reviews, 72, 1307–1326.
  • Biswas, A., Mandal, A., Sharma, S. P., Mohanty, W. K. 2014a. Delineation of subsurface structure using self-potential, gravity and resistivity surveys from South Purulia Shear Zone, India: Implication to uranium mineralization. Interpretation, 2/2, T103–T110.
  • Biswas, A., Mandal, A., Sharma, S. P., Mohanty, W. K. 2014b. Integrating apparent conductance in resistivity sounding to constrain 2D Gravity modeling for subsurface structure associated with uranium mineralization across South Purulia Shear Zone. International Journal of Geophysics, Article ID 691521, 1–8.
  • Biswas, A., Parija, M. P., Kumar, S. 2017. Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics, 60/2, G0218, 1–17.
  • Bosch, M., McGaughey, J. 2001. Joint inversion of gravity and magnetic data under lithological constraints. The Leading Edge, 20, 877–881.
  • Bosch, M., Meza, R., Jiménez, R., Hönig, A. 2006. Joint gravity and magnetic inversion in 3D using Monte Carlo methods: Geophysics, 71/4, G153–G156.
  • Bowin, C., Scheer, E., Smith, W. 1986. Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies. Geophysics, 51, 123-136.
  • Chakravarthi, V., Sundararajan, N. 2004. Ridge regression algorithm for gravity inversion of fault structures with variable density. Geophysics, 69, 1394– 1404.
  • Eshaghzadeh, A., Kalantary, R.A. 2015. Anticlinal Structure Modeling with Feed Forward Neural Networks for Residual Gravity Anomaly Profile, 8th congress of the Balkan Geophysical Society, DOI: 10.3997/2214-4609.201414210.
  • Eshaghzadeh, A., Hajian, A. 2018. 2-D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network, Annals of Geophysics. 61,1, SE115.
  • Essa, K.S. 2007. A simple formula for shape and depth determination from residual gravity anomalies. Acta Geophysica, 55/2, 182–190.
  • Farquharson, C. G., Ash, M. R., Miller, H. G. 2008. Geologically constrained gravity inversion for the Voisey’s Bay ovoid deposit. The Leading Edge, 27, 64–69.
  • Gallardo, L. A., Meju, M. 2003. Characterization of heterogeneous near-surface materials by joint 2D inversion of DC and seismic data: Geophysical Research Letters, 30, L1658.
  • Ganguli, S.S., Dimri, V. P. 2013. Interpretation of gravity data using eigen image with Indian case study: A SVD approach. Journal of Applied Geophysics, 95, 23-35.
  • Ganguli, S.S., Lashin, A.A., Al Arifi, N.S., Dimri, V. P. 2015. Design of Gravity energy filter to enhance signal-to-noise ratio of gravity measurements. Jour. of Ind. Geophy. Union, 19/3, 333-338.
  • Gupta, O.P. 1983. A least-squares approach to depth determination from gravity data. Geophysics, 48, 357-360.
  • Hammer, S. 1977. Graticule spacing versus depth discrimination in gravity interpretation. Geophysics, 42, 60-65.
  • Heincke, B., Jegen, M., Moorkamp, M., Chen, J., Hobbs, R.W. 2010. Adaptive coupling strategy for simultaneous joint inversions that use petrophysical information as constraints: 80th Annual International Meeting, SEG, Expanded Abstracts, 29, 2805–2809.
  • Ialongo, S., Fedi, M., Florio, G. 2014. Invariant models in the inversion of gravity and magnetic fields and their derivatives. Journal of Applied Geophysics, 110, 51-62.
  • Kamm, J., Lundin, I.A., Bastani, M., Sadeghi, M., Pedersen, L.B. 2015. Joint inversion of gravity, magnetic, and petrophysical data — A case study from a gabbro intrusion in Boden, Sweden. Geophysics, 80/5, B131–B152.
  • Last, B. J., Kubik, K. 1983. Compact gravity inversion, Geophysics,48, 713-721.
  • Lelièvre, P.G., Farquharson, C.G., Hurich, C.A. 2012. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77, K1–K15.
  • Li, Y., Oldenburg, D. W. 1998. 3-D inversion of gravity data. Geophysics, 63, 109-119.
  • Lines, L.R., Treitel, S. 1984. A review of least-squares inversion and its application to geophysical problems. Geophys. Prosp, 32, 159-186.
