A comparative numerical analysis of the thermohydraulics of an enhanced geothermal system (EGS) project in Türkiye in Dikili area is presented. The fractured granodiorite is modelled as porous media, utilizing the numerically suggested data of other authors for the corresponding hydraulic characteristics. As the heat transmission fluid, two different mediums are alternatively considered. These are the more classical medium, water and the supercritical Carbon Dioxide (sCO2). Transient calculations are performed for a time period of twenty years, comparing the temporally developing results obtained for water and sCO2 with each other. Based on modeling parameters and assumptions, higher production temperatures are observed with sCO2, in comparison to water, implying an advantage for sCO2 usage as a working fluid in EGS. This is accompanied by the further advantage of a lower pressure drop for sCO2. On the other hand, the temperature advantage is relativized by the lower specific heat capacity of sCO2 causing a decrease in the production thermal power. In general, the present re found to be encouraging for a further and more detailed analysis of the employment of sCO2 as working fluid in EGS.
EGS Thermohydraulics Computational analysis Supercritical carbon dioxide
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 25 Ağustos 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 171 Sayı: 171 |
Copyright and Licence
The Bulletin of Mineral Research and Exploration keeps the Law on Intellectual and Artistic Works No: 5846. The Bulletin of Mineral Research and Exploration publishes the articles under the terms of “Creatice Common Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND 4.0)” licence which allows to others to download your works and share them with others as long as they credit you, but they can’t change them in any way or use them commercially.
For further details;
https://creativecommons.org/licenses/?lang=en