Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 164 Sayı: 164, 251 - 259, 15.04.2021
https://doi.org/10.19111/bulletinofmre.827630

Öz

Kaynakça

  • Apostolidis, C.I., Distin, P.A. 1978. The kinetics of the sulphuric acid leaching of nickel andmagnesium fromreduction roasted serpentine. Hydrometallurgy 3, 181-96.
  • Arce, G.L.A.F., Neto, T.G.S., Ávila, I., Luna, C.M.R., Carvalho, J.A. 2017. Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method. Journal of Cleaner Production 141, 1324-1336.
  • Bałdyga, J., Jasińska, M., Jodko, K., Petelski, P. 2012. Precipitation of amorphous colloidal silica from aqueous solutions-Aggregation problem. Chemical Engineering Science 77, 207-216.
  • Bobicki, E.R., Liu, Q., Xu, Z., Zeng, H. 2012. Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science 38, 302-20.
  • Daval, D., Hellmann, R., Martinez, I., Gangloff, S., Guyot, F. 2013. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chemical Geology 351, 245-256.
  • Fedoročková, A., Hreus, M., Raschman, P., Sučik, G. 2012. Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Minerals Engineering 32, 1-4.
  • Fedoročková, A., Raschman, P., Sučik, G., Ivánová D., Kavuličová, J. 2016. Utilization of chrysotile- type tailings for synthesis of high-grade silica by controlled precipitation. Mineral Processing and Extractive Metallurgy Review 37(5), 287-294.
  • Kulikovsky, V., Vorlíček, V., Boháč, P., Stranyánek, M., Čtvrtlík, R., Kurdyumov, A. 2008. Mechanical properties of amorphous and microcrystalline silicon films.Thin Solid Films 516(16),5368- 5375.
  • Lacinska, A. M., Styles, M. T., Bateman, K., Wagner, D., Hall, M.R., Gowing, C., Brown, P. D. 2016. Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralization. Chemical Geology 437, 153-159.
  • Levenspiel, O. 1972. Chemical Reaction Engineering. John Wiley and Sons.2,13-29.
  • Liu, K., Chen, Q., Hu, H., Yin, Z. 2010. Characterization and leaching behaviour of lizardite in Yuanjiang laterite ore. Applied Clay Science 47, 311-316.
  • Luce, R.W., Bartlett, R.W., Parks, G.A. 1972. Dissolution kinetics of magnesium silicates. Geochimica et Cosmochimica Acta 36, 35-50.
  • Mevel, C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience 335(10-11), 825-852.
  • Nduagu, E., Björklöf, T., Fagerlund, J., Wärnå, J., Geerlings, H., Zevenhoven, R. 2012. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralisation - Part 1: Application to Finnish serpentinite. Minerals Engineering 30, 75-86.
  • Park, A.H.A., Fan, L.S. 2004. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chemical Engineering Science 59(22-23), 5241-5247.
  • Raza, N., Zafar, Z.I., Najam-ul-Haq, M. 2014.Utilization of formic acid solutions in leaching reaction kinetics of natural magnesite ores. Hydrometallurgy 149, 183-188.
  • Rozalen, M., Huertas F. J. 2013. Comparative effect of chrysotile leaching in nitric, sulfuric and oxalic acids at room temperature. Chemical Geology 352, 134-142.
  • Sanna, A., Dri, M., Hall, M.R., Maroto-Valer, M. 2012. Waste materials for carbon capture and storage by mineralisation (CCSM) - A UK perspective. Applied Energy 99, 545-554.
  • Sanna, A., Wang, X., Lacinska, A., Styles, M., Paulson, T., Maroto-Valer, M.M. 2013. Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration. Minerals Engineering 49, 135-144.
  • Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.J., Zevenhoven, R. 2007. Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing 83, 36-46.
  • Wang, Z., Yang, H., Wang, L., Zhao, M. 1997.Preparation of ultrafine SiO2 with high surface area by the chemical precipitation method. Materials Science and Engineering 48, 211-214.
  • Wang, L., Lu, A., Wang, C., Zheng, X., Zhao, D., Liu, R. 2006. Nano-fibriform production of silica from natural chrysotile.Journal of Colloid and Interface Science 295, 436-439.
  • Wang, X., Maroto-Valer, M.M. 2011. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel 90(3), 1229-1237.
  • Wilson, S.A., Raudsepp, M., Dipple, G.M. 2006. Verifying and quantifying carbon fixation in minerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data. American Mineralogist 91, 1331-1341.
  • Wilson, S.A., Dipple, G.M., Power, I.M., Thom, J.M., Anderson, R.G., Raudsepp, M., Gabites, J.E., Southam, G. 2009. Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar Chrysotile, Canada. Economic Geology 104, 95-112.
  • Yoo, K., Kim, B.S., Kim, M.S., Lee, J., Jeong, J. 2009. Dissolution of magnesium from serpentine mineral in sulfuric acid solution. Materials Transactions 50(5), 1225-1230.

Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite

Yıl 2021, Cilt: 164 Sayı: 164, 251 - 259, 15.04.2021
https://doi.org/10.19111/bulletinofmre.827630

Öz

In this study, leaching experiments were performed for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. The X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyzes showed that the tailing sample contains 39.3wt.% MgO and consist of predominantly lizardite mineral. Hydrochloric acid (HCl) and sulphuric acid (H₂SO₄) were used as acids separately in leaching experiments. Acid concentration, leaching temperature, leaching time, and solid ratio were investigated as leaching parameters and optimized. Maximum magnesium extraction yield was determined to be nearly 98% for both acids under optimum leaching parameters which leaching temperature was 85°C, solid ratio was 20wt.%, leaching time was 120 minutes, and acid concentrations were 6 M for HCl and 4 M for H₂SO₄. In addition, it was determined that the leaching residue as a solid state was mainly composed of amorphous silicate according to the XRD analysis. Dissolution rate data were explained using Jander equation. Mg dissolution process found to be diffusion controlled.

Kaynakça

  • Apostolidis, C.I., Distin, P.A. 1978. The kinetics of the sulphuric acid leaching of nickel andmagnesium fromreduction roasted serpentine. Hydrometallurgy 3, 181-96.
  • Arce, G.L.A.F., Neto, T.G.S., Ávila, I., Luna, C.M.R., Carvalho, J.A. 2017. Leaching optimization of mining wastes with lizardite and brucite contents for use in indirect mineral carbonation through the pH swing method. Journal of Cleaner Production 141, 1324-1336.
  • Bałdyga, J., Jasińska, M., Jodko, K., Petelski, P. 2012. Precipitation of amorphous colloidal silica from aqueous solutions-Aggregation problem. Chemical Engineering Science 77, 207-216.
  • Bobicki, E.R., Liu, Q., Xu, Z., Zeng, H. 2012. Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science 38, 302-20.
  • Daval, D., Hellmann, R., Martinez, I., Gangloff, S., Guyot, F. 2013. Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2. Chemical Geology 351, 245-256.
  • Fedoročková, A., Hreus, M., Raschman, P., Sučik, G. 2012. Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Minerals Engineering 32, 1-4.
  • Fedoročková, A., Raschman, P., Sučik, G., Ivánová D., Kavuličová, J. 2016. Utilization of chrysotile- type tailings for synthesis of high-grade silica by controlled precipitation. Mineral Processing and Extractive Metallurgy Review 37(5), 287-294.
  • Kulikovsky, V., Vorlíček, V., Boháč, P., Stranyánek, M., Čtvrtlík, R., Kurdyumov, A. 2008. Mechanical properties of amorphous and microcrystalline silicon films.Thin Solid Films 516(16),5368- 5375.
  • Lacinska, A. M., Styles, M. T., Bateman, K., Wagner, D., Hall, M.R., Gowing, C., Brown, P. D. 2016. Acid-dissolution of antigorite, chrysotile and lizardite for ex situ carbon capture and storage by mineralization. Chemical Geology 437, 153-159.
  • Levenspiel, O. 1972. Chemical Reaction Engineering. John Wiley and Sons.2,13-29.
  • Liu, K., Chen, Q., Hu, H., Yin, Z. 2010. Characterization and leaching behaviour of lizardite in Yuanjiang laterite ore. Applied Clay Science 47, 311-316.
  • Luce, R.W., Bartlett, R.W., Parks, G.A. 1972. Dissolution kinetics of magnesium silicates. Geochimica et Cosmochimica Acta 36, 35-50.
  • Mevel, C. 2003. Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience 335(10-11), 825-852.
  • Nduagu, E., Björklöf, T., Fagerlund, J., Wärnå, J., Geerlings, H., Zevenhoven, R. 2012. Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralisation - Part 1: Application to Finnish serpentinite. Minerals Engineering 30, 75-86.
  • Park, A.H.A., Fan, L.S. 2004. CO2 mineral sequestration: physically activated dissolution of serpentine and pH swing process. Chemical Engineering Science 59(22-23), 5241-5247.
  • Raza, N., Zafar, Z.I., Najam-ul-Haq, M. 2014.Utilization of formic acid solutions in leaching reaction kinetics of natural magnesite ores. Hydrometallurgy 149, 183-188.
  • Rozalen, M., Huertas F. J. 2013. Comparative effect of chrysotile leaching in nitric, sulfuric and oxalic acids at room temperature. Chemical Geology 352, 134-142.
  • Sanna, A., Dri, M., Hall, M.R., Maroto-Valer, M. 2012. Waste materials for carbon capture and storage by mineralisation (CCSM) - A UK perspective. Applied Energy 99, 545-554.
  • Sanna, A., Wang, X., Lacinska, A., Styles, M., Paulson, T., Maroto-Valer, M.M. 2013. Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration. Minerals Engineering 49, 135-144.
  • Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.J., Zevenhoven, R. 2007. Dissolution of natural serpentinite in mineral and organic acids. International Journal of Mineral Processing 83, 36-46.
  • Wang, Z., Yang, H., Wang, L., Zhao, M. 1997.Preparation of ultrafine SiO2 with high surface area by the chemical precipitation method. Materials Science and Engineering 48, 211-214.
  • Wang, L., Lu, A., Wang, C., Zheng, X., Zhao, D., Liu, R. 2006. Nano-fibriform production of silica from natural chrysotile.Journal of Colloid and Interface Science 295, 436-439.
  • Wang, X., Maroto-Valer, M.M. 2011. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation. Fuel 90(3), 1229-1237.
  • Wilson, S.A., Raudsepp, M., Dipple, G.M. 2006. Verifying and quantifying carbon fixation in minerals from serpentine-rich mine tailings using the Rietveld method with X-ray powder diffraction data. American Mineralogist 91, 1331-1341.
  • Wilson, S.A., Dipple, G.M., Power, I.M., Thom, J.M., Anderson, R.G., Raudsepp, M., Gabites, J.E., Southam, G. 2009. Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar Chrysotile, Canada. Economic Geology 104, 95-112.
  • Yoo, K., Kim, B.S., Kim, M.S., Lee, J., Jeong, J. 2009. Dissolution of magnesium from serpentine mineral in sulfuric acid solution. Materials Transactions 50(5), 1225-1230.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hakan Çiftçi Bu kişi benim 0000-0001-7910-7350