  • Mandal, A., Biswas, A., Mittal, S., Mohanty, W. K., Sharma, S. P. Sengupta, D., Sen, J., Bhatt, A. K. 2013. Geophysical anomalies associated with uranium mineralization from Beldih mine, South Purulia Shear Zone, India. Journal Geological Society of India, 82/6, 601–606.
  • Mandal, A., Mohanty, W. K., Sharma, S. P., Biswas, A., Sen, J., Bhatt, A. K. 2015. Geophysical signatures of uranium mineralization and its subsurface validation at Beldih, Purulia District, West Bengal, India: A case study. Geophysical Prospecting, 63, 713–726.
  • Menke, W. 2012. Geophysical Data Analysis: Discrete inverse theory (MATLAB Edition), Elsevier Inc., New York, 293 s.
  • Mohan, N.L., Anandababu, L., Rao, S. 1986. Gravity interpretation using the Melin transform, Geophysics. 51, 114-122.
  • Odegard, M.E., Berg, J.W. 1965. Gravity interpretation using the Fourier integral. Geophysics, 30, 424- 438.
  • Oldenburg, D. W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39/4, 526-536.
  • Osman, O., Muhittin, A.A., Uçan, O.N. 2006. A new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN). Ann. Geofis, 49, 6.
  • Osman, O., Muhittin, A.A., Uçan, O.N. 2007. Forward modeling with Forced Neural Networks for gravity anomaly profile. Math. Geol, 39, 593-605.
  • Parker, R. L. 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal of the Royal Astronomical Society, 31, 447-455.
  • Pilkington, M. 2006. Joint inversion of gravity and magnetic data for twolayer models. Geophysics, 71/3, L35– L42.
  • Salem, A., Ravat, D., Johnson, R., Ushijima, K. 2001. Detection of buried steel drums from magnetic anomaly data using a supervised neural network. J. Environ. Eng. Geophys, 6,115-122.
  • Saxov, S., Nygaard, K.1953. Residual anomalies and depth estimation. Geophysics, 18, 913-928.
  • Shamsipour, P., Marcotte, D., Chouteau, M., Keating, P. 2010. 3D stochastic inversion of gravity data using cokriging and cosimulation. Geophysics 75, I1–I10.
  • Shamsipour, P., Chouteau, M., Marcotte, D. 2011. 3D stochastic inversion of magnetic data. Journal of Applied Geophysics 73, 336–347.
  • Shamsipour, P., Marcotte, D., Chouteau, M. 2012. 3D stochastic joint inversion of gravity and magnetic data. Journal of Applied Geophysics 79, 27–37.
  • Sharma, B., Geldart, L.P. 1968. Analysis of gravity anomalies of two-dimensional faults using Fourier transforms. Geophys. Prosp, 77-93.
  • Shaw, R. K., Agarwal, N.P. 1990. The application of Walsh transforms to interpret gravity anomalies due to some simple geometrically shaped causative sources: A feasibility study. Geophysics, 55, 843- 850.
  • Singh, A., Biswas, A. 2016. Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Natural Resources Research, 25/3, 297–314.
  • Skeels, D. C. 1947. Ambiguity in gravity interpretation, Geophysics, 12, 43-56.
  • Srivastava, R.P., Vedanti, N., Dimri, V.P. 2007. Optimal Design of a Gravity Survey Network and its Application to Delineate the Jabera-Damoh Structure in the Vindhyan Basin, Central India. Pure & App. Geophy, 164/10, 2009-2022.
  • Tschirhart, V., Morris, W. A., Jefferson, C.W., Keating, P., White, J. C., Calhoun, L. 2013. 3D geophysical inversions of the north-east Amer Belt and their relationship to the geologic structure. Geophysical Prospecting, 61, 547–560.
  • Tschirhart, V., Jefferson, C.W., Morris, W.A. 2017. Basement geology beneath the northeast Thelon Basin, Nunavut: insights from integrating new gravity, magnetic and geological data. Geophysical Prospecting, 65, 617-636.
  • Tsuboi, C. 1983. Gravity, 1st edn. George Allen ve Unwin Ltd, London, 254 pp.
  • Williams, N. C. 2008. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna Greenstone Belt, Western Australia: Ph.D. thesis, University of British Colombia.
  • Zeyen, H., Pous, H. 1993. 3-D joint inversion of magnetic and gravimetric data with a priori information. Geophysical Journal International, 112, 244–256.

Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data

Yıl 2019, Cilt: 160 Sayı: 160, 231 - 244, 27.12.2019
https://doi.org/10.19111/bulletinofmre.502021

Öz

In gravity field inversion we usually dealing with underdetermined
problems and for obtaining realistic solutions can introduce  a depth-weighting function to the inversion
algorithm. We employ a linear inversion method for determining the underground
density distribution of the gravity causative mass. The validation and accuracyof
method is tested on two synthetic gravity anomaly from different models, while
the data are noise- free and corrupted with noise. In this paper, We also invert
the 2D gravity anomaly produced by a salt dome from the
northwest of Iran. The salt domes in the region under
investigation are a rich source of Potash. The inverted structure demonstrate on
average a depth to top and bottom of 27 m and 65 m, respectively. For
comparison, we also have simulated the salt dome using the nonlinear inverse
modeling. The results are mostly similar. 

Kaynakça

  • Abdelrahman, E.M. 1990. Discussion on “A least-squares approach to depth determination from gravity data” by O. P. Gupta. Geophysics, 55, 376-378.
  • Abdelrahman, E.M., El-Araby, T.M. 1993. A least-squares minimization approach to depth determination from moving average residual gravity anomalies. Geophysics, 58,1779–1784.
  • Abdelrahman, E.M., El-Araby, H.M. 1993. Shape and depth solutions from gravity using correlation factors between successive least-squares residuals. Geophysics, 59, 1785–1791.
  • Abdelrahman, E.M., Bayoumi, A.I., Abdelhady, Y.E., Gobashy, M.M., El-Araby, H.M. 1989. Gravity interpretation using correlation factors between successive least-squares residual anomalies. Geophysics, 54, 1614-1621.
  • Abdelrahman, E.M., Bayoumi, A.I., El-Araby, H.M. 1991. A least-squares minimization approach to invert gravity data. Geophysics, 56, 115-l 18.
  • Al-Garni, M.A. 2013. Inversion of residual gravity anomalies using neural network. Arab J Geosci, 6,1509–1516.
  • Asfahani, J., Tlas, M. 2008. An automatic method of direct interpretation of residual gravity anomaly profiles due to spheres and cylinders. Pure and Applied Geophysics, 165/5, 981–994.
  • Biswas, A. 2015. Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geoscience Frontiers, 6/6, 875–893.
  • Biswas, A. 2016. Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique. Modeling Earth Systems and Environment, 2/1, 30.
  • Biswas, A. 2018. Inversion of source parameters from magnetic anomalies for mineral /ore deposits exploration using global optimization technique and analysis of uncertainty. Natural Resources Research, 27/1, 778–107.
  • Biswas, A., Sharma, S. P. 2016. Integrated geophysical studies to elicit the structure associated with Uranium mineralization around South Purulia Shear Zone, India: A Review. Ore Geology Reviews, 72, 1307–1326.
  • Biswas, A., Mandal, A., Sharma, S. P., Mohanty, W. K. 2014a. Delineation of subsurface structure using self-potential, gravity and resistivity surveys from South Purulia Shear Zone, India: Implication to uranium mineralization. Interpretation, 2/2, T103–T110.
  • Biswas, A., Mandal, A., Sharma, S. P., Mohanty, W. K. 2014b. Integrating apparent conductance in resistivity sounding to constrain 2D Gravity modeling for subsurface structure associated with uranium mineralization across South Purulia Shear Zone. International Journal of Geophysics, Article ID 691521, 1–8.
  • Biswas, A., Parija, M. P., Kumar, S. 2017. Global nonlinear optimization for the interpretation of source parameters from total gradient of gravity and magnetic anomalies caused by thin dyke. Annals of Geophysics, 60/2, G0218, 1–17.