Bekir Arslan Bu kişi benim 0000-0002-4275-0286

Ayşegül Bilen Bu kişi benim 0000-0002-8713-353X

Zeyni Arsoy Bu kişi benim 0000-0001-5694-6338

Bahri Ersoy Bu kişi benim 0000-0002-0075-9039

Yayımlanma Tarihi 15 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 164 Sayı: 164

Kaynak Göster

APA Çiftçi, H., Arslan, B., Bilen, A., Arsoy, Z., vd. (2021). Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. Bulletin of the Mineral Research and Exploration, 164(164), 251-259. https://doi.org/10.19111/bulletinofmre.827630
AMA Çiftçi H, Arslan B, Bilen A, Arsoy Z, Ersoy B. Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. Bull.Min.Res.Exp. Nisan 2021;164(164):251-259. doi:10.19111/bulletinofmre.827630
Chicago Çiftçi, Hakan, Bekir Arslan, Ayşegül Bilen, Zeyni Arsoy, ve Bahri Ersoy. “Optimization of Leaching Conditions for Extraction of Magnesium from a Chromite Beneficiation Plant Tailing Predominantly Containing Lizardite”. Bulletin of the Mineral Research and Exploration 164, sy. 164 (Nisan 2021): 251-59. https://doi.org/10.19111/bulletinofmre.827630.
EndNote Çiftçi H, Arslan B, Bilen A, Arsoy Z, Ersoy B (01 Nisan 2021) Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. Bulletin of the Mineral Research and Exploration 164 164 251–259.
IEEE H. Çiftçi, B. Arslan, A. Bilen, Z. Arsoy, ve B. Ersoy, “Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite”, Bull.Min.Res.Exp., c. 164, sy. 164, ss. 251–259, 2021, doi: 10.19111/bulletinofmre.827630.
ISNAD Çiftçi, Hakan vd. “Optimization of Leaching Conditions for Extraction of Magnesium from a Chromite Beneficiation Plant Tailing Predominantly Containing Lizardite”. Bulletin of the Mineral Research and Exploration 164/164 (Nisan 2021), 251-259. https://doi.org/10.19111/bulletinofmre.827630.
JAMA Çiftçi H, Arslan B, Bilen A, Arsoy Z, Ersoy B. Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. Bull.Min.Res.Exp. 2021;164:251–259.
MLA Çiftçi, Hakan vd. “Optimization of Leaching Conditions for Extraction of Magnesium from a Chromite Beneficiation Plant Tailing Predominantly Containing Lizardite”. Bulletin of the Mineral Research and Exploration, c. 164, sy. 164, 2021, ss. 251-9, doi:10.19111/bulletinofmre.827630.
Vancouver Çiftçi H, Arslan B, Bilen A, Arsoy Z, Ersoy B. Optimization of leaching conditions for extraction of magnesium from a chromite beneficiation plant tailing predominantly containing lizardite. Bull.Min.Res.Exp. 2021;164(164):251-9.

Cited By

Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.

For further details;
https://creativecommons.org/licenses/?lang=en