  • Bosch, M., McGaughey, J. 2001. Joint inversion of gravity and magnetic data under lithological constraints. The Leading Edge, 20, 877–881.
  • Bosch, M., Meza, R., Jiménez, R., Hönig, A. 2006. Joint gravity and magnetic inversion in 3D using Monte Carlo methods: Geophysics, 71/4, G153–G156.
  • Bowin, C., Scheer, E., Smith, W. 1986. Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies. Geophysics, 51, 123-136.
  • Chakravarthi, V., Sundararajan, N. 2004. Ridge regression algorithm for gravity inversion of fault structures with variable density. Geophysics, 69, 1394– 1404.
  • Eshaghzadeh, A., Kalantary, R.A. 2015. Anticlinal Structure Modeling with Feed Forward Neural Networks for Residual Gravity Anomaly Profile, 8th congress of the Balkan Geophysical Society, DOI: 10.3997/2214-4609.201414210.
  • Eshaghzadeh, A., Hajian, A. 2018. 2-D inverse modeling of residual gravity anomalies from Simple geometric shapes using Modular Feed-forward Neural Network, Annals of Geophysics. 61,1, SE115.
  • Essa, K.S. 2007. A simple formula for shape and depth determination from residual gravity anomalies. Acta Geophysica, 55/2, 182–190.
  • Farquharson, C. G., Ash, M. R., Miller, H. G. 2008. Geologically constrained gravity inversion for the Voisey’s Bay ovoid deposit. The Leading Edge, 27, 64–69.
  • Gallardo, L. A., Meju, M. 2003. Characterization of heterogeneous near-surface materials by joint 2D inversion of DC and seismic data: Geophysical Research Letters, 30, L1658.
  • Ganguli, S.S., Dimri, V. P. 2013. Interpretation of gravity data using eigen image with Indian case study: A SVD approach. Journal of Applied Geophysics, 95, 23-35.
  • Ganguli, S.S., Lashin, A.A., Al Arifi, N.S., Dimri, V. P. 2015. Design of Gravity energy filter to enhance signal-to-noise ratio of gravity measurements. Jour. of Ind. Geophy. Union, 19/3, 333-338.
  • Gupta, O.P. 1983. A least-squares approach to depth determination from gravity data. Geophysics, 48, 357-360.
  • Hammer, S. 1977. Graticule spacing versus depth discrimination in gravity interpretation. Geophysics, 42, 60-65.
  • Heincke, B., Jegen, M., Moorkamp, M., Chen, J., Hobbs, R.W. 2010. Adaptive coupling strategy for simultaneous joint inversions that use petrophysical information as constraints: 80th Annual International Meeting, SEG, Expanded Abstracts, 29, 2805–2809.
  • Ialongo, S., Fedi, M., Florio, G. 2014. Invariant models in the inversion of gravity and magnetic fields and their derivatives. Journal of Applied Geophysics, 110, 51-62.
  • Kamm, J., Lundin, I.A., Bastani, M., Sadeghi, M., Pedersen, L.B. 2015. Joint inversion of gravity, magnetic, and petrophysical data — A case study from a gabbro intrusion in Boden, Sweden. Geophysics, 80/5, B131–B152.
  • Last, B. J., Kubik, K. 1983. Compact gravity inversion, Geophysics,48, 713-721.
  • Lelièvre, P.G., Farquharson, C.G., Hurich, C.A. 2012. Joint inversion of seismic traveltimes and gravity data on unstructured grids with application to mineral exploration. Geophysics, 77, K1–K15.
  • Li, Y., Oldenburg, D. W. 1998. 3-D inversion of gravity data. Geophysics, 63, 109-119.
  • Lines, L.R., Treitel, S. 1984. A review of least-squares inversion and its application to geophysical problems. Geophys. Prosp, 32, 159-186.
  • Mandal, A., Biswas, A., Mittal, S., Mohanty, W. K., Sharma, S. P. Sengupta, D., Sen, J., Bhatt, A. K. 2013. Geophysical anomalies associated with uranium mineralization from Beldih mine, South Purulia Shear Zone, India. Journal Geological Society of India, 82/6, 601–606.
  • Mandal, A., Mohanty, W. K., Sharma, S. P., Biswas, A., Sen, J., Bhatt, A. K. 2015. Geophysical signatures of uranium mineralization and its subsurface validation at Beldih, Purulia District, West Bengal, India: A case study. Geophysical Prospecting, 63, 713–726.
  • Menke, W. 2012. Geophysical Data Analysis: Discrete inverse theory (MATLAB Edition), Elsevier Inc., New York, 293 s.
  • Mohan, N.L., Anandababu, L., Rao, S. 1986. Gravity interpretation using the Melin transform, Geophysics. 51, 114-122.
  • Odegard, M.E., Berg, J.W. 1965. Gravity interpretation using the Fourier integral. Geophysics, 30, 424- 438.
  • Oldenburg, D. W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39/4, 526-536.
  • Osman, O., Muhittin, A.A., Uçan, O.N. 2006. A new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN). Ann. Geofis, 49, 6.
  • Osman, O., Muhittin, A.A., Uçan, O.N. 2007. Forward modeling with Forced Neural Networks for gravity anomaly profile. Math. Geol, 39, 593-605.
  • Parker, R. L. 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal of the Royal Astronomical Society, 31, 447-455.
  • Pilkington, M. 2006. Joint inversion of gravity and magnetic data for twolayer models. Geophysics, 71/3, L35– L42.
  • Salem, A., Ravat, D., Johnson, R., Ushijima, K. 2001. Detection of buried steel drums from magnetic anomaly data using a supervised neural network. J. Environ. Eng. Geophys, 6,115-122.
  • Saxov, S., Nygaard, K.1953. Residual anomalies and depth estimation. Geophysics, 18, 913-928.
  • Shamsipour, P., Marcotte, D., Chouteau, M., Keating, P. 2010. 3D stochastic inversion of gravity data using cokriging and cosimulation. Geophysics 75, I1–I10.
  • Shamsipour, P., Chouteau, M., Marcotte, D. 2011. 3D stochastic inversion of magnetic data. Journal of Applied Geophysics 73, 336–347.
  • Shamsipour, P., Marcotte, D., Chouteau, M. 2012. 3D stochastic joint inversion of gravity and magnetic data. Journal of Applied Geophysics 79, 27–37.
  • Sharma, B., Geldart, L.P. 1968. Analysis of gravity anomalies of two-dimensional faults using Fourier transforms. Geophys. Prosp, 77-93.
  • Shaw, R. K., Agarwal, N.P. 1990. The application of Walsh transforms to interpret gravity anomalies due to some simple geometrically shaped causative sources: A feasibility study. Geophysics, 55, 843- 850.
  • Singh, A., Biswas, A. 2016. Application of global particle swarm optimization for inversion of residual gravity anomalies over geological bodies with idealized geometries. Natural Resources Research, 25/3, 297–314.
  • Skeels, D. C. 1947. Ambiguity in gravity interpretation, Geophysics, 12, 43-56.
  • Srivastava, R.P., Vedanti, N., Dimri, V.P. 2007. Optimal Design of a Gravity Survey Network and its Application to Delineate the Jabera-Damoh Structure in the Vindhyan Basin, Central India. Pure & App. Geophy, 164/10, 2009-2022.
  • Tschirhart, V., Morris, W. A., Jefferson, C.W., Keating, P., White, J. C., Calhoun, L. 2013. 3D geophysical inversions of the north-east Amer Belt and their relationship to the geologic structure. Geophysical Prospecting, 61, 547–560.
  • Tschirhart, V., Jefferson, C.W., Morris, W.A. 2017. Basement geology beneath the northeast Thelon Basin, Nunavut: insights from integrating new gravity, magnetic and geological data. Geophysical Prospecting, 65, 617-636.
  • Tsuboi, C. 1983. Gravity, 1st edn. George Allen ve Unwin Ltd, London, 254 pp.
  • Williams, N. C. 2008. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna Greenstone Belt, Western Australia: Ph.D. thesis, University of British Colombia.
  • Zeyen, H., Pous, H. 1993. 3-D joint inversion of magnetic and gravimetric data with a priori information. Geophysical Journal International, 112, 244–256.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Soheyl Pourreza Bu kişi benim 0000-0003-3992-131X

Farnush Hajızadeh Bu kişi benim 0000-0002-0024-8730

Yayımlanma Tarihi 27 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 160 Sayı: 160

Kaynak Göster

APA Pourreza, S., & Hajızadeh, F. (2019). Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data. Bulletin of the Mineral Research and Exploration, 160(160), 231-244. https://doi.org/10.19111/bulletinofmre.502021
AMA Pourreza S, Hajızadeh F. Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data. Bull.Min.Res.Exp. Aralık 2019;160(160):231-244. doi:10.19111/bulletinofmre.502021
Chicago Pourreza, Soheyl, ve Farnush Hajızadeh. “Simulation of a Salt Dome Using 2D Linear and Nonlinear Inverse Modeling of Residual Gravity Field Data”. Bulletin of the Mineral Research and Exploration 160, sy. 160 (Aralık 2019): 231-44. https://doi.org/10.19111/bulletinofmre.502021.
EndNote Pourreza S, Hajızadeh F (01 Aralık 2019) Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data. Bulletin of the Mineral Research and Exploration 160 160 231–244.
IEEE S. Pourreza ve F. Hajızadeh, “Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data”, Bull.Min.Res.Exp., c. 160, sy. 160, ss. 231–244, 2019, doi: 10.19111/bulletinofmre.502021.
ISNAD Pourreza, Soheyl - Hajızadeh, Farnush. “Simulation of a Salt Dome Using 2D Linear and Nonlinear Inverse Modeling of Residual Gravity Field Data”. Bulletin of the Mineral Research and Exploration 160/160 (Aralık 2019), 231-244. https://doi.org/10.19111/bulletinofmre.502021.
JAMA Pourreza S, Hajızadeh F. Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data. Bull.Min.Res.Exp. 2019;160:231–244.
MLA Pourreza, Soheyl ve Farnush Hajızadeh. “Simulation of a Salt Dome Using 2D Linear and Nonlinear Inverse Modeling of Residual Gravity Field Data”. Bulletin of the Mineral Research and Exploration, c. 160, sy. 160, 2019, ss. 231-44, doi:10.19111/bulletinofmre.502021.
Vancouver Pourreza S, Hajızadeh F. Simulation of a salt dome using 2D linear and nonlinear inverse modeling of residual gravity field data. Bull.Min.Res.Exp. 2019;160(160):231-44.

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en